organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4,5-Di­aza­fluoren-9-yl­­idene)-4-methyl­aniline

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bCollege of Chemistry and, Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wjt@njut.edu.cn

(Received 16 November 2008; accepted 25 November 2008; online 3 December 2008)

In the mol­ecule of the title compound, C18H13N3, the 4,5-diaza­fluorenyl­idene unit is nearly planar and is oriented at a dihedral angle of 66.31 (1)° with respect to the benzene ring. In the crystal structure, mol­ecules are stacked regularly along the c axis.

Related literature

For the photochemical properties of 4-methyl-N-(4,5-diaza­fluorenyl­idene)benzenamine, see: Wang & Rillema (1997[Wang, Y. X. & Rillema, D. P. (1997). Tetrahedron, 37, 12377-12390.]). For related structures, see: Glagovich et al. (2004a[Glagovich, N., Reed, E., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004a). Acta Cryst. E60, o623-o625.],b[Glagovich, N. M., Reed, E. M., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004b). Acta Cryst. E60, o1269-o1270.]); Peters et al. (1998[Peters, K., Peters, E. M. & Quast, H. (1998). Z. Kristallogr. New Cryst. Struct. 213, 607-608.]); Wang et al. (2006[Wang, C. X., Wang, P. & Li, Z. F. (2006). Z. Kristallogr. New Cryst. Struct. 221, 211-212.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13N3

  • Mr = 271.31

  • Triclinic, [P \overline 1]

  • a = 7.5970 (15) Å

  • b = 8.6100 (17) Å

  • c = 10.998 (2) Å

  • α = 77.11 (3)°

  • β = 87.48 (3)°

  • γ = 85.79 (3)°

  • V = 699.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.977, Tmax = 0.985

  • 2742 measured reflections

  • 2534 independent reflections

  • 1829 reflections with I > 2σ(I)

  • Rint = 0.025

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.167

  • S = 1.00

  • 2534 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4-Methyl-N-(4,5-diazafluorenylidene)benzenamine, is one of the important ligands, being utilized to synthesize complexes with interesting photochemical properties (Wang & Rillema, 1997). The crystal structure of 4-methyl-N-(4,5-diazafluorenylidene)benzenamine monohydrate, (II) (Wang et al., 2006) was reported, previously. We report herein the crystal structure of the title compound, (I), Fig. 1.The bond lengths and angles are comparable with the solvated form (II), and with other fluorenylidene compounds : N-fluorenylidene-aniline-benzene (4/1) (III) (Peters et al., 1998), N-(9H-fluoren-9-ylidene)-N-(4-methoxyphenyl)amine, (IV) (Glagovich et al., 2004a) and N-9H-fluoren-9-ylidene-3,4-dimethyl- aniline, (V) (Glagovich et al., 2004b). The coplanar ring system is oriented with respect to benzene ring at a dihedral angle of 66.31 (1)°.In the crystal of the title compound, no obvious hydrogen bond is observed, and molecules are stacked regularly along c axis, Fig. 2.

Related literature top

For the photochemical properties of 4-methyl-N-(4,5-diazafluorenylidene)benzenamine, see: Wang & Rillema (1997). For related structures, see: Glagovich et al. (2004a,b); Peters et al. (1998); Wang et al. (2006).

Experimental top

The title compound was synthesized by a method reported in literature (Wang & Rillema, 1997). The crystals were obtained by dissolving compound (I) (2.0 g, 6.3 mmol) into solution of acetic ether (50 ml, 1.0 mol/L), and evaporating the solvent slowly at room temperature for about 5 d.

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 and C—H = 0.93Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A drawing of the title molecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I).
N-(4,5-Diazafluoren-9-ylidene)-4-methylaniline top
Crystal data top
C18H13N3Z = 2
Mr = 271.31F(000) = 284
Triclinic, P1Dx = 1.289 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5970 (15) ÅCell parameters from 25 reflections
b = 8.6100 (17) Åθ = 10–13°
c = 10.998 (2) ŵ = 0.08 mm1
α = 77.11 (3)°T = 293 K
β = 87.48 (3)°Plate, yellow
γ = 85.79 (3)°0.30 × 0.20 × 0.20 mm
V = 699.1 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1829 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 910
Tmin = 0.977, Tmax = 0.985l = 013
2742 measured reflections3 standard reflections every 200 reflections
2534 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.05P)2 + 0.85P]
where P = (Fo2 + 2Fc2)/3
2534 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C18H13N3γ = 85.79 (3)°
Mr = 271.31V = 699.1 (2) Å3
Triclinic, P1Z = 2
a = 7.5970 (15) ÅMo Kα radiation
b = 8.6100 (17) ŵ = 0.08 mm1
c = 10.998 (2) ÅT = 293 K
α = 77.11 (3)°0.30 × 0.20 × 0.20 mm
β = 87.48 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1829 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.977, Tmax = 0.9853 standard reflections every 200 reflections
2742 measured reflections intensity decay: none
2534 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.01Δρmax = 0.50 e Å3
2534 reflectionsΔρmin = 0.28 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2577 (3)1.3579 (3)0.5598 (2)0.0539 (7)
C10.0220 (6)1.2134 (6)1.0717 (3)0.0953 (14)
H1B0.08981.27051.07940.143*
H1C0.10631.24571.12230.143*
H1D0.00911.10081.09920.143*
N20.2970 (3)0.8734 (3)0.3984 (2)0.0507 (6)
C20.0855 (5)1.2499 (5)0.9378 (3)0.0658 (9)
N30.4535 (3)1.1454 (3)0.2071 (2)0.0526 (6)
C30.2450 (4)1.1836 (4)0.8993 (3)0.0584 (8)
H3B0.31521.11560.95830.070*
C40.3018 (4)1.2158 (4)0.7759 (3)0.0551 (8)
H4A0.40941.17030.75280.066*
C50.1987 (4)1.3158 (3)0.6866 (3)0.0501 (7)
C60.0411 (4)1.3877 (4)0.7236 (3)0.0602 (8)
H6A0.02681.45900.66500.072*
C70.0137 (5)1.3531 (5)0.8469 (3)0.0723 (10)
H7A0.12031.40020.87010.087*
C80.2867 (4)1.2521 (3)0.4951 (2)0.0432 (6)
C90.2518 (3)1.0803 (3)0.5183 (2)0.0398 (6)
C100.1712 (4)0.9757 (3)0.6156 (3)0.0463 (7)
H10A0.12791.00860.68680.056*
C110.1576 (4)0.8219 (4)0.6030 (3)0.0490 (7)
H11A0.10440.74850.66630.059*
C120.2236 (4)0.7763 (4)0.4952 (3)0.0537 (8)
H12A0.21570.67050.49070.064*
C130.3085 (3)1.0227 (3)0.4114 (2)0.0421 (6)
C140.3829 (3)1.1547 (3)0.3185 (2)0.0429 (6)
C150.5163 (4)1.2817 (4)0.1427 (3)0.0586 (8)
H15A0.56701.28200.06410.070*
C160.5114 (4)1.4213 (4)0.1839 (3)0.0617 (9)
H16A0.55901.51110.13380.074*
C170.4364 (4)1.4296 (4)0.2994 (3)0.0545 (8)
H17A0.43171.52280.32920.065*
C180.3691 (4)1.2917 (3)0.3673 (2)0.0457 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0653 (17)0.0495 (14)0.0480 (14)0.0060 (12)0.0035 (12)0.0170 (11)
C10.086 (3)0.149 (4)0.054 (2)0.014 (3)0.016 (2)0.029 (2)
N20.0502 (15)0.0541 (15)0.0501 (14)0.0092 (11)0.0023 (11)0.0200 (12)
C20.058 (2)0.097 (3)0.0483 (18)0.0093 (18)0.0060 (16)0.0284 (18)
N30.0500 (15)0.0690 (17)0.0361 (13)0.0112 (12)0.0010 (11)0.0111 (12)
C30.059 (2)0.072 (2)0.0459 (17)0.0002 (16)0.0022 (14)0.0174 (15)
C40.0563 (19)0.0615 (19)0.0507 (18)0.0054 (15)0.0036 (14)0.0233 (15)
C50.0569 (18)0.0489 (16)0.0487 (17)0.0000 (13)0.0049 (14)0.0220 (13)
C60.0562 (19)0.068 (2)0.057 (2)0.0105 (15)0.0007 (15)0.0220 (16)
C70.055 (2)0.106 (3)0.060 (2)0.0086 (19)0.0085 (17)0.036 (2)
C80.0416 (15)0.0473 (15)0.0401 (15)0.0086 (12)0.0030 (12)0.0117 (12)
C90.0340 (14)0.0480 (15)0.0382 (14)0.0065 (11)0.0050 (11)0.0135 (12)
C100.0424 (15)0.0585 (18)0.0401 (15)0.0051 (13)0.0046 (12)0.0171 (13)
C110.0469 (17)0.0540 (18)0.0452 (16)0.0011 (13)0.0054 (13)0.0096 (13)
C120.0573 (19)0.0476 (17)0.0589 (19)0.0029 (14)0.0046 (15)0.0186 (15)
C130.0368 (15)0.0523 (16)0.0375 (14)0.0120 (12)0.0069 (11)0.0142 (12)
C140.0348 (14)0.0567 (17)0.0363 (14)0.0108 (12)0.0068 (11)0.0116 (12)
C150.0571 (19)0.081 (2)0.0335 (15)0.0107 (17)0.0004 (13)0.0087 (15)
C160.062 (2)0.074 (2)0.0424 (17)0.0018 (16)0.0010 (15)0.0003 (15)
C170.0590 (19)0.0542 (18)0.0468 (17)0.0046 (14)0.0015 (14)0.0062 (14)
C180.0436 (16)0.0542 (17)0.0366 (14)0.0103 (12)0.0056 (12)0.0078 (12)
Geometric parameters (Å, º) top
N1—C81.277 (3)C7—H7A0.9300
N1—C51.422 (4)C8—C91.486 (4)
C1—C21.501 (5)C8—C181.491 (4)
C1—H1B0.9600C9—C101.387 (4)
C1—H1C0.9600C9—C131.414 (4)
C1—H1D0.9600C10—C111.373 (4)
N2—C121.327 (4)C10—H10A0.9300
N2—C131.334 (4)C11—C121.392 (4)
C2—C71.388 (5)C11—H11A0.9300
C2—C31.391 (5)C12—H12A0.9300
N3—C141.332 (3)C13—C141.477 (4)
N3—C151.337 (4)C14—C181.397 (4)
C3—C41.380 (4)C15—C161.374 (5)
C3—H3B0.9300C15—H15A0.9300
C4—C51.382 (4)C16—C171.383 (4)
C4—H4A0.9300C16—H16A0.9300
C5—C61.394 (4)C17—C181.375 (4)
C6—C71.374 (4)C17—H17A0.9300
C6—H6A0.9300
C8—N1—C5121.0 (3)C10—C9—C13117.7 (3)
C2—C1—H1B109.5C10—C9—C8133.8 (2)
C2—C1—H1C109.5C13—C9—C8108.3 (2)
H1B—C1—H1C109.5C11—C10—C9117.7 (3)
C2—C1—H1D109.5C11—C10—H10A121.2
H1B—C1—H1D109.5C9—C10—H10A121.2
H1C—C1—H1D109.5C10—C11—C12119.8 (3)
C12—N2—C13115.1 (2)C10—C11—H11A120.1
C7—C2—C3117.2 (3)C12—C11—H11A120.1
C7—C2—C1120.8 (3)N2—C12—C11124.6 (3)
C3—C2—C1122.0 (4)N2—C12—H12A117.7
C14—N3—C15114.0 (3)C11—C12—H12A117.7
C4—C3—C2121.8 (3)N2—C13—C9125.1 (3)
C4—C3—H3B119.1N2—C13—C14126.4 (2)
C2—C3—H3B119.1C9—C13—C14108.5 (2)
C3—C4—C5119.9 (3)N3—C14—C18125.3 (3)
C3—C4—H4A120.0N3—C14—C13126.1 (3)
C5—C4—H4A120.0C18—C14—C13108.6 (2)
C4—C5—C6119.2 (3)N3—C15—C16124.8 (3)
C4—C5—N1121.3 (3)N3—C15—H15A117.6
C6—C5—N1119.3 (3)C16—C15—H15A117.6
C7—C6—C5119.9 (3)C15—C16—C17120.6 (3)
C7—C6—H6A120.1C15—C16—H16A119.7
C5—C6—H6A120.1C17—C16—H16A119.7
C6—C7—C2121.9 (3)C18—C17—C16115.9 (3)
C6—C7—H7A119.1C18—C17—H17A122.0
C2—C7—H7A119.1C16—C17—H17A122.0
N1—C8—C9133.1 (3)C17—C18—C14119.4 (3)
N1—C8—C18121.3 (3)C17—C18—C8131.6 (3)
C9—C8—C18105.6 (2)C14—C18—C8108.9 (2)
C7—C2—C3—C41.2 (5)C12—N2—C13—C14179.6 (3)
C1—C2—C3—C4179.2 (3)C10—C9—C13—N22.8 (4)
C2—C3—C4—C50.4 (5)C8—C9—C13—N2179.6 (2)
C3—C4—C5—C62.5 (5)C10—C9—C13—C14177.7 (2)
C3—C4—C5—N1176.7 (3)C8—C9—C13—C140.8 (3)
C8—N1—C5—C463.1 (4)C15—N3—C14—C181.2 (4)
C8—N1—C5—C6122.7 (3)C15—N3—C14—C13178.0 (3)
C4—C5—C6—C72.9 (5)N2—C13—C14—N31.2 (4)
N1—C5—C6—C7177.3 (3)C9—C13—C14—N3178.4 (2)
C5—C6—C7—C21.3 (6)N2—C13—C14—C18179.5 (3)
C3—C2—C7—C60.7 (6)C9—C13—C14—C181.0 (3)
C1—C2—C7—C6179.7 (4)C14—N3—C15—C160.0 (4)
C5—N1—C8—C98.7 (5)N3—C15—C16—C170.6 (5)
C5—N1—C8—C18172.5 (3)C15—C16—C17—C180.1 (4)
N1—C8—C9—C102.4 (5)C16—C17—C18—C141.2 (4)
C18—C8—C9—C10176.5 (3)C16—C17—C18—C8177.0 (3)
N1—C8—C9—C13178.6 (3)N3—C14—C18—C171.9 (4)
C18—C8—C9—C130.3 (3)C13—C14—C18—C17177.4 (2)
C13—C9—C10—C112.2 (4)N3—C14—C18—C8178.6 (2)
C8—C9—C10—C11178.1 (3)C13—C14—C18—C80.7 (3)
C9—C10—C11—C120.0 (4)N1—C8—C18—C174.5 (5)
C13—N2—C12—C111.5 (4)C9—C8—C18—C17176.4 (3)
C10—C11—C12—N22.0 (5)N1—C8—C18—C14179.3 (3)
C12—N2—C13—C90.9 (4)C9—C8—C18—C140.3 (3)

Experimental details

Crystal data
Chemical formulaC18H13N3
Mr271.31
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5970 (15), 8.6100 (17), 10.998 (2)
α, β, γ (°)77.11 (3), 87.48 (3), 85.79 (3)
V3)699.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.977, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
2742, 2534, 1829
Rint0.026
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.167, 1.01
No. of reflections2534
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.28

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGlagovich, N., Reed, E., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004a). Acta Cryst. E60, o623–o625.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlagovich, N. M., Reed, E. M., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004b). Acta Cryst. E60, o1269–o1270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPeters, K., Peters, E. M. & Quast, H. (1998). Z. Kristallogr. New Cryst. Struct. 213, 607–608.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. X. & Rillema, D. P. (1997). Tetrahedron, 37, 12377–12390.  CrossRef Web of Science Google Scholar
First citationWang, C. X., Wang, P. & Li, Z. F. (2006). Z. Kristallogr. New Cryst. Struct. 221, 211–212.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds