organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-Acetyl-5-iso­butyl-5-(2-p-tolyl­prop­yl)-4,5-di­hydro-1,3,4-thia­diazol-2-yl]acetamide ethyl acetate hemisolvate

aLaboratoire de Chimie des Substances Naturelles, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, bInstituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28002 Madrid, Spain, cLaboratoire de Chimie de Coordination, Unité Matériaux, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and dLaboratoire des Sciences des Matériaux, Département de Physique, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco
*Correspondence e-mail: nouzha@ucam.ac.ma

(Received 28 October 2008; accepted 27 November 2008; online 3 December 2008)

The racemic title compound, a new terpenoid, C20H29N3O2S·0.5C4H8O2, was synthesized from Cedrus Atlantica essential oil. The compound crystallizes with a disordered ethyl acetate solvent mol­ecule. The thia­diazole ring is almost planar, with a maximum deviation from the mean plane of 0.015 (2) Å for the C atom connected to the isobutyl group and has a puckering amplitude of 0.026 (2) Å. The dihedral angle between the benzene and thia­diazole rings is 18.32 (8)°. The crystal packing involves inter­molecular N—H⋯O hydrogen bonds.

Related literature

For 1,3,4-thia­diazole derivatives and their biological activity, see: Abdou et al. (1991[Abdou, N. A., Soliman, I. N. & Sier Abou, A. H. (1991). Bull. Facpharm. (Cairo Univ.), 28, 29.]); Sakthivel et al. (2008[Sakthivel, P., Joseph, P. S., Muthiah, P. T., Sethusankar, K. & Thennarasu, S. (2008). Acta Cryst. E64, o216.]); Tehranchian et al. (2005[Tehranchian, S., Akbarzadeh, T., Fazeli, R. M., Jamifar, H. & Shafiee, A. (2005). Bioorg. Med. Chem. Lett. 15, 1023-1025.]); Wang et al. (1999[Wang, Y.-G., Cao, L., Yang, J., Ye, W.-F., Zhou, Q.-C. & Lu, B.-X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.], 2004[Wang, Y.-G., Wang, Z. Y., Zhao, X. Y. & Song, X. J. (2004). Chin. J. Org. Chem. 24, 1606-1609.]). For preparative methods, see: Beatriz et al., 2002[Beatriz, N. B., Albertina, G. M., Miriam, M. A., Angel, A. L., Graciela, Y. M. & Norma, B. D. (2002). Arkivok, x, 14-23.]; Mohammed et al. (2008[Mohammed, T., Mazoir, N., Daran, J.-C., Berraho, M. & Benharref, A. (2008). Acta Cryst. E64, o610-o611.]); For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H29N3O2S·0.5C4H8O2

  • Mr = 419.57

  • Monoclinic, P 21 /n

  • a = 7.8713 (3) Å

  • b = 12.7587 (5) Å

  • c = 22.9688 (9) Å

  • β = 90.937 (2)°

  • V = 2306.39 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 295 K

  • 0.5 × 0.4 × 0.3 mm

Data collection
  • Bruker X8 APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 27541 measured reflections

  • 7243 independent reflections

  • 6688 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.143

  • S = 1.23

  • 7243 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.95 2.812 (2) 179
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1,3,4-Thiadiazole derivatives (Sakthivel et al., 2008) are associated with diverse activities: fungicidal (Abdou et al., 1991), pesticidal (Wang et al., 1999, 2004) and bactericidal (Tehranchian et al., 2005) properties.

As part of our ongoing valorization of Cedrus species native to the Medium-Atlas Mountains of Morocco, we have investigated the crystal structure of semi-synthetic terpenoid derivatives obtained through chemical modifications of 1-(4-methylcyclohex-3-enyl) ethanone (I). The latter is isolated from Cedrus Atlantica essential oil. The aromatization of (I) followed by condensation with thiosemicarbazide (Beatriz et al., 2002; Mohammed et al., 2008) ending with treatment by acetic anhydride in the presence of pyridine yielded the compound diastereoisomers in high stereoselectivity.

The title compound molecular structure is shown in figure 1. The solvant molecule is located on the inversion site and disordered. The thiadiazole ring is almost planar with a maximum deviation from the mean plane of 0.015 (2)Å for the C atoms connected to the isobutyl group and a puckering amplitude of 0.026 (2)Å (Cremer & Pople, 1975). Hydrogen bonds are listed in table 1. Investigation of the crystal packing reveals an intermolecular N1—H1···O2 hydrogen bonding generating parallel chains to b axis as shown in figure 2.

Related literature top

For 1,3,4-thiadiazole derivatives and their biological activity, see: Abdou et al. (1991); Sakthivel et al. (2008); Tehranchian et al. (2005); Wang et al. (1999,2004). For preparative methods, see: Beatriz et al., 2002; Mohammed et al. (2008); For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of 1-(4-methylcyclohex-3-enyl) ethanone (1 g, 4.5 mmol) and Pd/C (10%) were heated at 150°C during 12 h. The product obtained was treated with equimolecular quantity of thiosemicarbazide and several drops of HCl (cc) were added. The reactional mixture was heated at reflux in ethanol for 5 h and then evaporated under reduced pressure and the residue obtained was purified on silica gel column using hexane-ethyl acetate (95:5) as an eluent. 0.25 mmol of the thiosemicarbazone obtained was dissolved in 2 ml of pyridine and 2 ml of acetic anhydride. The mixture was heated on a water bath during 1 h. The resulting residue was concentrated in vacuo and chromatographied on silica gel column with hexane-ethyl acetate (90:10) as an eluent. Suitable crystals were obtained by evaporation of ethyl acetate solution at 277 K.

Refinement top

The H atoms linked to the C and N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.96Å (methyl), 0.97 Å (methylene), 0.98Å (methine) and N—H= 0.86 Å with Uiso(H) =1.2Ueq (aromatic, methylene, methine and NH) or Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure shown with the atom-labelling scheme. Thermal ellipsoids are drawn at the 30% probability displacement. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. : The crystal packing showing the molecules connected by N–H···O hydrogen bondings (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
N-[4-Acetyl-5-isobutyl-5-(2-p-tolylpropyl)-4,5-dihydro-1,3,4-thiadiazol- 2-yl]acetamide ethyl acetate hemisolvate top
Crystal data top
C20H29N3O2S·0.5C4H8O2F(000) = 904
Mr = 419.57Dx = 1.208 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 13322 reflections
a = 7.8713 (3) Åθ = 2.6–31.5°
b = 12.7587 (5) ŵ = 0.17 mm1
c = 22.9688 (9) ÅT = 295 K
β = 90.937 (2)°Prism, colourless
V = 2306.39 (16) Å30.5 × 0.4 × 0.3 mm
Z = 4
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
6688 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 32.0°, θmin = 1.8°
ϕ and ω scansh = 1111
27541 measured reflectionsk = 1618
7243 independent reflectionsl = 3330
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0435P)2 + 1.5861P]
where P = (Fo2 + 2Fc2)/3
7243 reflections(Δ/σ)max = 0.006
298 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C20H29N3O2S·0.5C4H8O2V = 2306.39 (16) Å3
Mr = 419.57Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8713 (3) ŵ = 0.17 mm1
b = 12.7587 (5) ÅT = 295 K
c = 22.9688 (9) Å0.5 × 0.4 × 0.3 mm
β = 90.937 (2)°
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
6688 reflections with I > 2σ(I)
27541 measured reflectionsRint = 0.037
7243 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.23Δρmax = 0.48 e Å3
7243 reflectionsΔρmin = 0.35 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1'0.5624 (2)0.56734 (16)0.09954 (8)0.0284 (4)
H1'0.61300.52140.07360.034*
C20.6060 (2)0.80786 (11)0.33245 (7)0.0160 (3)
C2'0.5345 (2)0.53523 (13)0.15666 (8)0.0231 (3)
H2'0.56710.46810.16800.028*
C30.4619 (2)0.92243 (12)0.40282 (7)0.0189 (3)
C3'0.4581 (2)0.60205 (12)0.19769 (7)0.0198 (3)
C4'0.4129 (2)0.70239 (13)0.17921 (8)0.0261 (4)
H4'0.36360.74880.20520.031*
C40.4186 (2)1.03550 (13)0.41486 (8)0.0247 (3)
H410.39531.07100.37880.037*
H420.51271.06870.43450.037*
H430.32021.03870.43890.037*
C50.6899 (2)0.61643 (11)0.31921 (7)0.0163 (3)
C5'0.4414 (3)0.73375 (16)0.12186 (9)0.0334 (4)
H5'0.41000.80110.11050.040*
C6'0.5158 (3)0.66697 (17)0.08093 (9)0.0316 (4)
C60.5755 (2)0.53023 (11)0.29360 (7)0.0168 (3)
H610.64390.48690.26840.020*
H620.53820.48620.32540.020*
C7'0.5422 (3)0.6998 (2)0.01806 (10)0.0496 (6)
H71'0.44990.67410.00580.074*
H72'0.64720.67110.00460.074*
H73'0.54610.77490.01570.074*
C70.4196 (2)0.56528 (12)0.25922 (7)0.0199 (3)
H70.36860.62410.28010.024*
C80.2898 (2)0.47506 (15)0.25783 (9)0.0280 (4)
H810.26460.45440.29690.042*
H820.33630.41650.23720.042*
H830.18740.49800.23840.042*
C90.8420 (2)0.56432 (12)0.34917 (7)0.0203 (3)
H910.79950.50740.37280.024*
H920.91130.53320.31920.024*
C100.9575 (2)0.63119 (15)0.38756 (8)0.0260 (4)
H100.88830.66400.41760.031*
C111.0522 (2)0.71819 (16)0.35485 (11)0.0358 (5)
H1110.97210.76950.34100.054*
H1121.11050.68830.32240.054*
H1131.13300.75100.38070.054*
C121.0842 (3)0.55835 (18)0.41726 (9)0.0389 (5)
H1231.02430.50620.43900.058*
H1211.15630.59800.44320.058*
H1221.15220.52470.38840.058*
C410.8340 (2)0.67172 (12)0.22639 (7)0.0182 (3)
C420.8709 (3)0.75771 (13)0.18334 (8)0.0259 (4)
H4230.77610.80500.18110.039*
H4210.88940.72760.14570.039*
H4220.97070.79530.19580.039*
O10.42441 (18)0.85144 (10)0.43626 (6)0.0281 (3)
O20.88630 (16)0.58120 (9)0.21879 (5)0.0211 (2)
N10.54896 (18)0.90516 (10)0.35115 (6)0.0174 (3)
H10.56860.95850.32940.021*
N30.69220 (17)0.80070 (9)0.28451 (6)0.0169 (3)
N40.74060 (18)0.69617 (9)0.27477 (6)0.0167 (3)
S10.56524 (5)0.69427 (3)0.372883 (17)0.01838 (10)
C1"0.4182 (8)0.3287 (4)0.4750 (2)0.0377 (11)0.50
H13"0.40990.30380.43570.057*0.50
H12"0.31150.31840.49390.057*0.50
H11"0.50550.29060.49560.057*0.50
C2"0.4610 (5)0.4425 (3)0.47503 (16)0.0282 (7)0.50
C3"0.4243 (5)0.6083 (3)0.52319 (18)0.0325 (8)0.50
H32"0.34040.63960.54830.039*0.50
H31"0.40710.63670.48440.039*0.50
C4"0.5952 (7)0.6366 (4)0.5446 (3)0.0398 (11)0.50
H42"0.61420.60660.58250.060*0.50
H43"0.60460.71150.54700.060*0.50
H41"0.67840.61010.51820.060*0.50
O1'0.5439 (5)0.4867 (3)0.43748 (15)0.0456 (8)0.50
O2'0.3987 (4)0.4949 (2)0.52147 (12)0.0326 (6)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1'0.0218 (9)0.0388 (10)0.0247 (9)0.0006 (7)0.0002 (7)0.0008 (7)
C20.0157 (7)0.0133 (6)0.0190 (7)0.0004 (5)0.0000 (5)0.0009 (5)
C2'0.0214 (8)0.0239 (7)0.0239 (8)0.0030 (6)0.0013 (6)0.0002 (6)
C30.0168 (7)0.0191 (7)0.0209 (7)0.0015 (5)0.0023 (6)0.0008 (5)
C3'0.0163 (7)0.0189 (7)0.0241 (8)0.0009 (5)0.0036 (6)0.0012 (6)
C4'0.0244 (9)0.0213 (7)0.0324 (9)0.0032 (6)0.0063 (7)0.0017 (6)
C40.0287 (9)0.0182 (7)0.0274 (9)0.0056 (6)0.0075 (7)0.0016 (6)
C50.0182 (7)0.0141 (6)0.0167 (7)0.0015 (5)0.0033 (5)0.0001 (5)
C5'0.0314 (10)0.0288 (9)0.0396 (11)0.0015 (7)0.0097 (8)0.0128 (8)
C6'0.0237 (9)0.0410 (10)0.0300 (10)0.0049 (8)0.0027 (7)0.0118 (8)
C60.0168 (7)0.0140 (6)0.0197 (7)0.0003 (5)0.0030 (6)0.0012 (5)
C7'0.0455 (14)0.0672 (17)0.0360 (12)0.0024 (12)0.0003 (10)0.0221 (11)
C70.0163 (7)0.0200 (7)0.0236 (8)0.0021 (6)0.0019 (6)0.0017 (6)
C80.0194 (8)0.0341 (9)0.0304 (9)0.0049 (7)0.0026 (7)0.0002 (7)
C90.0213 (8)0.0194 (7)0.0201 (7)0.0027 (6)0.0006 (6)0.0008 (5)
C100.0198 (8)0.0319 (9)0.0263 (9)0.0054 (7)0.0023 (7)0.0096 (7)
C110.0186 (9)0.0334 (9)0.0552 (13)0.0012 (7)0.0059 (9)0.0046 (9)
C120.0381 (12)0.0469 (12)0.0312 (10)0.0131 (9)0.0140 (9)0.0090 (9)
C410.0189 (7)0.0165 (6)0.0192 (7)0.0032 (5)0.0020 (6)0.0025 (5)
C420.0341 (10)0.0189 (7)0.0252 (8)0.0031 (6)0.0116 (7)0.0002 (6)
O10.0367 (8)0.0199 (5)0.0280 (7)0.0030 (5)0.0130 (6)0.0025 (5)
O20.0224 (6)0.0179 (5)0.0231 (6)0.0007 (4)0.0039 (5)0.0040 (4)
N10.0207 (7)0.0137 (5)0.0179 (6)0.0020 (5)0.0031 (5)0.0003 (4)
N30.0182 (6)0.0126 (5)0.0200 (6)0.0002 (5)0.0020 (5)0.0003 (4)
N40.0202 (6)0.0126 (5)0.0175 (6)0.0004 (5)0.0037 (5)0.0007 (4)
S10.0229 (2)0.01389 (16)0.01860 (18)0.00144 (13)0.00611 (14)0.00131 (12)
C1"0.057 (3)0.029 (2)0.027 (2)0.001 (2)0.001 (2)0.0012 (17)
C2"0.0284 (19)0.0352 (18)0.0210 (17)0.0066 (15)0.0007 (14)0.0079 (14)
C3"0.033 (2)0.0322 (18)0.032 (2)0.0021 (16)0.0019 (16)0.0023 (15)
C4"0.031 (2)0.039 (3)0.048 (3)0.002 (2)0.006 (2)0.000 (2)
O1'0.063 (2)0.0384 (16)0.0367 (18)0.0035 (15)0.0194 (16)0.0102 (13)
O2'0.0443 (17)0.0310 (13)0.0225 (13)0.0037 (12)0.0010 (12)0.0033 (10)
Geometric parameters (Å, º) top
C1'—C6'1.389 (3)C8—H830.9600
C1'—C2'1.395 (3)C9—C101.519 (2)
C1'—H1'0.9300C9—H910.9700
C2—N31.306 (2)C9—H920.9700
C2—N11.3904 (19)C10—C121.517 (3)
C2—S11.7537 (15)C10—C111.540 (3)
C2'—C3'1.413 (2)C10—H100.9800
C2'—H2'0.9300C11—H1110.9600
C3—O11.227 (2)C11—H1120.9600
C3—N11.398 (2)C11—H1130.9600
C3—C41.509 (2)C12—H1230.9600
C3'—C4'1.393 (2)C12—H1210.9600
C3'—C71.524 (2)C12—H1220.9600
C4'—C5'1.398 (3)C41—O21.2394 (18)
C4'—H4'0.9300C41—N41.378 (2)
C4—H410.9600C41—C421.508 (2)
C4—H420.9600C42—H4230.9600
C4—H430.9600C42—H4210.9600
C5—N41.4998 (19)C42—H4220.9600
C5—C91.524 (2)N1—H10.8600
C5—C61.533 (2)N3—N41.4058 (17)
C5—S11.8732 (15)C1"—C2"1.490 (6)
C5'—C6'1.404 (3)C1"—H13"0.9600
C5'—H5'0.9300C1"—H12"0.9600
C6'—C7'1.521 (3)C1"—H11"0.9600
C6—C71.516 (2)C2"—O1'1.227 (5)
C6—H610.9700C2"—O2'1.358 (5)
C6—H620.9700C3"—O2'1.461 (5)
C7'—H71'0.9600C3"—C4"1.470 (7)
C7'—H72'0.9600C3"—H32"0.9700
C7'—H73'0.9600C3"—H31"0.9700
C7—C81.539 (2)C4"—H42"0.9600
C7—H70.9800C4"—H43"0.9600
C8—H810.9600C4"—H41"0.9600
C8—H820.9600
C6'—C1'—C2'120.88 (18)H81—C8—H82109.5
C6'—C1'—H1'119.6C7—C8—H83109.5
C2'—C1'—H1'119.6H81—C8—H83109.5
N3—C2—N1119.84 (13)H82—C8—H83109.5
N3—C2—S1119.38 (11)C10—C9—C5118.40 (13)
N1—C2—S1120.77 (12)C10—C9—H91107.7
C1'—C2'—C3'121.70 (16)C5—C9—H91107.7
C1'—C2'—H2'119.2C10—C9—H92107.7
C3'—C2'—H2'119.2C5—C9—H92107.7
O1—C3—N1122.80 (14)H91—C9—H92107.1
O1—C3—C4122.25 (15)C12—C10—C9107.44 (15)
N1—C3—C4114.95 (14)C12—C10—C11109.96 (17)
C4'—C3'—C2'117.43 (16)C9—C10—C11114.31 (16)
C4'—C3'—C7120.79 (16)C12—C10—H10108.3
C2'—C3'—C7121.74 (14)C9—C10—H10108.3
C3'—C4'—C5'120.40 (18)C11—C10—H10108.3
C3'—C4'—H4'119.8C10—C11—H111109.5
C5'—C4'—H4'119.8C10—C11—H112109.5
C3—C4—H41109.5H111—C11—H112109.5
C3—C4—H42109.5C10—C11—H113109.5
H41—C4—H42109.5H111—C11—H113109.5
C3—C4—H43109.5H112—C11—H113109.5
H41—C4—H43109.5C10—C12—H123109.5
H42—C4—H43109.5C10—C12—H121109.5
N4—C5—C9112.80 (13)H123—C12—H121109.5
N4—C5—C6112.75 (12)C10—C12—H122109.5
C9—C5—C6108.21 (12)H123—C12—H122109.5
N4—C5—S1103.67 (9)H121—C12—H122109.5
C9—C5—S1110.51 (11)O2—C41—N4120.49 (14)
C6—C5—S1108.79 (11)O2—C41—C42121.15 (15)
C4'—C5'—C6'122.16 (17)N4—C41—C42118.36 (13)
C4'—C5'—H5'118.9C41—C42—H423109.5
C6'—C5'—H5'118.9C41—C42—H421109.5
C1'—C6'—C5'117.43 (18)H423—C42—H421109.5
C1'—C6'—C7'120.3 (2)C41—C42—H422109.5
C5'—C6'—C7'122.3 (2)H423—C42—H422109.5
C7—C6—C5116.99 (12)H421—C42—H422109.5
C7—C6—H61108.1C2—N1—C3124.63 (13)
C5—C6—H61108.1C2—N1—H1117.7
C7—C6—H62108.1C3—N1—H1117.7
C5—C6—H62108.1C2—N3—N4110.27 (12)
H61—C6—H62107.3C41—N4—N3119.50 (12)
C6'—C7'—H71'109.5C41—N4—C5123.13 (12)
C6'—C7'—H72'109.5N3—N4—C5117.36 (12)
H71'—C7'—H72'109.5C2—S1—C589.27 (7)
C6'—C7'—H73'109.5O1'—C2"—O2'121.9 (4)
H71'—C7'—H73'109.5O1'—C2"—C1"124.8 (4)
H72'—C7'—H73'109.5O2'—C2"—C1"113.3 (4)
C6—C7—C3'113.72 (14)O2'—C3"—C4"112.2 (4)
C6—C7—C8108.77 (13)O2'—C3"—H32"109.2
C3'—C7—C8110.65 (14)C4"—C3"—H32"109.2
C6—C7—H7107.8O2'—C3"—H31"109.2
C3'—C7—H7107.8C4"—C3"—H31"109.2
C8—C7—H7107.8H32"—C3"—H31"107.9
C7—C8—H81109.5C2"—O2'—C3"117.3 (3)
C7—C8—H82109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.952.812 (2)179
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H29N3O2S·0.5C4H8O2
Mr419.57
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.8713 (3), 12.7587 (5), 22.9688 (9)
β (°) 90.937 (2)
V3)2306.39 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerBruker X8 APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
27541, 7243, 6688
Rint0.037
(sin θ/λ)max1)0.745
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.143, 1.23
No. of reflections7243
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.35

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.952.812 (2)179
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank Professor Jean-Claude Daran, Laboratoire de Chimie de Coordination, Toulouse, France, for his fruitful help.

References

First citationAbdou, N. A., Soliman, I. N. & Sier Abou, A. H. (1991). Bull. Facpharm. (Cairo Univ.), 28, 29.  Google Scholar
First citationBeatriz, N. B., Albertina, G. M., Miriam, M. A., Angel, A. L., Graciela, Y. M. & Norma, B. D. (2002). Arkivok, x, 14–23.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMohammed, T., Mazoir, N., Daran, J.-C., Berraho, M. & Benharref, A. (2008). Acta Cryst. E64, o610–o611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSakthivel, P., Joseph, P. S., Muthiah, P. T., Sethusankar, K. & Thennarasu, S. (2008). Acta Cryst. E64, o216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTehranchian, S., Akbarzadeh, T., Fazeli, R. M., Jamifar, H. & Shafiee, A. (2005). Bioorg. Med. Chem. Lett. 15, 1023–1025.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, Y.-G., Cao, L., Yang, J., Ye, W.-F., Zhou, Q.-C. & Lu, B.-X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar
First citationWang, Y.-G., Wang, Z. Y., Zhao, X. Y. & Song, X. J. (2004). Chin. J. Org. Chem. 24, 1606–1609.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds