organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl-5,7-bis­­(prop-2-en-1-yl­­oxy)-4H-chromen-4-one

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, bDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India, cDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, and dDepartment of Chemistry, Kandasamy Kandar College, Velur 638 182, India
*Correspondence e-mail: vembu57@yahoo.com

(Received 6 November 2008; accepted 25 November 2008; online 3 December 2008)

In the title compound, C21H18O4, tthe dihedral angle between the chromene ring system and the pendant phenyl ring is 6.1 (1)°. The crystal structure is stabilized by an intermolecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For the biological and pharmacological properties of benzopyrans and their derivatives, see Brooks (1998[Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.]); Hatakeyama et al. (1988[Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202-1204.]); Hyana & Saimoto (1987[Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.]); Tang et al. (2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]). For a detailed account of the importance of 4H-chromenes, see Liu et al. (2007[Liu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63, o90-o91.]); Wang, Fang et al. (2003[Wang, J.-F., Fang, M.-J., Huang, H.-Q., Li, G.-L., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1517-o1518.]); Wang, Zhang et al. (2003[Wang, J.-F., Zhang, Y.-J., Fang, M.-J., Huang, Y.-J., Wei, Z.-B., Zheng, Z.-H., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1244-o1245.]). For hydrogen-bonding inter­actions and motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, pp. 125-167. Amsterdam: Elsevier.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11-40. New York: Oxford University Press.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18O4

  • Mr = 334.35

  • Orthorhombic, P 21 21 21

  • a = 6.299 (2) Å

  • b = 15.798 (6) Å

  • c = 17.429 (6) Å

  • V = 1734.3 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.35 × 0.32 × 0.29 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Gottingen, Germany.]) Tmin = 0.969, Tmax = 0.975

  • 13979 measured reflections

  • 2055 independent reflections

  • 1793 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.098

  • S = 1.01

  • 2055 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯O11i 0.97 2.51 3.229 (4) 131
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chromenes (benzopyrans) and their derivatives have numerous biological and pharmacological properties (Tang et al., 2007) such as antisterility (Brooks, 1998) and anticancer activity (Hyana & Saimoto, 1987). In addition, polyfunctional chromene units are present in numerous natural products (Hatakeyama et al., 1988). 4H-chromenes are important synthons for some natural products (Liu et al., 2007). As a part of our structural investigations on 4H-chromene derivatives, the single-crystal X-ray diffraction study on the title compound was carried out.

The chromene ring is almost planar: The puckering amplitude of the chromene ring is 0.097 (3) Å. In the related chromene derivatives (Wang, Zhang et al., 2003; Wang, Fang et al., 2003), the chromene ring is also planar. In the title structure, the interplanar angle between the chromene ring and the 2-phenyl ring is 6.1 (1)° thereby indicating their almost coplanar arrangement (Fig. 1). The propenyloxy substituents at both C5 and C7 are coplanar with the chromene ring with the respective interplanar angles 1.7 (2)° and 8.8 (2)°.

The crystal structure is stabilized by the interplay of C–H···O and C–H···π interactions (Fig. 2, Table 1; Desiraju & Steiner, 1999; Desiraju, 1989). Each of C15–H15A···O12, C19–H19A···O16 and C25–H25···O1 interactions are involved in the S(5) motifs (Bernstein et al., 1995; Etter, 1990).

Related literature top

For the biological and pharmacological properties of benzopyrans and their derivatives, see Brooks (1998); Hatakeyama et al. (1988); Hyana & Saimoto (1987); Tang et al. (2007). For a detailed account of the importance of 4H-chromenes, see Liu et al. (2007); Wang, Fang et al. (2003); Wang, Zhang et al. (2003). For polyfunctional chromene units in natural products, see: Hatakeyema et al. (1988). For hydrogen-bonding interactions and motifs, see: Bernstein et al. (1995); Desiraju (1989); Desiraju & Steiner (1999); Etter (1990);

Experimental top

A suspension of chrysin (3.93 mmol, 1.00 g) and potassium carbonate (11.81 mmol, 1.64 g) in dimethyl formamide (10 ml) were added into a round bottom flask. The reaction mixture was heated to 383 K for 2–3 h. The reaction mixture was then cooled to 333 K and allyl bromide (15.74 mmol, 1.90 g) was slowly added to the reaction mixture with the help of a dropping funnel. The reaction mixture was maintained for 8–9 h at 333 K and monitored by high pressure liquid chromatography (HPLC). After completion of the reaction, the content was quenched with water and stirred for 30–45 min at 303 K. T he obtained crude solid was filtered and washed with plenty of water followed by methanol and dried under vacuum at 343 K. The compound was purified by column chromatography using ethyl acetate/n-hexane (1:1) as eluent. All highly pure column fractions were concentrated in a rota evaporator. The dried compound was dissolved in dichloromethane/hexane (1:1) mixture (10 ml). The clear solution was kept for a week and the resulting needle shaped crystals of average size 0.3 mm were washed with n-hexane. The crystals were dried over high vacuum at 343–348 K. Yield: 90%

Refinement top

In the absence of significant anomalous scattering effects, 1488 Friedel pairs have been merged. All the H-atoms were observed in the difference electron density map. However, they were situated into idealized positions with C–H = 0.93 and 0.97 Å for aryl and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule showing the displacement ellipsoids depicted at the 50% probability level for all non-H atoms. The hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing viewed down the c-axis. Dashed lines represent weak C–H···O interactions.
2-Phenyl-5,7-bis(prop-2-en-1-yloxy)-4H-chromen-4-one top
Crystal data top
C21H18O4Dx = 1.281 Mg m3
Mr = 334.35Melting point = 434–437 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 576 reflections
a = 6.299 (2) Åθ = 1.8–26.0°
b = 15.798 (6) ŵ = 0.09 mm1
c = 17.429 (6) ÅT = 293 K
V = 1734.3 (11) Å3Needle, colourless
Z = 40.35 × 0.32 × 0.29 mm
F(000) = 704
Data collection top
Bruker SMART APEX CCD
diffractometer
3543 independent reflections
Radiation source: fine-focus sealed tube1793 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 0.3 pixels mm-1θmax = 26.4°, θmin = 1.7°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
k = 1919
Tmin = 0.969, Tmax = 0.975l = 2120
13979 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.098H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.1512P]
where P = (Fo2 + 2Fc2)/3
2055 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.10 e Å3
0 restraintsΔρmin = 0.10 e Å3
72 constraints
Crystal data top
C21H18O4V = 1734.3 (11) Å3
Mr = 334.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.299 (2) ŵ = 0.09 mm1
b = 15.798 (6) ÅT = 293 K
c = 17.429 (6) Å0.35 × 0.32 × 0.29 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3543 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
1793 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.975Rint = 0.062
13979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.01Δρmax = 0.10 e Å3
2055 reflectionsΔρmin = 0.10 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4396 (4)1.06971 (12)0.13245 (11)0.0650 (6)
C20.5860 (6)1.0832 (2)0.0765 (2)0.0639 (8)
C30.5782 (6)1.0403 (2)0.0102 (2)0.0745 (9)
H30.67611.05410.02780.089*
C40.4277 (6)0.9746 (2)0.0056 (2)0.0696 (9)
C50.0891 (6)0.90891 (19)0.04852 (18)0.0608 (8)
C60.0584 (6)0.90372 (18)0.10630 (18)0.0622 (8)
H60.17280.86680.10200.075*
C70.0358 (6)0.95419 (19)0.17160 (18)0.0590 (8)
C80.1332 (5)1.00863 (19)0.17997 (18)0.0610 (9)
H80.14951.04140.22390.073*
C90.2778 (5)1.01254 (18)0.12026 (18)0.0557 (8)
C100.2641 (5)0.96435 (18)0.05336 (17)0.0559 (8)
O110.4392 (5)0.93093 (17)0.06419 (14)0.1049 (9)
O120.0781 (4)0.86278 (13)0.01724 (12)0.0748 (6)
C130.0923 (6)0.8053 (2)0.02818 (18)0.0778 (10)
H13A0.22670.83530.02790.093*
H13B0.09420.76350.01250.093*
C140.0582 (8)0.7632 (2)0.1044 (2)0.0860 (11)
H140.15790.72320.11960.103*
C150.0989 (7)0.7778 (2)0.15084 (19)0.0906 (12)
H15A0.20210.81730.13780.109*
H15B0.10800.74870.19710.109*
O160.1951 (4)0.94477 (13)0.22389 (13)0.0729 (7)
C170.1985 (6)1.0013 (2)0.28825 (18)0.0773 (11)
H17A0.19291.05940.27040.093*
H17B0.07530.99120.32040.093*
C180.3953 (7)0.9877 (2)0.3335 (2)0.0815 (11)
H180.42061.02550.37330.098*
C190.5312 (6)0.9305 (3)0.3237 (2)0.1011 (13)
H19A0.51360.89100.28460.121*
H19B0.64960.92770.35550.121*
C200.7460 (6)1.1464 (2)0.0988 (2)0.0670 (9)
C210.9252 (7)1.1595 (2)0.0537 (2)0.0818 (11)
H210.94251.12920.00840.098*
C221.0767 (7)1.2170 (3)0.0757 (3)0.0980 (13)
H221.19611.22530.04520.118*
C231.0540 (8)1.2625 (3)0.1423 (3)0.1075 (15)
H231.15721.30150.15680.129*
C240.8787 (8)1.2503 (3)0.1873 (3)0.1096 (14)
H240.86341.28060.23270.131*
C250.7248 (6)1.1932 (2)0.1657 (2)0.0887 (11)
H250.60521.18590.19620.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0626 (14)0.0716 (14)0.0608 (14)0.0033 (13)0.0010 (14)0.0035 (11)
C20.059 (2)0.066 (2)0.067 (2)0.008 (2)0.003 (2)0.0157 (18)
C30.071 (2)0.084 (2)0.069 (2)0.004 (2)0.016 (2)0.007 (2)
C40.067 (2)0.079 (2)0.063 (2)0.003 (2)0.006 (2)0.0007 (19)
C50.072 (2)0.0608 (19)0.050 (2)0.007 (2)0.003 (2)0.0017 (16)
C60.066 (2)0.0620 (18)0.058 (2)0.0021 (18)0.003 (2)0.0036 (17)
C70.062 (2)0.0673 (19)0.048 (2)0.0043 (19)0.0072 (19)0.0059 (17)
C80.067 (2)0.0646 (19)0.0509 (19)0.0001 (18)0.001 (2)0.0015 (16)
C90.054 (2)0.0572 (17)0.056 (2)0.0028 (18)0.0023 (19)0.0097 (16)
C100.059 (2)0.0577 (17)0.051 (2)0.0056 (19)0.0027 (18)0.0042 (15)
O110.107 (2)0.128 (2)0.0792 (18)0.029 (2)0.0327 (17)0.0308 (16)
O120.0831 (16)0.0798 (14)0.0614 (15)0.0099 (15)0.0049 (14)0.0105 (13)
C130.086 (3)0.076 (2)0.071 (2)0.013 (2)0.002 (2)0.0011 (19)
C140.110 (3)0.078 (2)0.070 (3)0.008 (3)0.013 (3)0.010 (2)
C150.118 (3)0.094 (3)0.060 (2)0.011 (3)0.004 (3)0.007 (2)
O160.0753 (17)0.0844 (14)0.0591 (14)0.0090 (13)0.0117 (13)0.0065 (12)
C170.088 (3)0.088 (2)0.057 (2)0.004 (2)0.010 (2)0.0027 (19)
C180.092 (3)0.092 (3)0.060 (2)0.012 (3)0.000 (3)0.003 (2)
C190.082 (3)0.125 (3)0.096 (3)0.003 (3)0.010 (3)0.010 (3)
C200.061 (2)0.0622 (19)0.078 (3)0.002 (2)0.004 (2)0.0161 (19)
C210.070 (3)0.084 (2)0.092 (3)0.000 (2)0.002 (3)0.028 (2)
C220.072 (3)0.095 (3)0.127 (4)0.012 (3)0.002 (3)0.044 (3)
C230.092 (3)0.083 (3)0.147 (5)0.021 (3)0.015 (4)0.012 (3)
C240.096 (3)0.100 (3)0.132 (4)0.022 (3)0.000 (3)0.019 (3)
C250.077 (3)0.082 (2)0.107 (3)0.010 (2)0.005 (3)0.010 (2)
Geometric parameters (Å, º) top
O1—C21.360 (4)C14—H140.9300
O1—C91.378 (3)C15—H15A0.9300
C2—C31.340 (4)C15—H15B0.9300
C2—C201.471 (5)O16—C171.434 (3)
C3—C41.433 (5)C17—C181.485 (5)
C3—H30.9300C17—H17A0.9700
C4—O111.233 (3)C17—H17B0.9700
C4—C101.465 (4)C18—C191.256 (4)
C5—O121.360 (3)C18—H180.9300
C5—C61.373 (4)C19—H19A0.9300
C5—C101.410 (4)C19—H19B0.9300
C6—C71.397 (4)C20—C251.387 (4)
C6—H60.9300C20—C211.391 (5)
C7—O161.364 (4)C21—C221.373 (5)
C7—C81.376 (4)C21—H210.9300
C8—C91.384 (4)C22—C231.373 (5)
C8—H80.9300C22—H220.9300
C9—C101.395 (4)C23—C241.368 (6)
O12—C131.419 (4)C23—H230.9300
C13—C141.501 (4)C24—C251.377 (5)
C13—H13A0.9700C24—H240.9300
C13—H13B0.9700C25—H250.9300
C14—C151.299 (5)
C2—O1—C9119.6 (3)C15—C14—H14117.2
C3—C2—O1121.0 (3)C13—C14—H14117.2
C3—C2—C20126.6 (4)C14—C15—H15A120.0
O1—C2—C20112.4 (3)C14—C15—H15B120.0
C2—C3—C4123.8 (3)H15A—C15—H15B120.0
C2—C3—H3118.1C7—O16—C17117.8 (3)
C4—C3—H3118.1O16—C17—C18109.7 (3)
O11—C4—C3121.7 (3)O16—C17—H17A109.7
O11—C4—C10124.1 (3)C18—C17—H17A109.7
C3—C4—C10114.2 (3)O16—C17—H17B109.7
O12—C5—C6123.5 (3)C18—C17—H17B109.7
O12—C5—C10115.0 (3)H17A—C17—H17B108.2
C6—C5—C10121.5 (3)C19—C18—C17126.9 (4)
C5—C6—C7119.6 (3)C19—C18—H18116.5
C5—C6—H6120.2C17—C18—H18116.5
C7—C6—H6120.2C18—C19—H19A120.0
O16—C7—C8124.5 (3)C18—C19—H19B120.0
O16—C7—C6114.0 (3)H19A—C19—H19B120.0
C8—C7—C6121.5 (3)C25—C20—C21118.3 (4)
C7—C8—C9117.2 (3)C25—C20—C2121.2 (3)
C7—C8—H8121.4C21—C20—C2120.5 (3)
C9—C8—H8121.4C22—C21—C20120.3 (4)
O1—C9—C8113.6 (3)C22—C21—H21119.8
O1—C9—C10122.1 (3)C20—C21—H21119.8
C8—C9—C10124.3 (3)C21—C22—C23120.7 (4)
C9—C10—C5115.9 (3)C21—C22—H22119.7
C9—C10—C4118.9 (3)C23—C22—H22119.7
C5—C10—C4125.2 (3)C24—C23—C22119.7 (4)
C5—O12—C13119.6 (3)C24—C23—H23120.2
O12—C13—C14107.1 (3)C22—C23—H23120.2
O12—C13—H13A110.3C23—C24—C25120.2 (4)
C14—C13—H13A110.3C23—C24—H24119.9
O12—C13—H13B110.3C25—C24—H24119.9
C14—C13—H13B110.3C24—C25—C20120.8 (4)
H13A—C13—H13B108.5C24—C25—H25119.6
C15—C14—C13125.6 (4)C20—C25—H25119.6
C9—O1—C2—C31.5 (4)O11—C4—C10—C9174.5 (3)
C9—O1—C2—C20179.6 (2)C3—C4—C10—C95.1 (4)
O1—C2—C3—C44.0 (5)O11—C4—C10—C55.6 (5)
C20—C2—C3—C4174.8 (3)C3—C4—C10—C5174.8 (3)
C2—C3—C4—O11172.6 (3)C6—C5—O12—C130.4 (4)
C2—C3—C4—C107.1 (5)C10—C5—O12—C13179.7 (3)
O12—C5—C6—C7179.3 (3)C5—O12—C13—C14178.8 (3)
C10—C5—C6—C70.1 (5)O12—C13—C14—C150.3 (5)
C5—C6—C7—O16178.4 (3)C8—C7—O16—C176.5 (4)
C5—C6—C7—C80.8 (5)C6—C7—O16—C17172.7 (3)
O16—C7—C8—C9177.9 (3)C7—O16—C17—C18173.6 (3)
C6—C7—C8—C91.2 (4)O16—C17—C18—C196.9 (5)
C2—O1—C9—C8176.4 (2)C3—C2—C20—C25173.0 (3)
C2—O1—C9—C103.2 (4)O1—C2—C20—C258.1 (4)
C7—C8—C9—O1178.8 (2)C3—C2—C20—C218.2 (5)
C7—C8—C9—C100.9 (4)O1—C2—C20—C21170.7 (3)
O1—C9—C10—C5179.5 (2)C25—C20—C21—C220.4 (5)
C8—C9—C10—C50.1 (4)C2—C20—C21—C22178.4 (3)
O1—C9—C10—C40.3 (4)C20—C21—C22—C230.1 (5)
C8—C9—C10—C4179.9 (3)C21—C22—C23—C240.2 (6)
O12—C5—C10—C9179.7 (3)C22—C23—C24—C250.6 (7)
C6—C5—C10—C90.4 (4)C23—C24—C25—C201.0 (6)
O12—C5—C10—C40.1 (4)C21—C20—C25—C240.9 (5)
C6—C5—C10—C4179.4 (3)C2—C20—C25—C24178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O120.932.352.691 (4)101
C19—H19A···O160.932.422.749 (5)101
C25—H25···O10.932.392.714 (4)101
C17—H17B···O11i0.972.513.229 (4)131
C14—H14···Cg1ii0.933.224.081154
Symmetry codes: (i) x+1/2, y+2, z+1/2; (ii) x1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H18O4
Mr334.35
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.299 (2), 15.798 (6), 17.429 (6)
V3)1734.3 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.32 × 0.29
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.969, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
13979, 3543, 1793
Rint0.062
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.098, 1.01
No. of reflections2055
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.10

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O120.932.352.691 (4)101.0
C19—H19A···O160.932.422.749 (5)100.6
C25—H25···O10.932.392.714 (4)100.5
C17—H17B···O11i0.972.513.229 (4)130.9
C14—H14···Cg1ii0.933.2224.081154.42
Symmetry codes: (i) x+1/2, y+2, z+1/2; (ii) x1, y+3/2, z+1/2.
 

Acknowledgements

AN thanks Dr S. Kannan and Dr B. S. Krishnamurthy, School of Chemistry, Bharathidasan University, Tiruchirappalli, and Organica Aromatics Pvt Ltd Bangalore, India, for providing laboratory facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrooks, G. T. (1998). Pestic. Sci. 22, 41–50.  CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, pp. 125–167. Amsterdam: Elsevier.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11–40. New York: Oxford University Press.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202–1204.  CrossRef Web of Science Google Scholar
First citationHyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.  Google Scholar
First citationLiu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63, o90–o91.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-F., Fang, M.-J., Huang, H.-Q., Li, G.-L., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1517–o1518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, J.-F., Zhang, Y.-J., Fang, M.-J., Huang, Y.-J., Wei, Z.-B., Zheng, Z.-H., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1244–o1245.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds