organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2′-Fluoro-3′,5′-di­meth­oxy­acetanilide

aCollege of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
*Correspondence e-mail: ybwei@njut.edu.cn

(Received 24 November 2008; accepted 14 December 2008; online 24 December 2008)

Mol­ecules of the title compound, C10H12FNO3, are nearly planar considering all non-H atoms with a mean deviation of 0.0288 Å. Mol­ecules are linked through inter­molecular N—H⋯O and N—H⋯F hydrogen bonds.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis, see: Borodkin et al. (2006[Borodkin, G. I., Zaikin, P. A. & Shubin, V. G. (2006). Tetrahedron Lett. 47, 15, 2639-2642.]); Stavber et al. (2002[Stavber, S., Jereb, M. & Zupan, M. (2002). J. Phys. Org. Chem. 15, 1, 56-61.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12FNO3

  • Mr = 213.21

  • Monoclinic, P 21 /c

  • a = 9.741 (3) Å

  • b = 4.8439 (12) Å

  • c = 21.634 (6) Å

  • β = 98.082 (3)°

  • V = 1010.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.989

  • 4791 measured reflections

  • 1780 independent reflections

  • 1434 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.121

  • S = 1.02

  • 1780 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.61 3.246 (2) 131
N1—H1⋯F1i 0.86 2.47 3.3128 (19) 166
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our recent research for the synthesis of potential PDE5 inhitiors, 2-fluoro-3,5-dimethoxyanilide, (I), was synthesized as one of the structural units by fluorination (Stavber et al., 2002) of 3,5-dimethoxyanilide (Borodkin et al., 2006).

A view of the molecular structure of (I) is depicted in Fig. 1. In the molecule, almost all non-H atoms are in the same plane. All bond lengths and angles are normal (Allen et al., 1987). The molecules are linked via intermolecular hydrogen bonds in which the amide group acts as a donor to F and O atoms (Fig. 2 and Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For the synthesis, see: Borodkin et al. (2006); Stavber et al. (2002).

Experimental top

To a solution of 3,5-dimethoxyanilide (195 mg, 1.0 mmol) in CH3CN (5 ml), 1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane-bis(tetrafluoroborate) (390 mg, 1.1 mmol) was added at 0°C. After 3 h, TLC showed that the reaction was complete, the mixture was evaporated to give an oil, then ethyl acetate was added, and the solution was washed with 5% aqueous sodium bicarbonate, dried and then concentrated by rotary evaporation. The crude product was purified by column chromatography over silica gel (CH2Cl2/MeOH = 100/1) to afford (I) (111 mg, 52%) as a white solid. Single crystals suitable for X-ray analysis (m.p. 403 K) were obtained by slow evaporation of a dichloromethane solution at 298 K.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93Å and Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the c-axis. Hydrogen bonds are shown as dashed lines.
2'-Fluoro-3',5'-dimethoxyacetanilide top
Crystal data top
C10H12FNO3F(000) = 448
Mr = 213.21Dx = 1.401 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.741 (3) ÅCell parameters from 2061 reflections
b = 4.8439 (12) Åθ = 2.6–26.6°
c = 21.634 (6) ŵ = 0.12 mm1
β = 98.082 (3)°T = 296 K
V = 1010.7 (4) Å3Block, colourless
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1780 independent reflections
Radiation source: fine-focus sealed tube1434 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.977, Tmax = 0.989k = 55
4791 measured reflectionsl = 2325
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.058P)2 + 0.3484P]
where P = (Fo2 + 2Fc2)/3
1780 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C10H12FNO3V = 1010.7 (4) Å3
Mr = 213.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.741 (3) ŵ = 0.12 mm1
b = 4.8439 (12) ÅT = 296 K
c = 21.634 (6) Å0.20 × 0.20 × 0.10 mm
β = 98.082 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1780 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1434 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.989Rint = 0.030
4791 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
1780 reflectionsΔρmin = 0.18 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.42666 (11)0.1466 (2)0.26102 (5)0.0512 (3)
C10.31928 (18)0.2862 (4)0.22731 (8)0.0397 (4)
C20.25035 (18)0.4812 (4)0.25813 (8)0.0406 (4)
C30.14087 (19)0.6226 (4)0.22477 (9)0.0446 (5)
H30.09180.75340.24430.053*
C40.10546 (18)0.5662 (4)0.16181 (9)0.0430 (5)
C50.17582 (18)0.3739 (4)0.13084 (9)0.0429 (5)
H50.15030.34040.08850.051*
C60.28642 (17)0.2311 (4)0.16492 (9)0.0394 (4)
C70.3591 (2)0.0570 (4)0.07947 (9)0.0465 (5)
C80.4620 (2)0.2755 (5)0.06870 (10)0.0580 (6)
H8A0.41520.42320.04480.087*
H8B0.50560.34550.10810.087*
H8C0.53110.19780.04630.087*
C90.2337 (2)0.7206 (5)0.35272 (10)0.0565 (6)
H9A0.24180.89720.33340.085*
H9B0.27770.72740.39530.085*
H9C0.13750.67520.35160.085*
C100.0414 (2)0.6888 (6)0.06772 (10)0.0661 (7)
H10A0.03640.73820.04730.099*
H10B0.11800.80850.05370.099*
H10C0.06730.50110.05780.099*
N10.36727 (16)0.0327 (3)0.13913 (7)0.0458 (4)
H10.43130.04270.16510.055*
O10.29930 (14)0.5157 (3)0.31975 (6)0.0527 (4)
O20.00485 (14)0.7163 (3)0.13322 (7)0.0582 (4)
O30.27541 (18)0.0299 (4)0.03737 (7)0.0754 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0422 (6)0.0570 (7)0.0516 (7)0.0111 (5)0.0030 (5)0.0003 (5)
C10.0305 (9)0.0417 (11)0.0454 (10)0.0019 (8)0.0004 (7)0.0042 (8)
C20.0344 (9)0.0440 (11)0.0435 (10)0.0049 (8)0.0051 (8)0.0013 (8)
C30.0372 (10)0.0453 (11)0.0519 (11)0.0029 (9)0.0090 (8)0.0030 (9)
C40.0319 (9)0.0460 (11)0.0504 (11)0.0038 (8)0.0036 (8)0.0051 (9)
C50.0367 (10)0.0475 (12)0.0437 (10)0.0006 (8)0.0029 (8)0.0001 (9)
C60.0328 (9)0.0401 (10)0.0454 (10)0.0004 (8)0.0057 (7)0.0000 (8)
C70.0445 (11)0.0497 (12)0.0451 (11)0.0029 (9)0.0060 (9)0.0001 (9)
C80.0587 (13)0.0590 (14)0.0574 (13)0.0130 (11)0.0120 (10)0.0077 (11)
C90.0553 (13)0.0627 (14)0.0526 (12)0.0030 (11)0.0117 (10)0.0140 (10)
C100.0594 (14)0.0814 (17)0.0540 (13)0.0227 (13)0.0048 (11)0.0055 (12)
N10.0403 (8)0.0511 (10)0.0442 (9)0.0121 (8)0.0005 (7)0.0014 (7)
O10.0464 (8)0.0643 (10)0.0461 (8)0.0060 (7)0.0022 (6)0.0097 (7)
O20.0490 (8)0.0678 (10)0.0555 (8)0.0238 (7)0.0002 (6)0.0008 (7)
O30.0767 (11)0.0974 (14)0.0481 (9)0.0365 (10)0.0052 (8)0.0069 (9)
Geometric parameters (Å, º) top
F1—C11.367 (2)C7—C81.498 (3)
C1—C61.369 (3)C8—H8A0.9600
C1—C21.383 (3)C8—H8B0.9600
C2—O11.362 (2)C8—H8C0.9600
C2—C31.382 (3)C9—O11.425 (2)
C3—C41.384 (3)C9—H9A0.9600
C3—H30.9300C9—H9B0.9600
C4—O21.371 (2)C9—H9C0.9600
C4—C51.384 (3)C10—O21.418 (3)
C5—C61.400 (2)C10—H10A0.9600
C5—H50.9300C10—H10B0.9600
C6—N11.407 (2)C10—H10C0.9600
C7—O31.209 (2)N1—H10.8600
C7—N11.354 (2)
C6—C1—F1119.01 (16)C7—C8—H8B109.5
C6—C1—C2123.11 (17)H8A—C8—H8B109.5
F1—C1—C2117.87 (16)C7—C8—H8C109.5
O1—C2—C1115.39 (16)H8A—C8—H8C109.5
O1—C2—C3126.06 (17)H8B—C8—H8C109.5
C1—C2—C3118.55 (17)O1—C9—H9A109.5
C4—C3—C2118.88 (17)O1—C9—H9B109.5
C4—C3—H3120.6H9A—C9—H9B109.5
C2—C3—H3120.6O1—C9—H9C109.5
O2—C4—C3114.22 (16)H9A—C9—H9C109.5
O2—C4—C5123.28 (17)H9B—C9—H9C109.5
C3—C4—C5122.50 (17)O2—C10—H10A109.5
C4—C5—C6118.32 (17)O2—C10—H10B109.5
C4—C5—H5120.8H10A—C10—H10B109.5
C6—C5—H5120.8O2—C10—H10C109.5
C1—C6—C5118.62 (17)H10A—C10—H10C109.5
C1—C6—N1117.25 (16)H10B—C10—H10C109.5
C5—C6—N1124.13 (17)C7—N1—C6129.53 (16)
O3—C7—N1123.31 (19)C7—N1—H1115.2
O3—C7—C8121.59 (19)C6—N1—H1115.2
N1—C7—C8115.10 (17)C2—O1—C9117.11 (15)
C7—C8—H8A109.5C4—O2—C10118.15 (16)
C6—C1—C2—O1178.01 (17)F1—C1—C6—N10.4 (3)
F1—C1—C2—O10.8 (2)C2—C1—C6—N1178.37 (17)
C6—C1—C2—C31.6 (3)C4—C5—C6—C10.5 (3)
F1—C1—C2—C3179.52 (16)C4—C5—C6—N1179.38 (17)
O1—C2—C3—C4178.88 (17)O3—C7—N1—C60.5 (3)
C1—C2—C3—C40.7 (3)C8—C7—N1—C6179.28 (19)
C2—C3—C4—O2179.66 (17)C1—C6—N1—C7178.81 (19)
C2—C3—C4—C50.2 (3)C5—C6—N1—C71.1 (3)
O2—C4—C5—C6179.54 (17)C1—C2—O1—C9178.18 (17)
C3—C4—C5—C60.3 (3)C3—C2—O1—C91.4 (3)
F1—C1—C6—C5179.65 (16)C3—C4—O2—C10174.96 (19)
C2—C1—C6—C51.5 (3)C5—C4—O2—C105.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.613.246 (2)131
N1—H1···F1i0.862.473.3128 (19)166
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H12FNO3
Mr213.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.741 (3), 4.8439 (12), 21.634 (6)
β (°) 98.082 (3)
V3)1010.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.977, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
4791, 1780, 1434
Rint0.030
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 1.02
No. of reflections1780
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.613.246 (2)131.2
N1—H1···F1i0.862.473.3128 (19)165.8
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

Acknowledgement is made to the crew of Topharman Shanghai Co Ltd for their active cooperation in this work. We also thank Instrument Analysis and Research Center of Shanghai University for structural confirmation.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBorodkin, G. I., Zaikin, P. A. & Shubin, V. G. (2006). Tetrahedron Lett. 47, 15, 2639–2642.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStavber, S., Jereb, M. & Zupan, M. (2002). J. Phys. Org. Chem. 15, 1, 56–61.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds