metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido{N,N′-o-phenyl­ene-[6,6′-ethyl­enebis(pyridine-2-carboxamide)]}iron(III)

aDepartment of Chemical Engineering, Yibin University, Yibin 644000, People's Republic of China, and bDepartment of Chemistry, Luzhou Medicial College, Luzhou 646000, People's Republic of China
*Correspondence e-mail: ybuyl@163.com

(Received 22 November 2008; accepted 7 December 2008; online 10 December 2008)

In the title compound, [Fe(C20H14N4O2)Cl], the FeIII ion is in a distorted square-pyramidal environment, with two pyridine and two deprotonated amide N atoms in the basal plane and the Cl ion in the apical position. The FeIII ion is displaced from the basal plane of the square- pyramid towards the apical Cl atom by 0.2942 (4) Å. The mol­ecules are linked into a three-dimensional network by C—H⋯Cl and C—H⋯O hydrogen bonds.

Related literature

For general background, see: Liu et al. (2006[Liu, H. H., Wang, Y., Shu, Y. J., Zhou, X. G., Wu, J. & Yan, S. Y. (2006). J. Mol. Catal. A Chem. 246, 49-52.]); Yang et al. (2007[Yang, L., Wei, R. L., Li, R., Zhou, X. G. & Zuo, J. L. (2007). J. Mol. Catal. A Chem. 266, 284-289.]); Momenteau & Reed (1994[Momenteau, M. & Reed, C. A. (1994). Chem. Rev. 94, 659-698.]). For related structures, see: Rath et al. (2004[Rath, S. P., Kalish, H., Latos-Grazyński, L. Olmstead, M. M. & Balch, A. L. (2004). J. Am. Chem. Soc. 126, 646-654.]); Xu et al. (2007[Xu, X.-B., Yang, L., Qu, Y.-Y., Li, L.-X. & Zhou, X.-G. (2007). Acta Cryst. E63, m1790.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C20H14N4O2)Cl]

  • Mr = 433.65

  • Monoclinic, P 21 /n

  • a = 11.8532 (2) Å

  • b = 8.2028 (1) Å

  • c = 19.3507 (3) Å

  • β = 106.889 (1)°

  • V = 1800.31 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 296 (2) K

  • 0.44 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS, Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.778, Tmax = 1.000 (expected range = 0.703–0.904)

  • 24687 measured reflections

  • 4142 independent reflections

  • 3415 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.126

  • S = 1.01

  • 4142 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—N1 1.871 (2)
Fe1—N4 1.889 (2)
Fe1—N3 2.016 (2)
Fe1—N2 2.032 (2)
Fe1—Cl1 2.3080 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯Cl1i 0.93 2.80 3.595 (4) 144
C10—H10A⋯Cl1ii 0.93 2.71 3.617 (3) 165
C11—H11A⋯O1iii 0.93 2.46 3.290 (5) 149
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x+1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of macrocyclic complexes has attracted the interest of both inorganic and bioinorganic chemists in recent years. Iron(III) complexes are involved in numerous biological redox reactions performed by metalloenzymes (Momenteau et al., 1994). As part of our studies on catalysis by N4 non-porphyrin complexes (Liu et al., 2006; Yang et al., 2007), we report here the crystal structure of a iron(III) complex with 1,2-[bis(6'-pyridine-2'-carboxamido)-ethane]benzene.

As shown in Fig.1, the complex has a five-coordinate structure with two pyridine and two deprotonated amide N atoms in the basal plane while the Cl ion is bonded to the FeIII center in the apical position. The geometry around the FeIII ion is approximately square-pyramidal. The Fe—N(amide) distances are shorter than the Fe—N(pyridine) distances (Table 1), both of which are shorter than the Fe—N distances found in the non-ring related Fe—N4 complexes such as [NEt4][Fe(bbpc)Cl2][H2bbpc is N,N'-(4,5-dichloro-o-phenylene)bis(4-tertbutylpyridine-2-carboxamide)] (Xu et al., 2007). The Fe—Cl distance of 2.3080 (8) Å is slightly shorter than that observed in [Fe(bbpc)Cl2](Et4N) (2.3299 (9) Å and 2.3880 (9) Å), while it is longer than that in [FeCl(meso-NH2-octaethylporphyrin)] (2.2596 (8) Å, Sankar et al., 2004).

In the crystalline state, the molecules are linked into a three-dimensional network by C—H···Cl and C—H···O hydrogen bonds (Table 2).

Related literature top

For general background, see: Liu et al. (2006); Yang et al. (2007); Momenteau et al. (1994). For related structures, see: Rath et al. (2004); Xu et al. (2007).

Experimental top

1,2-[Bis(6'-pyridine-2'carboxamido)-ethane]benzene (132 mg, 0.38 mmol) and sodium acetate (80 mg, 0.76 mmol) were added to a stirred solution of FeCl3.6H2O (244 mg, 0.9 mmol) in CH3OH (20 ml). The colour of the mixture turned green almost immediately. The mixture was refluxed for 3 h and dark green microcrystals appeared. They were collected by filtration, washed with methanol, and air-dried. (123 mg, yield 75%). Single crystals suitable for X-ray diffraction were grown via diffusion of Et2O into a DMF solution of the complex. Selected IR data (KBr, cm-1):ν=1629 (C=O), 1602 (C—N), 1572, 1346, 1287, 1142, 1083, 1081, 762. MS (FAB): 398.3([Fe(bpeb)]+).

Refinement top

All H atoms were positioned geometrically and refined as riding, with C-H = 0.93 Å (aromatic) or 0.97 Å (methylene) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Chlorido{N,N'-o-phenylene-[6,6'-ethylenebis(pyridine-2-carboxamide)]}iron(III) top
Crystal data top
[Fe(C20H14N4O2)Cl]F(000) = 884
Mr = 433.65Dx = 1.600 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9989 reflections
a = 11.8532 (2) Åθ = 2.2–27.4°
b = 8.2028 (1) ŵ = 1.01 mm1
c = 19.3507 (3) ÅT = 296 K
β = 106.889 (1)°Plate, black
V = 1800.31 (5) Å30.44 × 0.16 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4142 independent reflections
Radiation source: fine-focus sealed tube3415 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS, Sheldrick, 1996)
h = 1515
Tmin = 0.778, Tmax = 1.000k = 1010
24687 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0642P)2 + 2.4383P]
where P = (Fo2 + 2Fc2)/3
4142 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Fe(C20H14N4O2)Cl]V = 1800.31 (5) Å3
Mr = 433.65Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8532 (2) ŵ = 1.01 mm1
b = 8.2028 (1) ÅT = 296 K
c = 19.3507 (3) Å0.44 × 0.16 × 0.10 mm
β = 106.889 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4142 independent reflections
Absorption correction: multi-scan
(SADABS, Sheldrick, 1996)
3415 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 1.000Rint = 0.041
24687 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.01Δρmax = 0.62 e Å3
4142 reflectionsΔρmin = 0.43 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.45008 (3)0.56516 (5)0.62759 (2)0.02844 (13)
Cl10.49959 (7)0.48979 (10)0.74759 (4)0.0423 (2)
O10.1136 (2)0.6292 (4)0.61432 (18)0.0676 (8)
O20.5587 (2)0.2335 (3)0.51016 (14)0.0529 (6)
N10.2870 (2)0.5301 (3)0.59827 (14)0.0352 (5)
N20.4003 (2)0.7937 (3)0.64688 (12)0.0321 (5)
N30.6194 (2)0.5763 (3)0.62630 (12)0.0298 (5)
N40.44925 (19)0.3762 (3)0.57162 (12)0.0305 (5)
C10.2181 (3)0.6411 (4)0.61888 (17)0.0399 (7)
C20.2867 (3)0.7921 (4)0.64770 (16)0.0373 (6)
C30.2337 (3)0.9212 (4)0.67153 (19)0.0509 (9)
H3A0.15550.91560.67190.061*
C40.3014 (4)1.0606 (5)0.6950 (2)0.0564 (10)
H4A0.26961.14950.71270.068*
C50.4145 (4)1.0649 (4)0.69173 (18)0.0483 (8)
H5A0.45941.15850.70620.058*
C60.4643 (3)0.9306 (4)0.66690 (16)0.0377 (7)
C70.5853 (3)0.9393 (4)0.65875 (18)0.0443 (7)
H7A0.61591.04830.67160.053*
H7B0.58000.92220.60830.053*
C80.6751 (3)0.8146 (4)0.70492 (17)0.0418 (7)
H8A0.74680.87220.73010.050*
H8B0.64250.76830.74110.050*
C90.7061 (2)0.6787 (4)0.66208 (15)0.0352 (6)
C100.8207 (3)0.6559 (4)0.65877 (18)0.0453 (8)
H10A0.87940.72870.68240.054*
C110.8485 (3)0.5277 (5)0.62112 (19)0.0479 (8)
H11A0.92550.51240.61950.057*
C120.7599 (3)0.4217 (4)0.58564 (17)0.0413 (7)
H12A0.77600.33310.56000.050*
C130.6471 (2)0.4504 (3)0.58911 (15)0.0314 (6)
C140.5471 (2)0.3397 (4)0.55255 (15)0.0333 (6)
C150.2484 (2)0.3809 (4)0.56301 (16)0.0348 (6)
C160.1338 (3)0.3196 (4)0.5414 (2)0.0499 (8)
H16A0.07240.37730.55090.060*
C170.1128 (3)0.1721 (5)0.5056 (2)0.0590 (10)
H17A0.03640.13110.49050.071*
C180.2030 (3)0.0846 (4)0.4919 (2)0.0547 (9)
H18A0.18700.01530.46830.066*
C190.3178 (3)0.1438 (4)0.51280 (16)0.0414 (7)
H19A0.37890.08400.50410.050*
C200.3393 (2)0.2947 (3)0.54712 (15)0.0328 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0262 (2)0.0225 (2)0.0375 (2)0.00026 (14)0.01073 (15)0.00375 (15)
Cl10.0483 (4)0.0381 (4)0.0427 (4)0.0044 (3)0.0169 (3)0.0083 (3)
O10.0352 (13)0.0650 (18)0.109 (2)0.0042 (12)0.0307 (14)0.0117 (17)
O20.0472 (13)0.0475 (14)0.0671 (15)0.0005 (11)0.0215 (11)0.0268 (12)
N10.0278 (11)0.0299 (13)0.0484 (14)0.0000 (9)0.0119 (10)0.0014 (10)
N20.0410 (13)0.0221 (11)0.0345 (12)0.0034 (10)0.0132 (10)0.0013 (9)
N30.0287 (11)0.0274 (12)0.0334 (11)0.0026 (9)0.0091 (9)0.0020 (9)
N40.0301 (11)0.0237 (11)0.0370 (12)0.0025 (9)0.0088 (9)0.0049 (9)
C10.0337 (15)0.0377 (17)0.0515 (17)0.0065 (12)0.0175 (13)0.0020 (14)
C20.0424 (16)0.0333 (15)0.0396 (15)0.0099 (12)0.0173 (12)0.0021 (12)
C30.058 (2)0.047 (2)0.055 (2)0.0213 (17)0.0282 (17)0.0042 (16)
C40.083 (3)0.0406 (19)0.0494 (19)0.0225 (19)0.0254 (18)0.0016 (15)
C50.076 (2)0.0272 (15)0.0401 (16)0.0053 (15)0.0136 (16)0.0027 (13)
C60.0547 (18)0.0249 (14)0.0325 (14)0.0017 (13)0.0108 (12)0.0010 (11)
C70.0553 (19)0.0264 (15)0.0517 (18)0.0103 (13)0.0166 (15)0.0024 (13)
C80.0421 (16)0.0388 (17)0.0411 (16)0.0095 (13)0.0069 (13)0.0082 (13)
C90.0322 (14)0.0346 (15)0.0365 (14)0.0063 (12)0.0066 (11)0.0002 (12)
C100.0314 (15)0.051 (2)0.0500 (18)0.0110 (14)0.0058 (13)0.0020 (15)
C110.0270 (14)0.063 (2)0.0540 (19)0.0007 (14)0.0126 (13)0.0059 (17)
C120.0330 (15)0.0472 (19)0.0462 (17)0.0054 (13)0.0154 (13)0.0001 (14)
C130.0311 (13)0.0311 (14)0.0321 (13)0.0019 (11)0.0092 (10)0.0020 (11)
C140.0339 (14)0.0296 (14)0.0360 (14)0.0024 (11)0.0094 (11)0.0030 (11)
C150.0318 (14)0.0287 (14)0.0423 (15)0.0045 (11)0.0084 (11)0.0036 (12)
C160.0325 (16)0.0450 (19)0.070 (2)0.0058 (14)0.0115 (15)0.0041 (17)
C170.0431 (19)0.047 (2)0.079 (3)0.0221 (16)0.0051 (17)0.0039 (19)
C180.063 (2)0.0346 (18)0.059 (2)0.0211 (16)0.0073 (17)0.0051 (15)
C190.0493 (18)0.0317 (16)0.0420 (16)0.0082 (13)0.0114 (13)0.0036 (13)
C200.0326 (14)0.0281 (14)0.0360 (14)0.0047 (11)0.0073 (11)0.0012 (11)
Geometric parameters (Å, º) top
Fe1—N11.871 (2)C7—C81.557 (5)
Fe1—N41.889 (2)C7—H7A0.97
Fe1—N32.016 (2)C7—H7B0.97
Fe1—N22.032 (2)C8—C91.497 (4)
Fe1—Cl12.3080 (8)C8—H8A0.97
O1—C11.220 (4)C8—H8B0.97
O2—C141.231 (3)C9—C101.392 (4)
N1—C11.358 (4)C10—C111.373 (5)
N1—C151.412 (4)C10—H10A0.93
N2—C61.348 (4)C11—C121.383 (5)
N2—C21.350 (4)C11—H11A0.93
N3—C91.352 (4)C12—C131.378 (4)
N3—C131.353 (4)C12—H12A0.93
N4—C141.349 (4)C13—C141.498 (4)
N4—C201.418 (3)C15—C161.394 (4)
C1—C21.498 (5)C15—C201.396 (4)
C2—C31.378 (4)C16—C171.380 (5)
C3—C41.395 (6)C16—H16A0.93
C3—H3A0.93C17—C181.376 (6)
C4—C51.361 (6)C17—H17A0.93
C4—H4A0.93C18—C191.390 (5)
C5—C61.399 (4)C18—H18A0.93
C5—H5A0.93C19—C201.392 (4)
C6—C71.490 (5)C19—H19A0.93
N1—Fe1—N482.38 (10)C8—C7—H7B108.5
N1—Fe1—N3161.28 (10)H7A—C7—H7B107.5
N4—Fe1—N382.51 (9)C9—C8—C7114.1 (3)
N1—Fe1—N282.39 (10)C9—C8—H8A108.7
N4—Fe1—N2155.32 (10)C7—C8—H8A108.7
N3—Fe1—N2107.69 (10)C9—C8—H8B108.7
N1—Fe1—Cl1101.67 (8)C7—C8—H8B108.7
N4—Fe1—Cl1108.32 (8)H8A—C8—H8B107.6
N3—Fe1—Cl193.53 (7)N3—C9—C10120.1 (3)
N2—Fe1—Cl193.71 (7)N3—C9—C8118.3 (3)
C1—N1—C15125.8 (3)C10—C9—C8121.7 (3)
C1—N1—Fe1117.7 (2)C11—C10—C9121.0 (3)
C15—N1—Fe1116.19 (19)C11—C10—H10A119.5
C6—N2—C2119.0 (3)C9—C10—H10A119.5
C6—N2—Fe1130.7 (2)C10—C11—C12118.7 (3)
C2—N2—Fe1109.69 (19)C10—C11—H11A120.6
C9—N3—C13118.7 (2)C12—C11—H11A120.6
C9—N3—Fe1129.3 (2)C13—C12—C11118.4 (3)
C13—N3—Fe1111.65 (18)C13—C12—H12A120.8
C14—N4—C20125.7 (2)C11—C12—H12A120.8
C14—N4—Fe1118.49 (18)N3—C13—C12123.1 (3)
C20—N4—Fe1115.45 (18)N3—C13—C14115.6 (2)
O1—C1—N1127.6 (3)C12—C13—C14121.3 (3)
O1—C1—C2121.5 (3)O2—C14—N4127.6 (3)
N1—C1—C2110.8 (2)O2—C14—C13121.2 (3)
N2—C2—C3123.4 (3)N4—C14—C13111.2 (2)
N2—C2—C1116.0 (2)C16—C15—C20119.9 (3)
C3—C2—C1120.6 (3)C16—C15—N1127.5 (3)
C2—C3—C4117.6 (3)C20—C15—N1112.5 (2)
C2—C3—H3A121.2C17—C16—C15119.0 (3)
C4—C3—H3A121.2C17—C16—H16A120.5
C5—C4—C3119.1 (3)C15—C16—H16A120.5
C5—C4—H4A120.4C18—C17—C16121.1 (3)
C3—C4—H4A120.4C18—C17—H17A119.4
C4—C5—C6121.0 (3)C16—C17—H17A119.4
C4—C5—H5A119.5C17—C18—C19120.8 (3)
C6—C5—H5A119.5C17—C18—H18A119.6
N2—C6—C5119.8 (3)C19—C18—H18A119.6
N2—C6—C7119.2 (3)C18—C19—C20118.5 (3)
C5—C6—C7120.9 (3)C18—C19—H19A120.7
C6—C7—C8115.3 (3)C20—C19—H19A120.7
C6—C7—H7A108.5C19—C20—C15120.6 (3)
C8—C7—H7A108.5C19—C20—N4127.0 (3)
C6—C7—H7B108.5C15—C20—N4112.4 (2)
N4—Fe1—N1—C1176.9 (2)C2—N2—C6—C7173.6 (3)
N3—Fe1—N1—C1140.5 (3)Fe1—N2—C6—C716.6 (4)
N2—Fe1—N1—C116.3 (2)C4—C5—C6—N21.0 (5)
Cl1—Fe1—N1—C175.9 (2)C4—C5—C6—C7175.9 (3)
N4—Fe1—N1—C159.6 (2)N2—C6—C7—C863.1 (4)
N3—Fe1—N1—C1546.0 (4)C5—C6—C7—C8119.9 (3)
N2—Fe1—N1—C15170.1 (2)C6—C7—C8—C9107.4 (3)
Cl1—Fe1—N1—C1597.6 (2)C13—N3—C9—C101.6 (4)
N1—Fe1—N2—C6173.7 (3)Fe1—N3—C9—C10174.0 (2)
N4—Fe1—N2—C6121.4 (3)C13—N3—C9—C8178.2 (3)
N3—Fe1—N2—C69.9 (3)Fe1—N3—C9—C85.7 (4)
Cl1—Fe1—N2—C685.0 (2)C7—C8—C9—N362.5 (4)
N1—Fe1—N2—C215.76 (19)C7—C8—C9—C10117.7 (3)
N4—Fe1—N2—C268.1 (3)N3—C9—C10—C111.8 (5)
N3—Fe1—N2—C2179.57 (18)C8—C9—C10—C11177.9 (3)
Cl1—Fe1—N2—C285.53 (19)C9—C10—C11—C120.7 (5)
N1—Fe1—N3—C9150.2 (3)C10—C11—C12—C130.6 (5)
N4—Fe1—N3—C9173.5 (3)C9—N3—C13—C120.3 (4)
N2—Fe1—N3—C929.6 (3)Fe1—N3—C13—C12174.0 (2)
Cl1—Fe1—N3—C965.4 (2)C9—N3—C13—C14178.4 (2)
N1—Fe1—N3—C1337.0 (4)Fe1—N3—C13—C144.7 (3)
N4—Fe1—N3—C130.60 (19)C11—C12—C13—N30.8 (5)
N2—Fe1—N3—C13157.53 (18)C11—C12—C13—C14179.4 (3)
Cl1—Fe1—N3—C13107.44 (18)C20—N4—C14—O21.6 (5)
N1—Fe1—N4—C14164.8 (2)Fe1—N4—C14—O2171.3 (3)
N3—Fe1—N4—C144.1 (2)C20—N4—C14—C13179.7 (2)
N2—Fe1—N4—C14112.5 (3)Fe1—N4—C14—C137.5 (3)
Cl1—Fe1—N4—C1495.4 (2)N3—C13—C14—O2171.0 (3)
N1—Fe1—N4—C208.8 (2)C12—C13—C14—O210.3 (4)
N3—Fe1—N4—C20177.7 (2)N3—C13—C14—N47.8 (4)
N2—Fe1—N4—C2061.1 (3)C12—C13—C14—N4170.9 (3)
Cl1—Fe1—N4—C2091.03 (19)C1—N1—C15—C161.3 (5)
C15—N1—C1—O14.1 (6)Fe1—N1—C15—C16174.3 (3)
Fe1—N1—C1—O1168.8 (3)C1—N1—C15—C20178.5 (3)
C15—N1—C1—C2174.1 (3)Fe1—N1—C15—C208.6 (3)
Fe1—N1—C1—C213.1 (3)C20—C15—C16—C171.3 (5)
C6—N2—C2—C33.4 (4)N1—C15—C16—C17178.3 (3)
Fe1—N2—C2—C3168.4 (3)C15—C16—C17—C180.7 (6)
C6—N2—C2—C1175.0 (3)C16—C17—C18—C191.0 (6)
Fe1—N2—C2—C113.2 (3)C17—C18—C19—C200.8 (5)
O1—C1—C2—N2176.9 (3)C18—C19—C20—C152.8 (5)
N1—C1—C2—N21.3 (4)C18—C19—C20—N4179.2 (3)
O1—C1—C2—C31.5 (5)C16—C15—C20—C193.1 (5)
N1—C1—C2—C3179.8 (3)N1—C15—C20—C19179.5 (3)
N2—C2—C3—C40.8 (5)C16—C15—C20—N4178.7 (3)
C1—C2—C3—C4177.5 (3)N1—C15—C20—N41.3 (4)
C2—C3—C4—C51.6 (5)C14—N4—C20—C1915.3 (5)
C3—C4—C5—C61.5 (5)Fe1—N4—C20—C19171.7 (2)
C2—N2—C6—C53.4 (4)C14—N4—C20—C15166.7 (3)
Fe1—N2—C6—C5166.4 (2)Fe1—N4—C20—C156.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl1i0.932.803.595 (4)144
C10—H10A···Cl1ii0.932.713.617 (3)165
C11—H11A···O1iii0.932.463.290 (5)149
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Fe(C20H14N4O2)Cl]
Mr433.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.8532 (2), 8.2028 (1), 19.3507 (3)
β (°) 106.889 (1)
V3)1800.31 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.44 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS, Sheldrick, 1996)
Tmin, Tmax0.778, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24687, 4142, 3415
Rint0.041
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.126, 1.01
No. of reflections4142
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.43

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Fe1—N11.871 (2)Fe1—N22.032 (2)
Fe1—N41.889 (2)Fe1—Cl12.3080 (8)
Fe1—N32.016 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl1i0.932.803.595 (4)144
C10—H10A···Cl1ii0.932.713.617 (3)165
C11—H11A···O1iii0.932.463.290 (5)149
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1, y, z.
 

Acknowledgements

The project was sponsored by the Foundation of Yibin University.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, H. H., Wang, Y., Shu, Y. J., Zhou, X. G., Wu, J. & Yan, S. Y. (2006). J. Mol. Catal. A Chem. 246, 49–52.  Web of Science CrossRef CAS Google Scholar
First citationMomenteau, M. & Reed, C. A. (1994). Chem. Rev. 94, 659–698.  CrossRef CAS Web of Science Google Scholar
First citationRath, S. P., Kalish, H., Latos-Grazyński, L. Olmstead, M. M. & Balch, A. L. (2004). J. Am. Chem. Soc. 126, 646–654.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, X.-B., Yang, L., Qu, Y.-Y., Li, L.-X. & Zhou, X.-G. (2007). Acta Cryst. E63, m1790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, L., Wei, R. L., Li, R., Zhou, X. G. & Zuo, J. L. (2007). J. Mol. Catal. A Chem. 266, 284–289.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds