organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Phenyl­pyrrolidine-1-carbo­thio­amide

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: weifangjjh@126.com

(Received 2 December 2008; accepted 4 December 2008; online 10 December 2008)

The title compound, C11H14N2S, was prepared by the reaction of 1-isothio­cyanato­benzene and pyrrolidine. In the crystal structure, inter­molecular N—H⋯S inter­actions are present.

Related literature

For the applications of thio­amides, see: Toshiaki et al. (2003[Toshiaki, M., Hideo, A. & Yoshiharu, Y. (2003). J. Org. Chem. 68, 8514-8519.]). For related structures, see: Casas et al. (2002[Casas, J. S., Castano, M. V. & Castellano, E. E. (2002). Inorg. Chem. 41, 1550-1557.]); Cowley et al. (2002[Cowley, A. R., Dilworth, J. R. & Dorinelly, P. S. (2002). J. Am. Chem. Soc. 124, 5270-5271.]);

[Scheme 1]

Experimental

Crystal data
  • C11H14N2S

  • Mr = 206.30

  • Monoclinic, P 21 /c

  • a = 11.195 (2) Å

  • b = 8.5694 (17) Å

  • c = 11.414 (2) Å

  • β = 108.03 (3)°

  • V = 1041.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 4554 measured reflections

  • 2393 independent reflections

  • 2214 reflections with I > 2σ(I)

  • Rint = 0.018

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 1.30

  • 2393 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 2.64 3.4359 (17) 155
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thioamides have received considerable attention in the literature. They are attractive from several points of view in application (Toshiaki et al., 2003). As part of our search for new thioamide compounds we synthesized the title compound (I), and describe its structure here.

In (I) (Fig. 1), the C6—S1 bond length of 1.689 (2)Å is comparable with C—S bond [1.688 (2) Å] reported (Cowley et al., 2002). The distance of N1—C6 [1.332 (2) Å] is similar to the distance of reported [1.349 (1) Å] (Casas et al., 2002). The crystal strucure is stabilized by intermolecular C—H···S interactions.

Related literature top

For the applications of thioamides, see: Toshiaki et al. (2003). For related structures, see: Casas et al. (2002); Cowley et al. (2002);

Experimental top

A mixture of the 1-isothiocyanatobenzene (0.1 mol), and pyrrolidine (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.080 mol, yield 80%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H = 0.93 and 0.97 Å and N—H = 0.86 Å, and with Uiso=1.2Ueq(C,N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
N-Phenylpyrrolidine-1-carbothioamide top
Crystal data top
C11H14N2SF(000) = 440
Mr = 206.30Dx = 1.316 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.195 (2) Åθ = 1.8–27.0°
b = 8.5694 (17) ŵ = 0.27 mm1
c = 11.414 (2) ÅT = 293 K
β = 108.03 (3)°Block, colourless
V = 1041.2 (4) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.018
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 1.9°
Graphite monochromatorh = 1414
ω scansk = 1111
4554 measured reflectionsl = 1414
2393 independent reflections3 standard reflections every 100 reflections
2214 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.30 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.3194P]
where P = (Fo2 + 2Fc2)/3
2393 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C11H14N2SV = 1041.2 (4) Å3
Mr = 206.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.195 (2) ŵ = 0.27 mm1
b = 8.5694 (17) ÅT = 293 K
c = 11.414 (2) Å0.25 × 0.20 × 0.18 mm
β = 108.03 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.018
4554 measured reflections3 standard reflections every 100 reflections
2393 independent reflections intensity decay: none
2214 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.30Δρmax = 0.30 e Å3
2393 reflectionsΔρmin = 0.46 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50030 (4)0.12695 (5)0.27663 (4)0.01992 (15)
N20.34546 (13)0.29432 (17)0.09833 (13)0.0162 (3)
N10.53176 (13)0.23342 (19)0.06683 (13)0.0183 (3)
H1A0.49790.26780.00680.022*
C70.45718 (15)0.2256 (2)0.14190 (15)0.0152 (3)
C50.66016 (16)0.1894 (2)0.10058 (16)0.0177 (4)
C80.30485 (17)0.3898 (2)0.01429 (16)0.0200 (4)
H8A0.28220.32480.08740.024*
H8B0.37040.46170.01820.024*
C110.25255 (16)0.2964 (2)0.16519 (16)0.0203 (4)
H11A0.28060.36140.23820.024*
H11B0.23640.19190.18920.024*
C40.70097 (18)0.0997 (2)0.01900 (18)0.0225 (4)
H4A0.64390.06460.05410.027*
C90.19114 (17)0.4771 (2)0.00189 (18)0.0245 (4)
H9A0.13120.49840.08210.029*
H9B0.21580.57480.04180.029*
C60.74613 (17)0.2436 (2)0.20885 (17)0.0241 (4)
H6A0.71960.30650.26240.029*
C20.91276 (19)0.1125 (3)0.1562 (2)0.0337 (5)
H2A0.99710.08540.17550.040*
C30.82751 (19)0.0628 (2)0.0475 (2)0.0307 (5)
H3A0.85510.00380.00750.037*
C100.13624 (17)0.3649 (2)0.07178 (18)0.0243 (4)
H10A0.08440.41970.11240.029*
H10B0.08650.28410.01930.029*
C10.87165 (18)0.2032 (3)0.23648 (19)0.0309 (5)
H1B0.92890.23750.30980.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0211 (2)0.0247 (3)0.0136 (2)0.00322 (17)0.00489 (16)0.00532 (16)
N20.0159 (7)0.0202 (7)0.0125 (6)0.0012 (6)0.0045 (5)0.0028 (5)
N10.0162 (7)0.0264 (8)0.0124 (6)0.0025 (6)0.0049 (5)0.0027 (6)
C70.0164 (8)0.0160 (8)0.0127 (7)0.0019 (6)0.0036 (6)0.0021 (6)
C50.0180 (8)0.0180 (8)0.0175 (8)0.0006 (7)0.0060 (7)0.0036 (6)
C80.0204 (8)0.0248 (9)0.0150 (8)0.0033 (7)0.0056 (6)0.0049 (7)
C110.0174 (8)0.0270 (10)0.0181 (8)0.0008 (7)0.0078 (7)0.0009 (7)
C40.0254 (9)0.0195 (9)0.0248 (9)0.0001 (7)0.0108 (7)0.0009 (7)
C90.0204 (9)0.0264 (10)0.0264 (9)0.0051 (7)0.0070 (7)0.0076 (8)
C60.0223 (9)0.0304 (10)0.0192 (9)0.0014 (8)0.0057 (7)0.0016 (7)
C20.0200 (9)0.0385 (12)0.0436 (12)0.0075 (8)0.0111 (9)0.0164 (10)
C30.0298 (10)0.0266 (10)0.0423 (12)0.0080 (8)0.0206 (9)0.0029 (9)
C100.0176 (8)0.0299 (10)0.0262 (9)0.0017 (7)0.0078 (7)0.0028 (8)
C10.0201 (9)0.0415 (12)0.0264 (10)0.0039 (8)0.0002 (8)0.0098 (9)
Geometric parameters (Å, º) top
S1—C71.6892 (17)C4—C31.388 (3)
N2—C71.332 (2)C4—H4A0.9300
N2—C111.468 (2)C9—C101.527 (3)
N2—C81.472 (2)C9—H9A0.9700
N1—C71.371 (2)C9—H9B0.9700
N1—C51.419 (2)C6—C11.385 (3)
N1—H1A0.8600C6—H6A0.9300
C5—C41.389 (2)C2—C31.379 (3)
C5—C61.390 (3)C2—C11.384 (3)
C8—C91.520 (2)C2—H2A0.9300
C8—H8A0.9700C3—H3A0.9300
C8—H8B0.9700C10—H10A0.9700
C11—C101.522 (3)C10—H10B0.9700
C11—H11A0.9700C1—H1B0.9300
C11—H11B0.9700
C7—N2—C11123.08 (14)C5—C4—H4A120.2
C7—N2—C8124.92 (14)C8—C9—C10103.46 (15)
C11—N2—C8111.72 (13)C8—C9—H9A111.1
C7—N1—C5125.40 (15)C10—C9—H9A111.1
C7—N1—H1A117.3C8—C9—H9B111.1
C5—N1—H1A117.3C10—C9—H9B111.1
N2—C7—N1115.37 (15)H9A—C9—H9B109.0
N2—C7—S1122.14 (13)C1—C6—C5119.56 (19)
N1—C7—S1122.40 (13)C1—C6—H6A120.2
C4—C5—C6119.98 (17)C5—C6—H6A120.2
C4—C5—N1118.73 (16)C3—C2—C1119.36 (19)
C6—C5—N1121.13 (16)C3—C2—H2A120.3
N2—C8—C9103.50 (14)C1—C2—H2A120.3
N2—C8—H8A111.1C2—C3—C4120.80 (19)
C9—C8—H8A111.1C2—C3—H3A119.6
N2—C8—H8B111.1C4—C3—H3A119.6
C9—C8—H8B111.1C11—C10—C9103.05 (15)
H8A—C8—H8B109.0C11—C10—H10A111.2
N2—C11—C10103.34 (14)C9—C10—H10A111.2
N2—C11—H11A111.1C11—C10—H10B111.2
C10—C11—H11A111.1C9—C10—H10B111.2
N2—C11—H11B111.1H10A—C10—H10B109.1
C10—C11—H11B111.1C2—C1—C6120.7 (2)
H11A—C11—H11B109.1C2—C1—H1B119.6
C3—C4—C5119.51 (18)C6—C1—H1B119.6
C3—C4—H4A120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.643.4359 (17)155
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H14N2S
Mr206.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.195 (2), 8.5694 (17), 11.414 (2)
β (°) 108.03 (3)
V3)1041.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4554, 2393, 2214
Rint0.018
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.119, 1.30
No. of reflections2393
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.46

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.643.4359 (17)155
Symmetry code: (i) x, y+1/2, z1/2.
 

References

First citationCasas, J. S., Castano, M. V. & Castellano, E. E. (2002). Inorg. Chem. 41, 1550–1557.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCowley, A. R., Dilworth, J. R. & Dorinelly, P. S. (2002). J. Am. Chem. Soc. 124, 5270–5271.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToshiaki, M., Hideo, A. & Yoshiharu, Y. (2003). J. Org. Chem. 68, 8514–8519.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds