metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­(di­chloro­acetato-κO)(1,10-phenanthroline-κ2N,N′)copper(II)

aSchool of Science, North University of China, Taiyuan 030051, People's Republic of China, bCollege of Chemistry and Food, Zhongzhou University, Zhengzhou 450044, People's Republic of China, and cDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: xiangyz_2008@163.com

(Received 29 November 2008; accepted 15 December 2008; online 20 December 2008)

In the title complex, [Cu(C2HCl2O2)2(C12H8N2)(H2O)], the CuII ion has a distorted square-pyramidal coordination geometry. The equatorial positions are occupied by two N atoms from a 1,10-phenanthroline ligand [Cu—N = 1.994 (3) and 2.027 (3) Å] and two O atoms from dichloro­acetate ligands and a water mol­ecule [Cu—O = 1.971 (2) and 1.939 (2) Å]. One O atom from another dichloro­acetate ligand occupies the apical positon [Cu—O = 2.152 (3) Å]. Inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. The crystal packing also exhibits weak inter­molecular C—H⋯O hydrogen bonds, ππ inter­actions [centroid–centroid distance = 3.734 (2) Å] and short inter­molecular Cl⋯Cl contacts [3.306 (2) and 3.278 (2) Å].

Related literature

For applications of dichloro­acetic acid derivatives, see: Múdra et al. (2003[Múdra, M., Moncol', J., Švorec, J., Melník, M., Lönnecke, P., Glowiak, T. & Kirmse, R. (2003). Inorg. Chem. Commun. 6, 1259-1265.]); Lin et al. (2001[Lin, M. M., Wei, H. H. & Lee, G. H. (2001). Polyhedron, 20, 3057-3063.]); Zhu & Xiao (2006[Zhu, L.-G. & Xiao, H.-P. (2006). Acta Cryst. E62, m2061-m2063.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2HCl2O2)2(C12H8N2)(H2O)]

  • Mr = 517.62

  • Triclinic, [P \overline 1]

  • a = 8.2701 (8) Å

  • b = 10.8883 (11) Å

  • c = 12.0125 (12) Å

  • α = 67.4390 (10)°

  • β = 77.585 (2)°

  • γ = 73.776 (2)°

  • V = 952.02 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.74 mm−1

  • T = 273 (2) K

  • 0.32 × 0.25 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.606, Tmax = 0.711

  • 5043 measured reflections

  • 3346 independent reflections

  • 2539 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.106

  • S = 1.01

  • 3346 reflections

  • 261 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O2i 0.98 2.24 3.118 (5) 149
O5—H5B⋯O2ii 0.85 (2) 1.81 (2) 2.654 (3) 174 (3)
O5—H5A⋯O4 0.85 (2) 1.86 (2) 2.673 (4) 159 (3)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dichloroacetic acid and its derivatives are biologically active compounds which have been widely studied because of their fascinating topologies and potential applications as functional materials (Múdra et al., 2003; Lin et al., 2001; Zhu et al., 2006;). In our study of this field, we selected 1,10-phenanthroline as the co-ligand to continue our exploration to the Cu complexes with the dichloroacetic acid ligand. Herein we report the structure of the title complex (I).

In (I) (Fig. 1), the Cu ion has a distorted square-pyramidal coordination. Two N atoms from 1,10-phenanthroline ligand and two oxygen atoms from a dichloroacetic acid ligand form a basal plane, and an aqua atom occupy the axial apical position. Intermolecular O—H···O hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers. The crystal packing exhibits also weak intermolecular C—H···O hydrogen bonds, ππ interactions and short intermolecular Cl···Cl contacts (Table 1).

Related literature top

For applications of dichloroacetic acid derivatives, see: Múdra et al. (2003); Lin et al. (2001); Zhu et al. (2006).

Experimental top

A mixture of Cu(CH3COO)2*3H2O(204 mg, 1 mmol) and 1,10-phenanthroline (185 mg, 1 mmol) in methanol(30 ml) was placed in a Teflon-lined stainless steel Parr bomb that was heated at 403 K for 48 h. The bomb was then cooled down to the room temperature, the solution was filtered. The solvent was removed from the filtrate under vacuum, and the solid residue was recrystallized from diethyl ether; blue crystals suitable for X-Ray diffraction study were obtained. Yield, 0.760 g, 83%. m.p. 573 K. Analysis, calculated for C16H12Cl4CuN2O5: C 46.73, H 2.94, N 6.81; found: C 46.95, H 2.56, N 7.07%. The elemental analyses were performed with a Perkine Elemer PE2400II instrument.

Refinement top

C-bound H atoms were geometrically positioned (C—H 0.93–0.97 Å) and refined as riding, with Uiso(H)=1.2Ueq(C). The water H atoms were located on a Fourier map and isotropically refined with the distance restraints O—H=0.85 (2) Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted.
Aquabis(dichloroacetato-κO)(1,10-phenanthroline- κ2N,N')copper(II) top
Crystal data top
[Cu(C2HCl2O2)2(C12H8N2)(H2O)]Z = 2
Mr = 517.62F(000) = 518
Triclinic, P1Dx = 1.806 Mg m3
a = 8.2701 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8883 (11) ÅCell parameters from 1923 reflections
c = 12.0125 (12) Åθ = 2.3–27.1°
α = 67.439 (1)°µ = 1.74 mm1
β = 77.585 (2)°T = 273 K
γ = 73.776 (2)°Block, colorless
V = 952.02 (16) Å30.32 × 0.25 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3346 independent reflections
Radiation source: fine-focus sealed tube2539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.606, Tmax = 0.711k = 1212
5043 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.046P)2]
where P = (Fo2 + 2Fc2)/3
3346 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.63 e Å3
3 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cu(C2HCl2O2)2(C12H8N2)(H2O)]γ = 73.776 (2)°
Mr = 517.62V = 952.02 (16) Å3
Triclinic, P1Z = 2
a = 8.2701 (8) ÅMo Kα radiation
b = 10.8883 (11) ŵ = 1.74 mm1
c = 12.0125 (12) ÅT = 273 K
α = 67.439 (1)°0.32 × 0.25 × 0.21 mm
β = 77.585 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3346 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2539 reflections with I > 2σ(I)
Tmin = 0.606, Tmax = 0.711Rint = 0.064
5043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0423 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.63 e Å3
3346 reflectionsΔρmin = 0.51 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.23680 (6)0.74569 (4)0.41387 (4)0.03375 (16)
Cl40.12884 (15)0.83880 (10)0.01776 (9)0.0498 (3)
Cl30.18005 (19)0.55281 (11)0.05837 (10)0.0653 (4)
Cl10.66991 (17)0.90846 (12)0.08639 (11)0.0717 (4)
Cl20.5908 (2)0.69108 (14)0.04161 (11)0.0831 (5)
O30.1567 (3)0.7463 (2)0.2733 (2)0.0399 (6)
C50.2814 (4)0.9060 (3)0.5379 (3)0.0310 (8)
O50.1749 (4)0.5698 (3)0.5130 (2)0.0471 (7)
N20.1747 (4)0.9522 (3)0.3541 (2)0.0324 (7)
N10.3082 (4)0.7741 (3)0.5489 (3)0.0343 (7)
C90.0716 (5)1.1808 (4)0.2276 (3)0.0447 (10)
H90.02631.23920.15640.054*
O20.7530 (4)0.6097 (3)0.2708 (2)0.0586 (8)
C130.6067 (5)0.6806 (4)0.2683 (3)0.0344 (8)
C160.0957 (5)0.6794 (3)0.1249 (3)0.0340 (8)
H160.02720.68610.14320.041*
C110.2127 (6)1.1856 (4)0.4993 (4)0.0471 (10)
H110.18731.27790.48870.056*
C150.1639 (5)0.6447 (3)0.2447 (3)0.0341 (8)
O40.2088 (4)0.5243 (3)0.3049 (2)0.0609 (9)
C140.5542 (5)0.7783 (4)0.1437 (3)0.0357 (9)
H140.43300.81980.15360.043*
C10.3872 (5)0.6806 (4)0.6436 (3)0.0447 (10)
H10.41320.58930.65090.054*
C120.2859 (6)1.0935 (4)0.5985 (4)0.0510 (11)
H120.31301.12420.65310.061*
C80.1025 (5)1.2327 (4)0.3051 (3)0.0421 (10)
H80.07661.32640.28790.051*
C100.1075 (5)1.0398 (4)0.2542 (3)0.0398 (9)
H100.08361.00630.20040.048*
C60.2062 (5)1.0040 (3)0.4314 (3)0.0306 (8)
C70.1742 (5)1.1436 (4)0.4118 (3)0.0368 (9)
C40.3223 (5)0.9501 (4)0.6208 (3)0.0390 (9)
C20.4306 (6)0.7160 (4)0.7297 (4)0.0506 (11)
H20.48100.64820.79550.061*
O10.5012 (4)0.6801 (3)0.3559 (2)0.0634 (9)
C30.4009 (6)0.8478 (4)0.7199 (3)0.0477 (10)
H30.43210.87100.77790.057*
H5A0.192 (6)0.535 (3)0.458 (2)0.065 (16)*
H5B0.194 (6)0.509 (3)0.5816 (15)0.068 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0471 (3)0.0207 (2)0.0318 (3)0.00140 (19)0.0107 (2)0.00826 (19)
Cl40.0728 (8)0.0307 (5)0.0416 (6)0.0135 (5)0.0179 (5)0.0005 (4)
Cl30.1158 (11)0.0350 (6)0.0486 (6)0.0027 (6)0.0209 (6)0.0222 (5)
Cl10.0801 (9)0.0472 (7)0.0746 (8)0.0293 (6)0.0338 (7)0.0168 (6)
Cl20.1151 (12)0.0745 (9)0.0677 (8)0.0119 (8)0.0340 (8)0.0440 (7)
O30.0622 (18)0.0227 (13)0.0366 (14)0.0029 (12)0.0151 (13)0.0119 (11)
C50.034 (2)0.0258 (19)0.0303 (18)0.0034 (15)0.0046 (16)0.0087 (15)
O50.073 (2)0.0312 (15)0.0346 (16)0.0132 (15)0.0142 (15)0.0038 (14)
N20.0419 (19)0.0222 (16)0.0315 (16)0.0044 (13)0.0051 (14)0.0090 (13)
N10.0420 (18)0.0271 (17)0.0326 (16)0.0042 (14)0.0059 (14)0.0104 (13)
C90.058 (3)0.026 (2)0.039 (2)0.0008 (18)0.014 (2)0.0011 (17)
O20.0396 (17)0.0558 (19)0.0453 (16)0.0073 (15)0.0018 (14)0.0063 (14)
C130.037 (2)0.029 (2)0.037 (2)0.0090 (17)0.0027 (18)0.0108 (17)
C160.041 (2)0.0239 (19)0.0350 (19)0.0038 (16)0.0062 (17)0.0094 (16)
C110.066 (3)0.029 (2)0.052 (2)0.010 (2)0.010 (2)0.018 (2)
C150.041 (2)0.024 (2)0.034 (2)0.0025 (16)0.0069 (17)0.0084 (16)
O40.113 (3)0.0235 (15)0.0449 (16)0.0005 (16)0.0331 (17)0.0086 (13)
C140.032 (2)0.030 (2)0.039 (2)0.0029 (16)0.0048 (17)0.0088 (16)
C10.060 (3)0.024 (2)0.044 (2)0.0006 (19)0.018 (2)0.0048 (17)
C120.072 (3)0.043 (3)0.051 (3)0.018 (2)0.008 (2)0.026 (2)
C80.051 (3)0.0200 (19)0.047 (2)0.0035 (17)0.007 (2)0.0049 (17)
C100.051 (2)0.030 (2)0.035 (2)0.0034 (18)0.0145 (18)0.0065 (17)
C60.034 (2)0.0242 (19)0.0298 (18)0.0039 (15)0.0009 (15)0.0097 (15)
C70.040 (2)0.0229 (19)0.042 (2)0.0055 (16)0.0010 (18)0.0088 (17)
C40.044 (2)0.039 (2)0.036 (2)0.0094 (18)0.0024 (18)0.0149 (18)
C20.063 (3)0.043 (3)0.040 (2)0.005 (2)0.020 (2)0.006 (2)
O10.0491 (19)0.083 (2)0.0386 (16)0.0057 (16)0.0020 (15)0.0158 (16)
C30.057 (3)0.052 (3)0.038 (2)0.010 (2)0.014 (2)0.016 (2)
Geometric parameters (Å, º) top
Cu1—O31.939 (2)C13—O11.213 (4)
Cu1—O51.971 (2)C13—C141.536 (5)
Cu1—N11.994 (3)C16—C151.531 (5)
Cu1—N22.027 (3)C16—H160.9800
Cu1—O12.152 (3)C11—C121.359 (6)
Cl4—C161.774 (3)C11—C71.417 (5)
Cl3—C161.759 (4)C11—H110.9300
Cl1—C141.767 (4)C15—O41.223 (4)
Cl2—C141.753 (4)C14—H140.9800
O3—C151.261 (4)C1—C21.374 (5)
C5—N11.348 (4)C1—H10.9300
C5—C41.394 (5)C12—C41.432 (5)
C5—C61.444 (5)C12—H120.9300
O5—H5A0.85 (3)C8—C71.410 (5)
O5—H5B0.85 (3)C8—H80.9300
N2—C101.331 (4)C10—H100.9300
N2—C61.355 (4)C6—C71.401 (5)
N1—C11.348 (4)C4—C31.411 (5)
C9—C81.355 (5)C2—C31.349 (5)
C9—C101.399 (5)C2—H20.9300
C9—H90.9300C3—H30.9300
O2—C131.240 (5)
Cl1···Cl4i3.306 (2)Cg1···Cg2iii3.734 (2)
Cl2···Cl3ii3.278 (2)
O3—Cu1—O591.06 (10)O4—C15—O3127.3 (3)
O3—Cu1—N1171.76 (11)O4—C15—C16117.8 (3)
O5—Cu1—N195.86 (11)O3—C15—C16114.7 (3)
O3—Cu1—N290.28 (11)C13—C14—Cl2110.9 (3)
O5—Cu1—N2149.53 (12)C13—C14—Cl1109.3 (2)
N1—Cu1—N281.49 (11)Cl2—C14—Cl1110.0 (2)
O3—Cu1—O195.15 (11)C13—C14—H14108.9
O5—Cu1—O1101.24 (12)Cl2—C14—H14108.9
N1—Cu1—O187.88 (12)Cl1—C14—H14108.9
N2—Cu1—O1108.94 (12)N1—C1—C2122.1 (4)
C15—O3—Cu1127.3 (2)N1—C1—H1118.9
N1—C5—C4124.2 (3)C2—C1—H1119.0
N1—C5—C6115.7 (3)C11—C12—C4121.4 (4)
C4—C5—C6120.1 (3)C11—C12—H12119.3
Cu1—O5—H5A99 (2)C4—C12—H12119.3
Cu1—O5—H5B137 (3)C9—C8—C7119.6 (3)
H5A—O5—H5B111 (3)C9—C8—H8120.2
C10—N2—C6117.7 (3)C7—C8—H8120.2
C10—N2—Cu1129.8 (3)N2—C10—C9121.9 (4)
C6—N2—Cu1112.5 (2)N2—C10—H10119.0
C1—N1—C5117.1 (3)C9—C10—H10119.1
C1—N1—Cu1128.6 (3)N2—C6—C7124.1 (3)
C5—N1—Cu1114.1 (2)N2—C6—C5116.1 (3)
C8—C9—C10120.4 (4)C7—C6—C5119.8 (3)
C8—C9—H9119.8C6—C7—C8116.3 (3)
C10—C9—H9119.8C6—C7—C11118.9 (3)
O1—C13—O2125.7 (4)C8—C7—C11124.7 (3)
O1—C13—C14117.0 (3)C5—C4—C3116.3 (3)
O2—C13—C14117.3 (3)C5—C4—C12118.5 (3)
C15—C16—Cl3113.0 (3)C3—C4—C12125.2 (3)
C15—C16—Cl4112.4 (2)C3—C2—C1120.8 (3)
Cl3—C16—Cl4109.30 (19)C3—C2—H2119.6
C15—C16—H16107.3C1—C2—H2119.6
Cl3—C16—H16107.3C13—O1—Cu1144.6 (3)
Cl4—C16—H16107.3C2—C3—C4119.4 (3)
C12—C11—C7121.2 (4)C2—C3—H3120.3
C12—C11—H11119.4C4—C3—H3120.3
C7—C11—H11119.4
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z; (iii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2iv0.982.243.118 (5)149
O5—H5B···O2v0.85 (2)1.81 (2)2.654 (3)174 (3)
O5—H5A···O40.85 (2)1.86 (2)2.673 (4)159 (3)
Symmetry codes: (iv) x1, y, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C2HCl2O2)2(C12H8N2)(H2O)]
Mr517.62
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)8.2701 (8), 10.8883 (11), 12.0125 (12)
α, β, γ (°)67.439 (1), 77.585 (2), 73.776 (2)
V3)952.02 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.74
Crystal size (mm)0.32 × 0.25 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.606, 0.711
No. of measured, independent and
observed [I > 2σ(I)] reflections
5043, 3346, 2539
Rint0.064
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.106, 1.01
No. of reflections3346
No. of parameters261
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.51

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.982.243.118 (5)148.6
O5—H5B···O2ii0.85 (2)1.81 (2)2.654 (3)174 (3)
O5—H5A···O40.85 (2)1.86 (2)2.673 (4)159 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Postgraduate Foundation of Taishan University for financial support (grant No. Y07–2–15).

References

First citationLin, M. M., Wei, H. H. & Lee, G. H. (2001). Polyhedron, 20, 3057–3063.  Web of Science CSD CrossRef CAS Google Scholar
First citationMúdra, M., Moncol', J., Švorec, J., Melník, M., Lönnecke, P., Glowiak, T. & Kirmse, R. (2003). Inorg. Chem. Commun. 6, 1259–1265.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhu, L.-G. & Xiao, H.-P. (2006). Acta Cryst. E62, m2061–m2063.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds