organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o180-o181

1-Benzo­thio­phene-2-carbaldehyde 4-ethyl­thio­semicarbazone

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: farina@pkrisc.cc.ukm.my

(Received 19 November 2008; accepted 16 December 2008; online 20 December 2008)

The title compound, C13H15N3S2, crystallizes with two unique mol­ecules, A and B, in the asymmetric unit. These differ principally in that the methyl group of the 4-ethyl­thio­semicarbazone moiety is ordered in mol­ecule A but disordered over two positions with equal occupancies in mol­ecule B. The benzothio­phene group and the semicarbazone unit are inclined at dihedral angles of 11.78 (8)° for mol­ecule A and 8.18 (13)° for mol­ecule B. Weak intra­molecular N—H⋯N inter­actions contribute to the planarity of the semicarbazone units in both mol­ecules and each mol­ecule adopts an E configuration with respect to the C=N bonds. In the crystal structure, mol­ecules form centrosymmetric dimers as a result of N—H⋯S hydrogen bonds, augmented by C—H⋯S inter­actions for mol­ecule A and C—H⋯S inter­actions for mol­ecule B. Weak C—H⋯π inter­actions stack the dimers of both mol­ecules into columns down the a axis.

Related literature

For background to the biological activity of thio­semicarbazones, see: de Sousa et al. (2007[Sousa, G. F. de, Manso, L. C. C., Lang, E. S., Gatto, C. C. & Mahieu, B. (2007). J. Mol. Struct. 826, 185-191.]). For related structures, see: Chuev et al. (1992[Chuev, I. I., Filipenko, O. S., Ryzhikov, V. G., Aldoshin, S. M. & Atovmyan, L. O. (1992). Izv. Akad. Nauk SSSR Ser. Khim. pp. 917-922.]); de Lima et al. (2002[Lima, G. M. de, Neto, J. L., Beraldo, H., Siebald, H. G. L. & Duncalf, D. J. (2002). J. Mol. Struct. 604, 287-291.]); Isik et al. (2006[Işık, S., Köysal, Y., Özdemir, Z. & Bilgin, A. A. (2006). Acta Cryst. E62, o491-o493.]); Kayed et al. (2008[Kayed, S. F., Farina, Y., Kassim, M. & Simpson, J. (2008). Acta Cryst. E64, o1022-o1023.]). For details of graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15N3S2

  • Mr = 277.40

  • Triclinic, [P \overline 1]

  • a = 5.5343 (5) Å

  • b = 10.9943 (10) Å

  • c = 23.443 (2) Å

  • α = 78.825 (5)°

  • β = 88.175 (5)°

  • γ = 76.298 (5)°

  • V = 1359.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 92 (2) K

  • 0.37 × 0.10 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.873, Tmax = 0.981

  • 18044 measured reflections

  • 5907 independent reflections

  • 4307 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 1.05

  • 5907 reflections

  • 354 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3NA⋯N1A 0.84 (1) 2.27 (2) 2.623 (3) 106 (2)
N3B—H3NB⋯N1B 0.83 (1) 2.26 (2) 2.627 (3) 107 (2)
C10A—H10A⋯S2Ai 0.98 2.84 3.374 (2) 115
N2A—H2NA⋯S2Ai 0.85 (1) 2.81 (1) 3.638 (2) 164 (2)
C10B—H10D⋯S2Bii 0.98 2.82 3.373 (2) 117
C10A—H10BCg1iii 0.98 2.71 3.577 (2) 147
C10B—H10ECg2iv 0.98 2.72 3.600 (2) 150
Symmetry codes: (i) -x, -y, -z+2; (ii) -x+3, -y+2, -z+1; (iii) x+1, y, z; (iv) x-1, y, z. Cg1 and Cg2 are the centroids of the S1A/C1A/C2A/C3A/C8A and S1B/C1B/C2B/C3B/C8B rings, respectively.

Data collection: APEX2 (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Thiosemicarbazones are a class of compounds that have been investigated because of their biological activity (de Sousa et al., 2007). As a continuation of our work on thiosemicarbazone compounds as potential ligands in transition metal chemistry (Kayed et al., 2008;) we report here the structure of the title compound (Fig. 1), which crystallizes with two unique molecules, A and B, in the asymmetric unit. The two molecules are closely similar with the exception of the methyl C atom of the ethyl group which is disordered over two positions C131 and C132, with equal occupancies. The similarities of the remainder of the two molecules are demonstrated by the fact that the non-hydrogen atoms of molecules A and B overlay in Mercury (Macrae et al., 2006) with an r.m.s. deviation of 0.077 Å, when the C132 disorder component is excluded. The molecules are each reasonably planar with r.m.s. deviations of 0.137 Å and 0.128 Å from the planes through all non-hydrogen atoms of the two molecules excluding the C132 disorder component. The planarity of the N1/N2/C11/S2/N3 segments of both molecules (r.m.s. deviations 0.050 Å for molecule A and 0.037 Å for molecule B) is aided by weak intramolecular N3—H3N···N1 interactions. The benzothiophene groups and the semicarbazone groups are inclined at dihedral angles of 11.78 (8)° for molecule A and 8.18 (13)° for molecule B. Both molecules adopt an E configuration with respect to the CN bonds, bond distances are normal (Allen et al., 1987) and comparable to those in similar structures (Chuev et al. 1992; de Lima et al. 2002; Isik et al. 2006; Kayed et al. 2008).

In the crystal structure, a centrosymmetric dimer with an R22(8) ring motif (Bernstein et al., 1995) is formed by through N2A—H2NA···S2A hydrogen bonds strengthened by additional C10A—H10A···S2A interactions for molecule A. A second dimer forms via C10B—H10D···S2B interactions for molecule B (Table 1 and Fig. 2). The dimers are further aggregated into columns down the a axis by weak C—H···π interactions involving the C10A and C10B methyl groups and the thiophene rings of adjacent molecules, Fig. 3.

Related literature top

For background to the biological activity of thiosemicarbazones, see: de Sousa et al. (2007). For related structures, see: Chuev et al. (1992); de Lima et al. (2002); Isik et al. (2006); Kayed et al. (2008). For details of graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995). For reference structural data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by heating 35 ml of an ethanolic solution of 2-acetylbenzothiophene (1.76 g, 10 mmol) and 4-ethyl-3-thiosemicarbazide (1.2 g, 10 mmol) under reflux for 2 h. Three drops of concentrated H2SO4 were added. The resulting product was isolated and recrystallized from acetonitrile to afford yellow needles of the title compound in 63.5% yield (m.p. 448–450 K).

Refinement top

H atoms bound to N2A, N2B, N3A and N3B were located in a difference electron density map and refined freely with Uiso = 1.2Ueq(N). All other H-atoms were refined using a riding model with d(C-H) = 0.95 Å, Uiso = 1.2Ueq (C) for aromatic, and 0.98 Å and Uiso = 1.5Ueq (C) for CH3 H atoms. The methyl C atom of the ethyl group in molecule B is disordered over two positions, C131 and C132, each with occupancies of approximately 0.5. These occupancies were fixed at 0.5 in the final refinement cycles.

Computing details top

Data collection: APEX2 (Bruker 2006); cell refinement: APEX2 and SAINT (Bruker 2006); data reduction: SAINT (Bruker 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. For clarity, only one disorder component is shown.
[Figure 2] Fig. 2. Formation of dimers in the crystal structure of the title compound, through N—H···S and C—H···S hydrogen bonds, shown as dashed lines. H atoms not involved in hydrogen bonding and atoms of one of the disorder components have been omitted for clarity.
[Figure 3] Fig. 3. C—H···π interactions between dimers in the title compound. Cg1 is the centroid of the S1A/C1A/C2A/C3A/C8A ring and Cg2 that of the S1B/C1B/C2B/C3B/C8B ring. H···Cg interactions are drawn as dotted lines and hydrogen bonds as dashed lines. H atoms not involved in these interactions and atoms of one of the disorder components have been omitted for clarity.
1-Benzothiophene-2-carbaldehyde 4-ethylthiosemicarbazone top
Crystal data top
C13H15N3S2Z = 4
Mr = 277.40F(000) = 584
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5343 (5) ÅCell parameters from 3088 reflections
b = 10.9943 (10) Åθ = 4.7–52.7°
c = 23.443 (2) ŵ = 0.38 mm1
α = 78.825 (5)°T = 92 K
β = 88.175 (5)°Needle, yellow
γ = 76.298 (5)°0.37 × 0.10 × 0.05 mm
V = 1359.4 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5907 independent reflections
Radiation source: fine-focus sealed tube4307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.1°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 76
Tmin = 0.873, Tmax = 0.981k = 1414
18044 measured reflectionsl = 3029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0519P)2]
where P = (Fo2 + 2Fc2)/3
5907 reflections(Δ/σ)max = 0.001
354 parametersΔρmax = 0.49 e Å3
6 restraintsΔρmin = 0.41 e Å3
Crystal data top
C13H15N3S2γ = 76.298 (5)°
Mr = 277.40V = 1359.4 (2) Å3
Triclinic, P1Z = 4
a = 5.5343 (5) ÅMo Kα radiation
b = 10.9943 (10) ŵ = 0.38 mm1
c = 23.443 (2) ÅT = 92 K
α = 78.825 (5)°0.37 × 0.10 × 0.05 mm
β = 88.175 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5907 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
4307 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.981Rint = 0.051
18044 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0426 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.49 e Å3
5907 reflectionsΔρmin = 0.41 e Å3
354 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.93115 (11)0.05062 (5)0.82595 (2)0.01751 (15)
S2A0.13864 (11)0.19901 (5)0.99817 (3)0.02041 (15)
N1A0.5271 (3)0.01724 (17)0.90359 (8)0.0153 (4)
N2A0.3543 (3)0.02135 (17)0.94186 (8)0.0163 (4)
H2NA0.225 (3)0.0337 (19)0.9488 (10)0.028 (7)*
N3A0.5742 (4)0.22703 (18)0.94436 (8)0.0170 (4)
H3NA0.691 (3)0.195 (2)0.9300 (10)0.022 (7)*
C1A0.6844 (4)0.1718 (2)0.84181 (9)0.0150 (5)
C2A0.6914 (4)0.2885 (2)0.80979 (9)0.0182 (5)
H2A0.57300.36480.81320.022*
C3A0.8956 (4)0.2843 (2)0.77044 (9)0.0175 (5)
C4A0.9572 (5)0.3831 (2)0.72958 (10)0.0238 (6)
H4A0.85910.46780.72600.029*
C5A1.1606 (5)0.3570 (2)0.69452 (10)0.0253 (6)
H5A1.20010.42410.66650.030*
C6A1.3095 (5)0.2332 (2)0.69971 (10)0.0241 (6)
H6A1.44970.21690.67550.029*
C7A1.2534 (4)0.1345 (2)0.73997 (10)0.0222 (5)
H7A1.35550.05060.74400.027*
C8A1.0452 (4)0.1596 (2)0.77463 (9)0.0162 (5)
C9A0.4991 (4)0.1378 (2)0.88361 (9)0.0148 (5)
C10A0.2935 (4)0.2411 (2)0.89979 (10)0.0203 (5)
H10A0.29880.23720.94190.030*
H10B0.13280.22890.88870.030*
H10C0.31460.32440.87930.030*
C11A0.3697 (4)0.1483 (2)0.95961 (9)0.0154 (5)
C12A0.6216 (4)0.3666 (2)0.95906 (10)0.0194 (5)
H12A0.47190.39380.94960.023*
H12B0.65550.39541.00130.023*
C13A0.8407 (4)0.4280 (2)0.92596 (11)0.0253 (6)
H13A0.86740.52100.93620.038*
H13B0.98990.40290.93610.038*
H13C0.80680.40000.88410.038*
S1B0.67836 (11)0.71828 (5)0.64398 (3)0.01964 (15)
S2B1.51802 (11)0.85218 (6)0.44850 (3)0.02281 (16)
N1B1.0500 (3)0.82960 (18)0.57598 (8)0.0180 (4)
N2B1.2186 (4)0.87090 (19)0.53790 (8)0.0187 (4)
H2NB1.300 (4)0.9225 (19)0.5457 (11)0.028 (8)*
N3B1.1624 (4)0.72808 (19)0.48311 (9)0.0205 (5)
H3NB1.040 (3)0.721 (2)0.5042 (9)0.022 (7)*
C1B0.8201 (4)0.8337 (2)0.66072 (10)0.0159 (5)
C2B0.7499 (4)0.8626 (2)0.71398 (9)0.0163 (5)
H2B0.80870.92340.73010.020*
C3B0.5797 (4)0.7926 (2)0.74310 (9)0.0161 (5)
C4B0.4694 (4)0.7975 (2)0.79772 (10)0.0207 (5)
H4B0.50740.85240.82100.025*
C5B0.3050 (4)0.7218 (2)0.81723 (11)0.0241 (6)
H5B0.22850.72580.85390.029*
C6B0.2499 (4)0.6392 (2)0.78363 (11)0.0256 (6)
H6B0.13800.58720.79790.031*
C7B0.3576 (4)0.6328 (2)0.72976 (11)0.0234 (6)
H7B0.31970.57710.70690.028*
C8B0.5215 (4)0.7090 (2)0.70985 (10)0.0179 (5)
C9B0.9933 (4)0.8839 (2)0.62066 (9)0.0156 (5)
C10B1.0962 (4)0.9905 (2)0.63256 (10)0.0204 (5)
H10D1.06491.06070.59880.031*
H10E1.27570.96020.64000.031*
H10F1.01541.02070.66670.031*
C11B1.2880 (4)0.8130 (2)0.49148 (9)0.0163 (5)
C12B1.1924 (5)0.6655 (2)0.43327 (12)0.0370 (7)
H12C1.36970.64410.42240.044*0.50
H12D1.09530.72190.39950.044*0.50
H12E1.21550.72860.40040.044*0.50
H12F1.03720.64500.42710.044*0.50
C1311.0968 (10)0.5437 (4)0.4516 (2)0.0281 (12)0.50
H13D0.91760.56670.45860.042*0.50
H13E1.18340.49280.48730.042*0.50
H13F1.12820.49390.42050.042*0.50
C1321.3847 (8)0.5534 (4)0.4312 (2)0.0265 (12)0.50
H13G1.54730.57190.43540.040*0.50
H13H1.37540.52710.39390.040*0.50
H13I1.36290.48460.46300.040*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0177 (3)0.0162 (3)0.0184 (3)0.0042 (2)0.0046 (2)0.0031 (2)
S2A0.0159 (3)0.0207 (3)0.0252 (3)0.0071 (2)0.0071 (3)0.0033 (2)
N1A0.0121 (10)0.0206 (10)0.0135 (9)0.0053 (8)0.0028 (8)0.0022 (8)
N2A0.0129 (10)0.0169 (10)0.0190 (10)0.0034 (8)0.0034 (8)0.0042 (8)
N3A0.0145 (11)0.0188 (10)0.0180 (10)0.0069 (8)0.0055 (9)0.0011 (8)
C1A0.0115 (11)0.0185 (11)0.0149 (11)0.0025 (9)0.0003 (9)0.0044 (9)
C2A0.0169 (12)0.0198 (12)0.0175 (12)0.0041 (10)0.0010 (10)0.0034 (9)
C3A0.0202 (13)0.0192 (11)0.0146 (11)0.0078 (10)0.0017 (10)0.0026 (9)
C4A0.0294 (15)0.0218 (12)0.0206 (13)0.0090 (11)0.0038 (11)0.0015 (10)
C5A0.0333 (15)0.0294 (14)0.0180 (12)0.0185 (12)0.0049 (11)0.0028 (10)
C6A0.0246 (14)0.0380 (15)0.0162 (12)0.0153 (12)0.0069 (11)0.0120 (11)
C7A0.0215 (13)0.0277 (13)0.0209 (13)0.0097 (11)0.0038 (11)0.0088 (10)
C8A0.0205 (13)0.0189 (11)0.0123 (11)0.0095 (10)0.0015 (10)0.0050 (9)
C9A0.0134 (12)0.0183 (11)0.0124 (11)0.0042 (9)0.0022 (9)0.0014 (9)
C10A0.0183 (13)0.0209 (12)0.0220 (13)0.0058 (10)0.0054 (10)0.0045 (10)
C11A0.0163 (12)0.0186 (11)0.0120 (11)0.0052 (9)0.0026 (9)0.0026 (9)
C12A0.0212 (13)0.0154 (11)0.0196 (12)0.0039 (10)0.0024 (10)0.0005 (9)
C13A0.0211 (13)0.0227 (13)0.0300 (14)0.0013 (10)0.0028 (11)0.0050 (11)
S1B0.0211 (3)0.0214 (3)0.0196 (3)0.0081 (2)0.0061 (3)0.0087 (2)
S2B0.0208 (3)0.0305 (3)0.0218 (3)0.0125 (3)0.0100 (3)0.0099 (3)
N1B0.0152 (10)0.0216 (10)0.0163 (10)0.0047 (8)0.0034 (8)0.0017 (8)
N2B0.0176 (11)0.0252 (11)0.0170 (10)0.0100 (9)0.0050 (9)0.0074 (9)
N3B0.0204 (12)0.0247 (11)0.0203 (11)0.0109 (9)0.0112 (9)0.0084 (9)
C1B0.0125 (12)0.0153 (11)0.0186 (12)0.0003 (9)0.0018 (10)0.0036 (9)
C2B0.0152 (12)0.0193 (11)0.0145 (11)0.0038 (9)0.0002 (9)0.0039 (9)
C3B0.0130 (12)0.0168 (11)0.0157 (11)0.0002 (9)0.0010 (9)0.0008 (9)
C4B0.0204 (13)0.0255 (13)0.0145 (12)0.0033 (10)0.0027 (10)0.0027 (10)
C5B0.0191 (13)0.0280 (13)0.0196 (12)0.0006 (10)0.0041 (11)0.0009 (10)
C6B0.0183 (13)0.0212 (12)0.0315 (14)0.0020 (10)0.0062 (11)0.0048 (11)
C7B0.0214 (13)0.0211 (12)0.0289 (14)0.0070 (10)0.0051 (11)0.0059 (10)
C8B0.0143 (12)0.0177 (11)0.0183 (12)0.0004 (9)0.0035 (10)0.0007 (9)
C9B0.0126 (12)0.0195 (11)0.0136 (11)0.0013 (9)0.0020 (9)0.0033 (9)
C10B0.0199 (13)0.0264 (13)0.0195 (12)0.0118 (10)0.0066 (10)0.0083 (10)
C11B0.0130 (12)0.0200 (12)0.0149 (11)0.0018 (9)0.0011 (9)0.0037 (9)
C12B0.0458 (18)0.0446 (17)0.0388 (16)0.0330 (14)0.0295 (14)0.0292 (14)
C1310.038 (3)0.025 (3)0.028 (3)0.011 (2)0.005 (2)0.015 (2)
C1320.027 (3)0.029 (3)0.021 (3)0.001 (2)0.006 (2)0.004 (2)
Geometric parameters (Å, º) top
S1A—C8A1.741 (2)N1B—N2B1.365 (3)
S1A—C1A1.754 (2)N2B—C11B1.365 (3)
S2A—C11A1.683 (2)N2B—H2NB0.852 (10)
N1A—C9A1.291 (3)N3B—C11B1.334 (3)
N1A—N2A1.375 (3)N3B—C12B1.453 (3)
N2A—C11A1.360 (3)N3B—H3NB0.835 (10)
N2A—H2NA0.852 (10)C1B—C2B1.369 (3)
N3A—C11A1.337 (3)C1B—C9B1.449 (3)
N3A—C12A1.467 (3)C2B—C3B1.429 (3)
N3A—H3NA0.839 (10)C2B—H2B0.95
C1A—C2A1.363 (3)C3B—C4B1.406 (3)
C1A—C9A1.459 (3)C3B—C8B1.411 (3)
C2A—C3A1.434 (3)C4B—C5B1.384 (3)
C2A—H2A0.95C4B—H4B0.95
C3A—C4A1.402 (3)C5B—C6B1.400 (4)
C3A—C8A1.411 (3)C5B—H5B0.95
C4A—C5A1.380 (3)C6B—C7B1.386 (3)
C4A—H4A0.95C6B—H6B0.95
C5A—C6A1.399 (3)C7B—C8B1.387 (3)
C5A—H5A0.95C7B—H7B0.95
C6A—C7A1.381 (3)C9B—C10B1.493 (3)
C6A—H6A0.95C10B—H10D0.98
C7A—C8A1.393 (3)C10B—H10E0.98
C7A—H7A0.95C10B—H10F0.98
C9A—C10A1.502 (3)C12B—C1321.432 (4)
C10A—H10A0.98C12B—C1311.535 (4)
C10A—H10B0.98C12B—H12C0.99
C10A—H10C0.98C12B—H12D0.99
C12A—C13A1.511 (3)C12B—H12E0.96
C12A—H12A0.99C12B—H12F0.96
C12A—H12B0.99C131—H12F1.13
C13A—H13A0.98C131—H13D0.98
C13A—H13B0.98C131—H13E0.98
C13A—H13C0.98C131—H13F0.98
S1B—C8B1.745 (2)C132—H13G0.98
S1B—C1B1.750 (2)C132—H13H0.98
S2B—C11B1.683 (2)C132—H13I0.98
N1B—C9B1.298 (3)
C8A—S1A—C1A91.23 (11)C9B—C1B—S1B120.17 (17)
C9A—N1A—N2A118.26 (18)C1B—C2B—C3B113.6 (2)
C11A—N2A—N1A118.93 (18)C1B—C2B—H2B123.2
C11A—N2A—H2NA120.8 (18)C3B—C2B—H2B123.2
N1A—N2A—H2NA119.2 (18)C4B—C3B—C8B118.8 (2)
C11A—N3A—C12A123.92 (19)C4B—C3B—C2B129.2 (2)
C11A—N3A—H3NA117.9 (17)C8B—C3B—C2B111.9 (2)
C12A—N3A—H3NA117.6 (17)C5B—C4B—C3B119.5 (2)
C2A—C1A—C9A128.8 (2)C5B—C4B—H4B120.3
C2A—C1A—S1A112.27 (17)C3B—C4B—H4B120.3
C9A—C1A—S1A118.84 (16)C4B—C5B—C6B120.9 (2)
C1A—C2A—C3A113.2 (2)C4B—C5B—H5B119.6
C1A—C2A—H2A123.4C6B—C5B—H5B119.6
C3A—C2A—H2A123.4C7B—C6B—C5B120.5 (2)
C4A—C3A—C8A118.6 (2)C7B—C6B—H6B119.8
C4A—C3A—C2A129.4 (2)C5B—C6B—H6B119.8
C8A—C3A—C2A111.9 (2)C6B—C7B—C8B118.9 (2)
C5A—C4A—C3A119.9 (2)C6B—C7B—H7B120.6
C5A—C4A—H4A120.1C8B—C7B—H7B120.6
C3A—C4A—H4A120.1C7B—C8B—C3B121.5 (2)
C4A—C5A—C6A120.9 (2)C7B—C8B—S1B127.42 (19)
C4A—C5A—H5A119.5C3B—C8B—S1B111.11 (17)
C6A—C5A—H5A119.5N1B—C9B—C1B115.7 (2)
C7A—C6A—C5A120.2 (2)N1B—C9B—C10B124.4 (2)
C7A—C6A—H6A119.9C1B—C9B—C10B119.94 (19)
C5A—C6A—H6A119.9C9B—C10B—H10D109.5
C6A—C7A—C8A119.2 (2)C9B—C10B—H10E109.5
C6A—C7A—H7A120.4H10D—C10B—H10E109.5
C8A—C7A—H7A120.4C9B—C10B—H10F109.5
C7A—C8A—C3A121.2 (2)H10D—C10B—H10F109.5
C7A—C8A—S1A127.48 (18)H10E—C10B—H10F109.5
C3A—C8A—S1A111.36 (17)N3B—C11B—N2B116.2 (2)
N1A—C9A—C1A115.43 (19)N3B—C11B—S2B124.21 (18)
N1A—C9A—C10A125.1 (2)N2B—C11B—S2B119.61 (18)
C1A—C9A—C10A119.50 (19)C132—C12B—N3B122.0 (3)
C9A—C10A—H10A109.5C132—C12B—C13168.4 (3)
C9A—C10A—H10B109.5N3B—C12B—C131106.5 (3)
H10A—C10A—H10B109.5N3B—C12B—H12C110.4
C9A—C10A—H10C109.5C131—C12B—H12C110.4
H10A—C10A—H10C109.5C132—C12B—H12D125.7
H10B—C10A—H10C109.5N3B—C12B—H12D110.4
N3A—C11A—N2A116.3 (2)C131—C12B—H12D110.4
N3A—C11A—S2A123.46 (17)H12C—C12B—H12D108.6
N2A—C11A—S2A120.25 (17)C132—C12B—H12E106.6
N3A—C12A—C13A111.06 (19)N3B—C12B—H12E106.2
N3A—C12A—H12A109.4C131—C12B—H12E143.4
C13A—C12A—H12A109.4H12C—C12B—H12E72.4
N3A—C12A—H12B109.4C132—C12B—H12F107.0
C13A—C12A—H12B109.4N3B—C12B—H12F107.2
H12A—C12A—H12B108.0C131—C12B—H12F47.0
C12A—C13A—H13A109.5H12C—C12B—H12F140.9
C12A—C13A—H13B109.5H12D—C12B—H12F66.4
H13A—C13A—H13B109.5H12E—C12B—H12F106.9
C12A—C13A—H13C109.5C12B—C131—H13D109.5
H13A—C13A—H13C109.5H12F—C131—H13D76.5
H13B—C13A—H13C109.5C12B—C131—H13E109.5
C8B—S1B—C1B91.60 (11)H12F—C131—H13E141.6
C9B—N1B—N2B117.9 (2)C12B—C131—H13F109.5
C11B—N2B—N1B119.3 (2)H12F—C131—H13F103.3
C11B—N2B—H2NB118.7 (18)C12B—C132—H13G109.5
N1B—N2B—H2NB121.0 (18)C12B—C132—H13H109.5
C11B—N3B—C12B124.4 (2)H13G—C132—H13H109.5
C11B—N3B—H3NB117.9 (17)C12B—C132—H13I109.5
C12B—N3B—H3NB116.7 (17)H13G—C132—H13I109.5
C2B—C1B—C9B128.1 (2)H13H—C132—H13I109.5
C2B—C1B—S1B111.75 (18)
C9A—N1A—N2A—C11A174.7 (2)C8B—S1B—C1B—C2B0.07 (17)
C8A—S1A—C1A—C2A0.36 (18)C8B—S1B—C1B—C9B178.56 (17)
C8A—S1A—C1A—C9A177.19 (18)C9B—C1B—C2B—C3B178.3 (2)
C9A—C1A—C2A—C3A176.5 (2)S1B—C1B—C2B—C3B0.1 (2)
S1A—C1A—C2A—C3A0.8 (3)C1B—C2B—C3B—C4B179.9 (2)
C1A—C2A—C3A—C4A177.4 (2)C1B—C2B—C3B—C8B0.2 (3)
C1A—C2A—C3A—C8A0.9 (3)C8B—C3B—C4B—C5B0.7 (3)
C8A—C3A—C4A—C5A0.1 (4)C2B—C3B—C4B—C5B179.0 (2)
C2A—C3A—C4A—C5A178.1 (2)C3B—C4B—C5B—C6B0.9 (3)
C3A—C4A—C5A—C6A1.0 (4)C4B—C5B—C6B—C7B0.6 (3)
C4A—C5A—C6A—C7A0.5 (4)C5B—C6B—C7B—C8B0.3 (3)
C5A—C6A—C7A—C8A0.9 (4)C6B—C7B—C8B—C3B0.2 (3)
C6A—C7A—C8A—C3A1.8 (4)C6B—C7B—C8B—S1B179.72 (17)
C6A—C7A—C8A—S1A177.30 (18)C4B—C3B—C8B—C7B0.4 (3)
C4A—C3A—C8A—C7A1.3 (3)C2B—C3B—C8B—C7B179.4 (2)
C2A—C3A—C8A—C7A179.8 (2)C4B—C3B—C8B—S1B179.99 (16)
C4A—C3A—C8A—S1A177.92 (18)C2B—C3B—C8B—S1B0.2 (2)
C2A—C3A—C8A—S1A0.6 (3)C1B—S1B—C8B—C7B179.4 (2)
C1A—S1A—C8A—C7A179.3 (2)C1B—S1B—C8B—C3B0.18 (17)
C1A—S1A—C8A—C3A0.14 (18)N2B—N1B—C9B—C1B178.00 (18)
N2A—N1A—C9A—C1A178.12 (18)N2B—N1B—C9B—C10B1.4 (3)
N2A—N1A—C9A—C10A1.3 (3)C2B—C1B—C9B—N1B172.1 (2)
C2A—C1A—C9A—N1A173.7 (2)S1B—C1B—C9B—N1B6.1 (3)
S1A—C1A—C9A—N1A3.4 (3)C2B—C1B—C9B—C10B7.3 (3)
C2A—C1A—C9A—C10A5.8 (4)S1B—C1B—C9B—C10B174.51 (16)
S1A—C1A—C9A—C10A177.12 (16)C12B—N3B—C11B—N2B174.0 (2)
C12A—N3A—C11A—N2A179.3 (2)C12B—N3B—C11B—S2B5.2 (3)
C12A—N3A—C11A—S2A0.3 (3)N1B—N2B—C11B—N3B7.4 (3)
N1A—N2A—C11A—N3A8.8 (3)N1B—N2B—C11B—S2B173.36 (15)
N1A—N2A—C11A—S2A170.77 (15)C11B—N3B—C12B—C13284.2 (4)
C11A—N3A—C12A—C13A168.7 (2)C11B—N3B—C12B—C131158.7 (3)
C9B—N1B—N2B—C11B177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H3NA···N1A0.84 (1)2.27 (2)2.623 (3)106 (2)
N3B—H3NB···N1B0.83 (1)2.26 (2)2.627 (3)107 (2)
C10A—H10A···S2Ai0.982.843.374 (2)115
N2A—H2NA···S2Ai0.85 (1)2.81 (1)3.638 (2)164 (2)
C10B—H10D···S2Bii0.982.823.373 (2)117
C10A—H10B···Cg1iii0.982.713.577 (2)147
C10B—H10E···Cg2iv0.982.723.600 (2)150
Symmetry codes: (i) x, y, z+2; (ii) x+3, y+2, z+1; (iii) x+1, y, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H15N3S2
Mr277.40
Crystal system, space groupTriclinic, P1
Temperature (K)92
a, b, c (Å)5.5343 (5), 10.9943 (10), 23.443 (2)
α, β, γ (°)78.825 (5), 88.175 (5), 76.298 (5)
V3)1359.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.37 × 0.10 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.873, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
18044, 5907, 4307
Rint0.051
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.05
No. of reflections5907
No. of parameters354
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.41

Computer programs: APEX2 (Bruker 2006), APEX2 and SAINT (Bruker 2006), SAINT (Bruker 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H3NA···N1A0.84 (1)2.27 (2)2.623 (3)106 (2)
N3B—H3NB···N1B0.83 (1)2.26 (2)2.627 (3)107 (2)
C10A—H10A···S2Ai0.982.843.374 (2)115
N2A—H2NA···S2Ai0.85 (1)2.81 (1)3.638 (2)164 (2)
C10B—H10D···S2Bii0.982.823.373 (2)117
C10A—H10B···Cg1iii0.982.713.577 (2)147
C10B—H10E···Cg2iv0.982.723.600 (2)150
Symmetry codes: (i) x, y, z+2; (ii) x+3, y+2, z+1; (iii) x+1, y, z; (iv) x1, y, z.
 

Acknowledgements

The authors thank the Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grants UKM-ST-01-FRGS0022–2006 and UKM-GUP-NBT-08–27-112. The authors also thank the University of Otago for purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChuev, I. I., Filipenko, O. S., Ryzhikov, V. G., Aldoshin, S. M. & Atovmyan, L. O. (1992). Izv. Akad. Nauk SSSR Ser. Khim. pp. 917–922.  Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationIşık, S., Köysal, Y., Özdemir, Z. & Bilgin, A. A. (2006). Acta Cryst. E62, o491–o493.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKayed, S. F., Farina, Y., Kassim, M. & Simpson, J. (2008). Acta Cryst. E64, o1022–o1023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLima, G. M. de, Neto, J. L., Beraldo, H., Siebald, H. G. L. & Duncalf, D. J. (2002). J. Mol. Struct. 604, 287–291.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSousa, G. F. de, Manso, L. C. C., Lang, E. S., Gatto, C. C. & Mahieu, B. (2007). J. Mol. Struct. 826, 185–191.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o180-o181
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds