metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m97-m98

Bromido[1-(η6-4-tert-butyl­benz­yl)-3-(2,4,6-tri­methyl­benz­yl)benzimidazol-2-yl­­idene]chloridoruthenium(II)

aDepartment of Natural Sciences, Fayetteville State University, Fayetteville, NC 28301, USA, bDepartment of Chemistry, Faculty of Pharmacy, Mersin University, Mersin, TR 33169, Turkey, cDepartment of Chemistry, Clemson University, Clemson, SC 29634, USA, dDepartment of Chemistry, Faculty of Science and Arts, İnönü University, Malatya, TR 44280, Turkey, and eDepartment of Chemistry, Faculty of Science, Ege University, Bornova-İzmir, TR 35100, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com

(Received 24 November 2008; accepted 11 December 2008; online 20 December 2008)

A new ruthenium complex, [RuBrCl(C28H32N2)], has been synthesized and characterized by elemental analysis, 1H NMR, 13C NMR, IR-spectroscopy and a single-crystal X-ray diffraction study. The Ru atom in this complex is best described as having a considerably distorted octa­hedral coordination environment with the arene occupying three coordination sites. Two further coordination sites are occupied by chloride and bromide ligands, while the sixth site is occupied by the carbene. The carbene portion of the ligand is a benzimidazole ring. This ring is connected to the C6H4C(CH3)3 arene by a CH2 bridge. This leads to a system with very little apparent strain. The two halogen atoms are disordered between Br and Cl. Two partial Cl atoms share the same sites as two partial Br atoms so that the title compound effectively has one Cl and one Br atom. C—H⋯X (X = Cl, Br) hydrogen bonds help to stabilize the crystal structure.

Related literature

For synthesis, see: Yaşar et al. (2008[Yaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. L. & Bruneau, C. (2008). Eur. J. Org. Chem. 12, 2142-2149.]); Çetinkaya et al. (2003[Çetinkaya, B., Demir, S., Özdemir, İ., Toupet, L., Semeril, D., Bruneau, C. & Dixneuf, P. H. (2003). Chem. Eur. J. 9, 2323-2330.]). For general background, see: Herrmann (2002[Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.]); Arduengo & Krafczyc (1998[Arduengo, A. J. & Krafczyc, R. (1998). Chem. Ztg. 32, 6-14.]); Arduengo et al. (1991[Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.]). For related compounds, see: Begley et al. (1991[Begley, M. J., Harrison, S. & Wright, A. H. (1991). Acta Cryst. C47, 318-320.]); Arslan et al. (2004b[Arslan, H., VanDerveer, D., Özdemir, I., Çetinkaya, B. & Demir, S. (2004b). Z. Kristallogr. New Cryst. Struct. 219, 377-378.], 2005a[Arslan, H., VanDerveer, D., Özdemir, I., Çetinkaya, B. & Demir, S. (2005a). J. Chem. Crystallogr. 35, 491-495.],b[Arslan, H., VanDerveer, D., Özdemir, I., Yaşar, S. & Çetinkaya, B. (2005b). Acta Cryst. E61, m1873-m1875.], 2007b[Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, I. & Çetinkaya, B. (2007b). Acta Cryst. E63, m942-m944.],c[Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2007c). Acta Cryst. E63, m1001-m1003.]). For related literature, see: Arslan et al. (2004a[Arslan, H., VanDerveer, D., Özdemir, I., Çetinkaya, B. & Yaşar, S. (2004a). Z. Kristallogr. New Cryst. Struct. 219, 44-46.], 2007a[Arslan, H., VanDerveer, D., Özdemir, İ., Demir, S. & Çetinkaya, B. (2007a). Acta Cryst. E63, m770-m771.]); Herrmann et al. (1995[Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2371-2374.]); Navarro et al. (2006[Navarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem. 71, 685-692.]); Özdemir et al. (2001[Özdemir, I., Yigit, B., Çetinkaya, B., Ülkü, D., Tahir, M. N. & Arici, C. (2001). J. Organomet. Chem. 633, 27-32.]); Çetinkaya et al. (2001[Çetinkaya, B., Demir, S., Özdemir, I., Toupet, L., Semeril, D., Bruneau, C. & Dixneuf, P. H. (2001). New J. Chem. 25, 519-521.], 2002[Çetinkaya, B., Seckin, T., Gürbüz, N. & Özdemir, I. (2002). J. Mol. Catal. A, 184, 31-38.]).

[Scheme 1]

Experimental

Crystal data
  • [RuBrCl(C28H32N2)]

  • Mr = 611.69

  • Monoclinic, P 21 /n

  • a = 7.6336 (15) Å

  • b = 27.725 (6) Å

  • c = 12.051 (2) Å

  • β = 98.80 (3)°

  • V = 2520.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.29 mm−1

  • T = 153 (2) K

  • 0.26 × 0.12 × 0.02 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.581, Tmax = 0.955

  • 17799 measured reflections

  • 4449 independent reflections

  • 3288 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.089

  • wR(F2) = 0.255

  • S = 1.04

  • 4449 reflections

  • 306 parameters

  • H-atom parameters constrained

  • Δρmax = 2.45 e Å−3

  • Δρmin = −1.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cl2i 0.96 2.65 3.406 (11) 135
C16—H16C⋯Br1 0.96 2.92 3.563 (11) 125
C19—H19A⋯Br1 0.96 2.92 3.323 (11) 106
Symmetry code: (i) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-Heterocyclic carbenes have received great attention since the first synthesis of a carbene compound,1,3-di-l-adamantylimidazol-2-ylidene, by Arduengo et al., (1991). N-heterocyclic carbenes generally derived from imidazolium, tetrahydropyrimidin-1-ium and benzimidazolium salts, have attracted wide spread attention as ligands for main group elements and transition metals. The N-heterocyclic carbene metal complexes are remarkably stable toward heat, air, and moisture, and many organic reactions using these complexes as catalysts have been investigated. These include Suzuki-Miyura, Sonogashira, Stille and Heck reactions (Herrmann et al., 1995; Herrmann, 2002; Navarro et al., 2006; Arduengo & Krafczyc,1998).

Previous work from our research groups in this area has focused on the elaboration of olefins as electron-rich heterocyclic carbene precursors to allow the formation of chelating carbenes. We have also looked at the rapidly developing chemistry of η6-arene ruthenium(II) complexes containing substituted imidazolidin-2-ylidenes (Özdemir et al., 2001; Çetinkaya et al., 2001, 2002, 2003), and on synthesis, characterization, crystal structure, and using palladium, platinum and ruthenium N-heterocyclic carbene complexes as catalysts (Yaşar et al., 2008; Arslan et al., 2007a, 2007b, 2007c, 2004a, 2004b, 2005a, 2005b).

In the present study, we have synthesized and characterized a new ruthenium complex, (1-(4-tert-butylbenzyl)-3-(2,4,6-trimethylbenzyl)-benzimidazol-2-ylidene)ruthenium(II) bromide chloride, (I). The molecular structure of the title compound, (I), is depicted in Fig. 1.

The carbene portion of the ligand is a benzimidazole ring. This ring is connected to the C6H4C(CH3)3 arene by a CH2 bridge. This leads to a system with very little apparent strain. The ruthenium atom in the title compound is best described as having an octahedral coordination environment, with the arene occupying three coordination sites. Two further coordination sites are occupied by Cl and Br ligands, while the sixth site is occupied by the carbene carbon of benzimidazole ring. The ruthenium atom is situated 1.658 (5) Å from the ring centroid of the arene atom. While there are substantial differences in the C—C and C—Ru distances for the arene ring, there is no evidence of the alternating C—C bonds observed in some ruthenium-arene complexes (Begley et al., 1991). The arene ring is essentially planar, the mean deviation from the plane being 0.013 (12) Å. In addition, the trimethylbenzyl and benzimidazole rings are almost planar with the maximum deviations of 0.009 (12) Å for atom C25 and, 0.003 (11) Å for atom C2. The benzimidazole moiety is planar and it forms dihedral angles of 87.16 (6)° and 85.31 (7)°, respectively, with the mean planes through the arene and trimethylbenzyl rings.

The two halogen atoms are disordered between Br and Cl. Two chlorine atoms share the same site as two bromine atoms so that the title compound effectively has one Cl and one Br atom. The occupancies of the Cl1 and Cl2 atoms are 0.399 (11) and 0.630 (11), respectively, and those of the Br1 and Br2 atoms are 0.601 (11) and 0.370 (11), respectively.

The structure of the title compound is assembled by intermolecular C—H···Cl hydrogen bonds, to form a two-dimensional framework (Fig. 2, 3 and Table 1) (Macrae et al., 2006). The intermolecular contacts, C—H···Br, are also listed in Table 1.

Related literature top

For synthesis, see: Yaşar et al. (2008); Çetinkaya et al. (2003). For general background, see: Herrmann (2002); Arduengo & Krafczyc (1998); Arduengo et al. (1991). For related compounds, see: Begley et al. (1991); Arslan et al. (2004b, 2005a,b, 2007b,c ). For related literature, see: Arslan et al. (2004a, 2007a); Herrmann et al. (1995); Navarro et al. (2006); Özdemir et al. (2001); Çetinkaya et al. (2001, 2002).

Experimental top

All reactions for the preparation of (I) and (II) were carried out under Ar in flame-dried glass-ware using standard Schlenk-type flasks. The solvents used were purified by distillation over the drying agents indicated and were transferred under Ar: CH2Cl2 (P4O10), hexane, toluene (Na). RuClBr[η1-CN{CH2(η6-C6H4CMe3-4)}C6H4N(CH2C6H2Me3-2,4,6)]: A suspension of 1-(4-terbutylbenzyl)-3-(2,4,6-trimethylbenzyl)benzimidazolium bromide (1.00 g, 2.10 mmol), Cs2CO3 (0.7 g, 2.14 mmol), [RuCl2(p-cymene)]2 (0.5 g, 0.82 mmol) and molecular sieves was heated under reflux in degassed dry toluene (20 ml) for 12 h. The reaction mixture was then filtered while hot, and the volume was reduced to about 10 ml before addition of n-hexane (10 ml). The precipitate formed was crystallized from CH2Cl2/hexane (5:10 ml) to give the crystal product (Fig. 3). Yield 1.00 g (82%). M.p.: 339–340 oC. FT—IR (KBr pellet, cm-1): νCN 1432 cm-1. Anal. Found: C, 54.91; H, 5.29; N: 4.54. Calc. for C28H32N2RuClBr: C, 54.86; H, 5.26; N, 4.57. 1H NMR (δ, 399.9 MHz, CDCl3): 1.25, 1.31 and 1.37 [s, 9H, CH2C6H4C(CH3)3-p]; 2.17 [m, 9H, CH2C6H2(CH3)3-2,4,6]; 5.07 and 5.67 [m, 4H, CH2C6H2(CH3)3-2,4,6 and CH2C6H4C(CH3)3-p]; 6.79–7.60 [m, 10H, NC6H4 N, CH2C6H2(CH3)3-2,4,6 and CH2C6H4C(CH3)3-p]. 13C {H} NMR (δ, 100.5 MHz, CDCl3): 20.4 and 21.5 [CH2C6H2(CH3)3-2,4,6]; 31.3 [CH2C6H4C(CH3)3-p]; 34.7 [CH2C6H4C(CH3)3-p]; 45.0 [CH2C6H2(CH3)3-2,4,6]; 53.2 [CH2C6H4C(CH3)3-p]; 89.1, 90.1, 91.1, 93.0, 93.7, 98.9, 100.9, 109.7, 113.0, 113.8, 123.3, 125.3, 127.9, 129.0, 131.5, 133.4, 137.9 and 150.1 [CH2C6H2(CH3)3-2,4,6;NC6H4N and CH2C6H4C(CH3)3-p]; 184.1 [Ccarbene].

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I).
[Figure 3] Fig. 3. A view of the packing diagram of (I). Hydrogen bonds are shown as dashed lines.
[Figure 4] Fig. 4. Preparation of the title compound.
Bromido[1-(η6-4-tert-butylbenzyl)-3-(2,4,6- trimethylbenzyl)benzimidazol-2-ylidene]chloridoruthenium(II) top
Crystal data top
[RuBrCl(C28H32N2)]F(000) = 1237.9
Mr = 611.69Dx = 1.612 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6078 reflections
a = 7.6336 (15) Åθ = 2.8–26.3°
b = 27.725 (6) ŵ = 2.29 mm1
c = 12.051 (2) ÅT = 153 K
β = 98.80 (3)°Plate, red
V = 2520.5 (9) Å30.26 × 0.12 × 0.02 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
4449 independent reflections
Radiation source: Sealed Tube3288 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.089
Detector resolution: 14.6306 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = 99
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 3033
Tmin = 0.581, Tmax = 0.955l = 1414
17799 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.089Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.255H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1351P)2 + 37.3742P]
where P = (Fo2 + 2Fc2)/3
4449 reflections(Δ/σ)max < 0.001
306 parametersΔρmax = 2.45 e Å3
0 restraintsΔρmin = 1.38 e Å3
Crystal data top
[RuBrCl(C28H32N2)]V = 2520.5 (9) Å3
Mr = 611.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6336 (15) ŵ = 2.29 mm1
b = 27.725 (6) ÅT = 153 K
c = 12.051 (2) Å0.26 × 0.12 × 0.02 mm
β = 98.80 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
4449 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3288 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 0.955Rint = 0.089
17799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0890 restraints
wR(F2) = 0.255H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1351P)2 + 37.3742P]
where P = (Fo2 + 2Fc2)/3
4449 reflectionsΔρmax = 2.45 e Å3
306 parametersΔρmin = 1.38 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.60457 (10)0.20821 (3)0.00508 (7)0.0216 (3)
Cl10.72119 (18)0.23046 (5)0.19599 (11)0.0291 (6)0.399 (11)
Br10.72119 (18)0.23046 (5)0.19599 (11)0.0291 (6)0.601 (11)
Cl20.2998 (2)0.19995 (6)0.03585 (16)0.0322 (7)0.630 (11)
Br20.2998 (2)0.19995 (6)0.03585 (16)0.0322 (7)0.370 (11)
N10.6449 (10)0.2957 (3)0.1343 (8)0.0231 (18)
N20.5256 (11)0.3219 (3)0.0063 (7)0.0247 (18)
C10.5792 (12)0.2804 (4)0.0395 (9)0.024 (2)
C20.6346 (13)0.3450 (4)0.1471 (9)0.027 (2)
C30.6940 (14)0.3753 (4)0.2264 (10)0.030 (2)
H30.74960.36300.28680.036*
C40.6679 (14)0.4238 (4)0.2125 (9)0.029 (2)
H40.70550.44590.26530.035*
C50.5879 (14)0.4421 (4)0.1236 (10)0.029 (2)
H50.57080.47630.11710.035*
C60.5345 (15)0.4115 (4)0.0466 (10)0.032 (2)
H60.48130.42410.01450.038*
C70.5573 (13)0.3620 (3)0.0571 (9)0.024 (2)
C80.7150 (15)0.2616 (4)0.2085 (9)0.029 (2)
H8A0.83360.27050.21760.035*
H8B0.64270.26160.28100.035*
C90.7140 (14)0.2114 (4)0.1541 (9)0.026 (2)
C100.5597 (15)0.1828 (4)0.1780 (10)0.030 (2)
H100.46900.19000.24010.036*
C110.5439 (14)0.1426 (4)0.1061 (9)0.029 (2)
H110.43740.12370.11940.034*
C120.6761 (13)0.1292 (4)0.0165 (9)0.029 (2)
C130.8302 (14)0.1597 (4)0.0012 (10)0.030 (2)
H130.92030.15240.06370.036*
C140.8585 (14)0.1996 (3)0.0666 (9)0.025 (2)
H140.96700.21770.05520.030*
C150.6573 (14)0.0866 (4)0.0614 (9)0.027 (2)
C160.6828 (15)0.1024 (4)0.1864 (10)0.034 (2)
H16A0.80460.11100.21030.052*
H16B0.65110.07630.23170.052*
H16C0.60860.12970.19450.052*
C170.4716 (15)0.0640 (4)0.0349 (10)0.036 (3)
H17A0.38570.08580.05720.054*
H17B0.46930.03420.07520.054*
H17C0.44400.05790.04420.054*
C180.7974 (16)0.0484 (4)0.0473 (11)0.038 (3)
H18A0.78660.03920.03020.057*
H18B0.78000.02060.09190.057*
H18C0.91350.06140.07140.057*
C190.4525 (14)0.3223 (4)0.1144 (9)0.028 (2)
H19A0.54910.32490.17530.034*
H19B0.39410.29220.12240.034*
C200.3246 (14)0.3624 (4)0.1237 (9)0.025 (2)
C210.1591 (14)0.3634 (4)0.0541 (9)0.030 (2)
C220.0405 (13)0.4017 (4)0.0669 (9)0.027 (2)
H220.07360.40220.02050.032*
C230.0847 (15)0.4383 (4)0.1445 (9)0.032 (2)
C240.2486 (15)0.4370 (4)0.2112 (10)0.035 (3)
H240.28040.46270.26410.042*
C250.3703 (15)0.3996 (4)0.2046 (9)0.032 (2)
C260.1006 (16)0.3244 (4)0.0281 (11)0.039 (3)
H26A0.13860.33180.09850.058*
H26B0.02630.32200.03870.058*
H26C0.15170.29430.00010.058*
C270.0427 (18)0.4793 (5)0.1538 (12)0.046 (3)
H27A0.05440.48410.23120.068*
H27B0.15630.47160.11160.068*
H27C0.00190.50830.12440.068*
C280.5490 (16)0.4006 (4)0.2781 (10)0.037 (3)
H28A0.55850.42920.32350.055*
H28B0.64080.40060.23180.055*
H28C0.56130.37270.32580.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0204 (5)0.0223 (5)0.0219 (5)0.0002 (3)0.0021 (3)0.0011 (3)
Cl10.0329 (8)0.0257 (8)0.0261 (8)0.0028 (5)0.0035 (5)0.0018 (5)
Br10.0329 (8)0.0257 (8)0.0261 (8)0.0028 (5)0.0035 (5)0.0018 (5)
Cl20.0263 (10)0.0370 (11)0.0354 (11)0.0006 (7)0.0118 (7)0.0017 (7)
Br20.0263 (10)0.0370 (11)0.0354 (11)0.0006 (7)0.0118 (7)0.0017 (7)
N10.016 (4)0.019 (4)0.035 (5)0.000 (3)0.007 (3)0.007 (3)
N20.026 (4)0.025 (5)0.023 (4)0.009 (3)0.001 (3)0.001 (3)
C10.017 (4)0.030 (5)0.024 (5)0.006 (4)0.002 (4)0.001 (4)
C20.023 (5)0.027 (5)0.031 (6)0.000 (4)0.005 (4)0.003 (4)
C30.029 (5)0.031 (6)0.033 (6)0.002 (4)0.011 (5)0.006 (4)
C40.031 (5)0.034 (6)0.023 (5)0.002 (4)0.009 (4)0.004 (4)
C50.029 (5)0.016 (5)0.040 (6)0.001 (4)0.001 (5)0.005 (4)
C60.035 (6)0.029 (6)0.034 (6)0.008 (4)0.016 (5)0.005 (5)
C70.023 (5)0.019 (5)0.031 (5)0.007 (4)0.011 (4)0.009 (4)
C80.042 (6)0.027 (5)0.021 (5)0.001 (4)0.009 (4)0.000 (4)
C90.030 (5)0.025 (5)0.025 (5)0.002 (4)0.014 (4)0.001 (4)
C100.035 (6)0.025 (5)0.033 (6)0.004 (4)0.013 (5)0.012 (4)
C110.030 (5)0.022 (5)0.033 (6)0.004 (4)0.004 (4)0.012 (4)
C120.023 (5)0.032 (6)0.032 (6)0.007 (4)0.010 (4)0.001 (4)
C130.025 (5)0.031 (6)0.037 (6)0.004 (4)0.010 (4)0.002 (5)
C140.036 (6)0.017 (5)0.026 (5)0.002 (4)0.021 (4)0.001 (4)
C150.029 (5)0.027 (5)0.024 (5)0.001 (4)0.001 (4)0.000 (4)
C160.034 (6)0.036 (6)0.033 (6)0.006 (5)0.004 (5)0.006 (5)
C170.033 (6)0.029 (6)0.042 (7)0.012 (4)0.004 (5)0.010 (5)
C180.045 (7)0.024 (6)0.045 (7)0.002 (5)0.005 (5)0.001 (5)
C190.026 (5)0.035 (6)0.025 (5)0.004 (4)0.004 (4)0.001 (4)
C200.034 (5)0.022 (5)0.021 (5)0.004 (4)0.004 (4)0.002 (4)
C210.027 (5)0.034 (6)0.028 (6)0.007 (4)0.001 (4)0.001 (4)
C220.021 (5)0.029 (5)0.031 (6)0.003 (4)0.002 (4)0.001 (4)
C230.036 (6)0.029 (6)0.031 (6)0.006 (5)0.010 (5)0.005 (5)
C240.038 (6)0.028 (6)0.040 (7)0.006 (5)0.012 (5)0.013 (5)
C250.036 (6)0.036 (6)0.022 (5)0.005 (5)0.004 (4)0.001 (4)
C260.032 (6)0.033 (6)0.046 (7)0.009 (5)0.012 (5)0.015 (5)
C270.053 (8)0.034 (7)0.051 (8)0.017 (6)0.011 (6)0.004 (6)
C280.038 (6)0.037 (6)0.035 (6)0.007 (5)0.005 (5)0.011 (5)
Geometric parameters (Å, º) top
Ru1—C12.048 (11)C13—H130.9600
Ru1—C92.095 (10)C14—H140.9600
Ru1—C102.177 (11)C15—C181.533 (15)
Ru1—C132.177 (10)C15—C171.538 (14)
Ru1—C142.192 (10)C15—C161.553 (15)
Ru1—C112.198 (10)C16—H16A0.9599
Ru1—C122.267 (11)C16—H16B0.9599
Ru1—Cl22.4613 (18)C16—H16C0.9599
Ru1—Cl12.5267 (17)C17—H17A0.9599
N1—C21.376 (13)C17—H17B0.9599
N1—C11.383 (13)C17—H17C0.9599
N1—C81.457 (13)C18—H18A0.9599
N2—C11.366 (13)C18—H18B0.9599
N2—C71.390 (13)C18—H18C0.9599
N2—C191.494 (13)C19—C201.495 (14)
C2—C71.394 (15)C19—H19A0.9600
C2—C31.399 (15)C19—H19B0.9600
C3—C41.372 (16)C20—C211.405 (15)
C3—H30.9600C20—C251.425 (15)
C4—C51.407 (15)C21—C221.418 (15)
C4—H40.9600C21—C261.489 (15)
C5—C61.365 (15)C22—C231.387 (15)
C5—H50.9600C22—H220.9600
C6—C71.392 (15)C23—C241.380 (16)
C6—H60.9600C23—C271.511 (15)
C8—C91.540 (14)C24—C251.404 (16)
C8—H8A0.9600C24—H240.9600
C8—H8B0.9600C25—C281.509 (16)
C9—C101.414 (15)C26—H26A0.9599
C9—C141.442 (16)C26—H26B0.9599
C10—C111.427 (16)C26—H26C0.9599
C10—H100.9600C27—H27A0.9599
C11—C121.410 (15)C27—H27B0.9599
C11—H110.9600C27—H27C0.9599
C12—C131.438 (14)C28—H28A0.9599
C12—C151.529 (14)C28—H28B0.9599
C13—C141.411 (14)C28—H28C0.9599
C1—Ru1—C979.8 (4)Ru1—C11—H11130.2
C1—Ru1—C1097.3 (4)C11—C12—C13115.6 (10)
C9—Ru1—C1038.6 (4)C11—C12—C15123.4 (9)
C1—Ru1—C13131.3 (4)C13—C12—C15121.0 (10)
C9—Ru1—C1368.8 (4)C11—C12—Ru168.9 (6)
C10—Ru1—C1380.9 (4)C13—C12—Ru167.8 (6)
C1—Ru1—C1495.7 (4)C15—C12—Ru1131.5 (7)
C9—Ru1—C1439.2 (4)C14—C13—C12124.7 (11)
C10—Ru1—C1470.0 (4)C14—C13—Ru171.7 (6)
C13—Ru1—C1437.7 (4)C12—C13—Ru174.6 (6)
C1—Ru1—C11133.7 (4)C14—C13—H13117.7
C9—Ru1—C1168.8 (4)C12—C13—H13117.7
C10—Ru1—C1138.1 (4)Ru1—C13—H13128.7
C13—Ru1—C1166.9 (4)C13—C14—C9115.7 (9)
C14—Ru1—C1181.1 (4)C13—C14—Ru170.6 (6)
C1—Ru1—C12161.6 (4)C9—C14—Ru166.8 (6)
C9—Ru1—C1281.8 (4)C13—C14—H14122.1
C10—Ru1—C1268.5 (4)C9—C14—H14122.1
C13—Ru1—C1237.7 (4)Ru1—C14—H14133.1
C14—Ru1—C1268.9 (3)C12—C15—C18109.5 (9)
C11—Ru1—C1236.8 (4)C12—C15—C17110.9 (9)
C1—Ru1—Cl293.9 (3)C18—C15—C17109.4 (9)
C9—Ru1—Cl2133.5 (3)C12—C15—C16111.6 (9)
C10—Ru1—Cl298.4 (3)C18—C15—C16108.5 (9)
C13—Ru1—Cl2134.6 (3)C17—C15—C16106.9 (9)
C14—Ru1—Cl2165.8 (3)C15—C16—H16A109.5
C11—Ru1—Cl284.7 (3)C15—C16—H16B109.5
C12—Ru1—Cl299.6 (3)H16A—C16—H16B109.5
C1—Ru1—Cl187.9 (3)C15—C16—H16C109.5
C9—Ru1—Cl1133.1 (3)H16A—C16—H16C109.5
C10—Ru1—Cl1167.9 (3)H16B—C16—H16C109.5
C13—Ru1—Cl187.5 (3)C15—C17—H17A109.5
C14—Ru1—Cl198.7 (3)C15—C17—H17B109.5
C11—Ru1—Cl1138.3 (3)H17A—C17—H17B109.5
C12—Ru1—Cl1104.0 (3)C15—C17—H17C109.5
Cl2—Ru1—Cl192.04 (7)H17A—C17—H17C109.5
C2—N1—C1112.0 (9)H17B—C17—H17C109.5
C2—N1—C8126.5 (9)C15—C18—H18A109.5
C1—N1—C8121.5 (8)C15—C18—H18B109.5
C1—N2—C7111.3 (8)H18A—C18—H18B109.5
C1—N2—C19122.3 (9)C15—C18—H18C109.5
C7—N2—C19126.4 (8)H18A—C18—H18C109.5
N2—C1—N1104.2 (9)H18B—C18—H18C109.5
N2—C1—Ru1140.1 (8)N2—C19—C20114.0 (8)
N1—C1—Ru1115.6 (7)N2—C19—H19A108.8
N1—C2—C7105.8 (9)C20—C19—H19A108.8
N1—C2—C3130.9 (10)N2—C19—H19B108.8
C7—C2—C3123.3 (10)C20—C19—H19B108.8
C4—C3—C2115.9 (10)H19A—C19—H19B107.7
C4—C3—H3122.1C21—C20—C25119.8 (10)
C2—C3—H3122.1C21—C20—C19120.5 (9)
C3—C4—C5122.4 (10)C25—C20—C19119.6 (10)
C3—C4—H4118.8C20—C21—C22118.7 (10)
C5—C4—H4118.8C20—C21—C26122.2 (10)
C6—C5—C4120.1 (10)C22—C21—C26118.9 (9)
C6—C5—H5119.9C23—C22—C21121.8 (10)
C4—C5—H5119.9C23—C22—H22119.1
C5—C6—C7119.8 (10)C21—C22—H22119.1
C5—C6—H6120.1C24—C23—C22118.7 (10)
C7—C6—H6120.1C24—C23—C27120.8 (11)
N2—C7—C6134.7 (10)C22—C23—C27120.5 (11)
N2—C7—C2106.7 (8)C23—C24—C25122.3 (10)
C6—C7—C2118.5 (9)C23—C24—H24118.8
N1—C8—C9107.4 (8)C25—C24—H24118.8
N1—C8—H8A110.2C24—C25—C20118.6 (10)
C9—C8—H8A110.2C24—C25—C28120.0 (10)
N1—C8—H8B110.2C20—C25—C28121.3 (10)
C9—C8—H8B110.2C21—C26—H26A109.5
H8A—C8—H8B108.5C21—C26—H26B109.5
C10—C9—C14122.8 (9)H26A—C26—H26B109.5
C10—C9—C8118.7 (10)C21—C26—H26C109.5
C14—C9—C8117.6 (9)H26A—C26—H26C109.5
C10—C9—Ru173.8 (6)H26B—C26—H26C109.5
C14—C9—Ru174.0 (6)C23—C27—H27A109.5
C8—C9—Ru1115.6 (7)C23—C27—H27B109.5
C9—C10—C11117.3 (11)H27A—C27—H27B109.5
C9—C10—Ru167.6 (6)C23—C27—H27C109.5
C11—C10—Ru171.8 (6)H27A—C27—H27C109.5
C9—C10—H10121.3H27B—C27—H27C109.5
C11—C10—H10121.3C25—C28—H28A109.5
Ru1—C10—H10131.9C25—C28—H28B109.5
C12—C11—C10123.6 (10)H28A—C28—H28B109.5
C12—C11—Ru174.3 (6)C25—C28—H28C109.5
C10—C11—Ru170.2 (6)H28A—C28—H28C109.5
C12—C11—H11118.2H28B—C28—H28C109.5
C10—C11—H11118.2
C7—N2—C1—N10.3 (11)C14—Ru1—C11—C1068.9 (6)
C19—N2—C1—N1177.2 (8)C12—Ru1—C11—C10135.5 (9)
C7—N2—C1—Ru1174.3 (9)Cl2—Ru1—C11—C10110.8 (6)
C19—N2—C1—Ru12.5 (16)Cl1—Ru1—C11—C10162.0 (5)
C2—N1—C1—N20.6 (11)C10—C11—C12—C131.7 (15)
C8—N1—C1—N2179.5 (9)Ru1—C11—C12—C1350.7 (8)
C2—N1—C1—Ru1175.6 (7)C10—C11—C12—C15179.1 (9)
C8—N1—C1—Ru14.4 (12)Ru1—C11—C12—C15126.7 (10)
C9—Ru1—C1—N2175.8 (12)C10—C11—C12—Ru152.4 (9)
C10—Ru1—C1—N2149.7 (11)C1—Ru1—C12—C1168.9 (13)
C13—Ru1—C1—N2126.1 (11)C9—Ru1—C12—C1165.3 (7)
C14—Ru1—C1—N2139.8 (11)C10—Ru1—C12—C1127.7 (6)
C11—Ru1—C1—N2137.2 (10)C13—Ru1—C12—C11131.1 (9)
C12—Ru1—C1—N2172.2 (10)C14—Ru1—C12—C11103.7 (7)
Cl2—Ru1—C1—N250.7 (11)Cl2—Ru1—C12—C1167.7 (6)
Cl1—Ru1—C1—N241.3 (11)Cl1—Ru1—C12—C11162.2 (6)
C9—Ru1—C1—N11.6 (7)C1—Ru1—C12—C1362.2 (14)
C10—Ru1—C1—N136.1 (8)C9—Ru1—C12—C1365.8 (7)
C13—Ru1—C1—N148.1 (9)C10—Ru1—C12—C13103.4 (7)
C14—Ru1—C1—N134.4 (8)C14—Ru1—C12—C1327.3 (6)
C11—Ru1—C1—N148.6 (9)C11—Ru1—C12—C13131.1 (9)
C12—Ru1—C1—N12.0 (16)Cl2—Ru1—C12—C13161.3 (6)
Cl2—Ru1—C1—N1135.1 (7)Cl1—Ru1—C12—C1366.7 (6)
Cl1—Ru1—C1—N1133.0 (7)C1—Ru1—C12—C15174.6 (10)
C1—N1—C2—C70.6 (11)C9—Ru1—C12—C15178.2 (10)
C8—N1—C2—C7179.4 (9)C10—Ru1—C12—C15144.2 (10)
C1—N1—C2—C3176.0 (11)C13—Ru1—C12—C15112.4 (12)
C8—N1—C2—C33.9 (18)C14—Ru1—C12—C15139.7 (10)
N1—C2—C3—C4177.7 (11)C11—Ru1—C12—C15116.5 (12)
C7—C2—C3—C41.6 (16)Cl2—Ru1—C12—C1548.9 (9)
C2—C3—C4—C50.6 (16)Cl1—Ru1—C12—C1545.7 (10)
C3—C4—C5—C60.6 (17)C11—C12—C13—C142.8 (15)
C4—C5—C6—C70.8 (17)C15—C12—C13—C14179.8 (9)
C1—N2—C7—C6177.5 (12)Ru1—C12—C13—C1454.0 (9)
C19—N2—C7—C60.8 (19)C11—C12—C13—Ru151.2 (8)
C1—N2—C7—C20.0 (11)C15—C12—C13—Ru1126.2 (9)
C19—N2—C7—C2176.6 (9)C1—Ru1—C13—C1422.6 (9)
C5—C6—C7—N2177.1 (11)C9—Ru1—C13—C1430.9 (6)
C5—C6—C7—C20.1 (16)C10—Ru1—C13—C1469.1 (7)
N1—C2—C7—N20.4 (11)C11—Ru1—C13—C14106.1 (7)
C3—C2—C7—N2176.5 (10)C12—Ru1—C13—C14135.5 (10)
N1—C2—C7—C6178.3 (10)Cl2—Ru1—C13—C14161.9 (5)
C3—C2—C7—C61.4 (16)Cl1—Ru1—C13—C14107.7 (6)
C2—N1—C8—C9175.0 (9)C1—Ru1—C13—C12158.1 (6)
C1—N1—C8—C94.9 (13)C9—Ru1—C13—C12104.6 (7)
N1—C8—C9—C1088.1 (11)C10—Ru1—C13—C1266.4 (7)
N1—C8—C9—C1481.3 (11)C14—Ru1—C13—C12135.5 (10)
N1—C8—C9—Ru13.3 (11)C11—Ru1—C13—C1229.4 (6)
C1—Ru1—C9—C10115.6 (7)Cl2—Ru1—C13—C1226.4 (8)
C13—Ru1—C9—C10102.2 (7)Cl1—Ru1—C13—C12116.8 (6)
C14—Ru1—C9—C10132.1 (9)C12—C13—C14—C94.6 (15)
C11—Ru1—C9—C1029.8 (6)Ru1—C13—C14—C950.7 (8)
C12—Ru1—C9—C1065.5 (7)C12—C13—C14—Ru155.2 (9)
Cl2—Ru1—C9—C1029.9 (8)C10—C9—C14—C135.5 (14)
Cl1—Ru1—C9—C10167.0 (5)C8—C9—C14—C13163.5 (9)
C1—Ru1—C9—C14112.3 (6)Ru1—C9—C14—C1352.6 (8)
C10—Ru1—C9—C14132.1 (9)C10—C9—C14—Ru158.0 (9)
C13—Ru1—C9—C1429.8 (6)C8—C9—C14—Ru1110.9 (9)
C11—Ru1—C9—C14102.2 (6)C1—Ru1—C14—C13163.1 (7)
C12—Ru1—C9—C1466.5 (6)C9—Ru1—C14—C13130.7 (9)
Cl2—Ru1—C9—C14162.0 (4)C10—Ru1—C14—C13101.2 (7)
Cl1—Ru1—C9—C1435.0 (7)C11—Ru1—C14—C1363.4 (7)
C1—Ru1—C9—C81.1 (8)C12—Ru1—C14—C1327.3 (6)
C10—Ru1—C9—C8114.5 (11)Cl2—Ru1—C14—C1364.4 (14)
C13—Ru1—C9—C8143.3 (9)Cl1—Ru1—C14—C1374.4 (6)
C14—Ru1—C9—C8113.4 (10)C1—Ru1—C14—C966.2 (6)
C11—Ru1—C9—C8144.3 (9)C10—Ru1—C14—C929.5 (6)
C12—Ru1—C9—C8180.0 (8)C13—Ru1—C14—C9130.7 (9)
Cl2—Ru1—C9—C884.6 (8)C11—Ru1—C14—C967.3 (6)
Cl1—Ru1—C9—C878.5 (9)C12—Ru1—C14—C9103.3 (6)
C14—C9—C10—C114.6 (15)Cl2—Ru1—C14—C966.3 (13)
C8—C9—C10—C11164.3 (9)Cl1—Ru1—C14—C9155.0 (5)
Ru1—C9—C10—C1153.5 (8)C11—C12—C15—C18115.9 (11)
C14—C9—C10—Ru158.1 (9)C13—C12—C15—C1866.9 (13)
C8—C9—C10—Ru1110.7 (9)Ru1—C12—C15—C18153.6 (8)
C1—Ru1—C10—C963.5 (7)C11—C12—C15—C174.9 (15)
C13—Ru1—C10—C967.4 (7)C13—C12—C15—C17172.3 (10)
C14—Ru1—C10—C930.0 (6)Ru1—C12—C15—C1785.6 (11)
C11—Ru1—C10—C9131.2 (9)C11—C12—C15—C16124.0 (11)
C12—Ru1—C10—C9104.4 (7)C13—C12—C15—C1653.2 (13)
Cl2—Ru1—C10—C9158.6 (6)Ru1—C12—C15—C1633.5 (13)
Cl1—Ru1—C10—C951.6 (17)C1—N2—C19—C20151.5 (9)
C1—Ru1—C10—C11165.3 (6)C7—N2—C19—C2032.1 (14)
C9—Ru1—C10—C11131.2 (9)N2—C19—C20—C2167.2 (13)
C13—Ru1—C10—C1163.9 (6)N2—C19—C20—C25113.5 (11)
C14—Ru1—C10—C11101.3 (7)C25—C20—C21—C220.3 (15)
C12—Ru1—C10—C1126.8 (6)C19—C20—C21—C22179.0 (9)
Cl2—Ru1—C10—C1170.2 (6)C25—C20—C21—C26177.0 (11)
Cl1—Ru1—C10—C1179.6 (15)C19—C20—C21—C262.3 (16)
C9—C10—C11—C122.7 (15)C20—C21—C22—C231.1 (16)
Ru1—C10—C11—C1254.1 (9)C26—C21—C22—C23177.9 (11)
C9—C10—C11—Ru151.5 (8)C21—C22—C23—C240.4 (17)
C1—Ru1—C11—C12155.9 (6)C21—C22—C23—C27178.3 (11)
C9—Ru1—C11—C12105.3 (7)C22—C23—C24—C251.2 (17)
C10—Ru1—C11—C12135.5 (9)C27—C23—C24—C25179.8 (11)
C13—Ru1—C11—C1230.1 (6)C23—C24—C25—C201.9 (17)
C14—Ru1—C11—C1266.6 (6)C23—C24—C25—C28178.8 (11)
Cl2—Ru1—C11—C12113.7 (6)C21—C20—C25—C241.1 (16)
Cl1—Ru1—C11—C1226.5 (8)C19—C20—C25—C24179.6 (10)
C1—Ru1—C11—C1020.4 (9)C21—C20—C25—C28178.0 (10)
C9—Ru1—C11—C1030.2 (6)C19—C20—C25—C282.7 (15)
C13—Ru1—C11—C10105.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cl2i0.962.653.406 (11)135
C16—H16C···Br10.962.923.563 (11)125
C19—H19A···Br10.962.923.323 (11)106
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[RuBrCl(C28H32N2)]
Mr611.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)7.6336 (15), 27.725 (6), 12.051 (2)
β (°) 98.80 (3)
V3)2520.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.29
Crystal size (mm)0.26 × 0.12 × 0.02
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.581, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
17799, 4449, 3288
Rint0.089
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.089, 0.255, 1.04
No. of reflections4449
No. of parameters306
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1351P)2 + 37.3742P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.45, 1.38

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cl2i0.962.653.406 (11)135
C16—H16C···Br10.962.923.563 (11)125
C19—H19A···Br10.962.923.323 (11)106
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank the Scientific and Technological Research Council of Turkey TÜBİTAK-CNRS [TBAG-U/181 (106 T716)] and İnönü University Research Fund (BAP. 2008/03 Güdümlü) for financial support.

References

First citationArduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationArduengo, A. J. & Krafczyc, R. (1998). Chem. Ztg. 32, 6–14.  CAS Google Scholar
First citationArslan, H., VanDerveer, D., Özdemir, I., Çetinkaya, B. & Demir, S. (2004b). Z. Kristallogr. New Cryst. Struct. 219, 377–378.  CAS Google Scholar
First citationArslan, H., VanDerveer, D., Özdemir, I., Çetinkaya, B. & Demir, S. (2005a). J. Chem. Crystallogr. 35, 491–495.  Web of Science CSD CrossRef CAS Google Scholar
First citationArslan, H., VanDerveer, D., Özdemir, I., Çetinkaya, B. & Yaşar, S. (2004a). Z. Kristallogr. New Cryst. Struct. 219, 44–46.  CAS Google Scholar
First citationArslan, H., VanDerveer, D., Özdemir, İ., Demir, S. & Çetinkaya, B. (2007a). Acta Cryst. E63, m770–m771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArslan, H., VanDerveer, D., Özdemir, I., Yaşar, S. & Çetinkaya, B. (2005b). Acta Cryst. E61, m1873–m1875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArslan, H., VanDerveer, D., Yaşar, S., Özdemir, I. & Çetinkaya, B. (2007b). Acta Cryst. E63, m942–m944.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2007c). Acta Cryst. E63, m1001–m1003.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBegley, M. J., Harrison, S. & Wright, A. H. (1991). Acta Cryst. C47, 318–320.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationÇetinkaya, B., Demir, S., Özdemir, I., Toupet, L., Semeril, D., Bruneau, C. & Dixneuf, P. H. (2001). New J. Chem. 25, 519–521.  Google Scholar
First citationÇetinkaya, B., Demir, S., Özdemir, İ., Toupet, L., Semeril, D., Bruneau, C. & Dixneuf, P. H. (2003). Chem. Eur. J. 9, 2323–2330.  PubMed Google Scholar
First citationÇetinkaya, B., Seckin, T., Gürbüz, N. & Özdemir, I. (2002). J. Mol. Catal. A, 184, 31–38.  Web of Science CrossRef Google Scholar
First citationHerrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290–1309.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2371–2374.  CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationNavarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem. 71, 685–692.  Web of Science CrossRef PubMed CAS Google Scholar
First citationÖzdemir, I., Yigit, B., Çetinkaya, B., Ülkü, D., Tahir, M. N. & Arici, C. (2001). J. Organomet. Chem. 633, 27–32.  Google Scholar
First citationRigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. L. & Bruneau, C. (2008). Eur. J. Org. Chem. 12, 2142–2149.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m97-m98
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds