organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,6-Di­chloro­benzo­yl)-3-(3,5-di­chloro­phen­yl)thio­urea

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: aminbadshah@yahoo.com

(Received 2 December 2008; accepted 15 December 2008; online 20 December 2008)

The crystal structure of the title compound, C14H8Cl4N2OS, is composed of discrete mol­ecules with bond lengths and angles quite typical for thio­urea compounds of this class. The plane containing the central SONNCC atom set subtends a dihedral angle of 31.47 (3)° with the benzene ring. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular conformation and the mol­ecules form centrosymmetric dimers via inter­molecular N—H⋯S hydrogen bonds.

Related literature

For general background, see: Upadlgaya & Srivastava (1982[Upadlgaya, J. S. & Srivastava, P. K. (1982). J. Indian Chem. Soc. 59, 767-769.]); Wegner et al. (1986[Wegner, P., Hans, R., Frank, H. & Joppien, H. (1986). Eur. Patent No. 190 611.]); Krishnamurthy et al. (1999[Krishnamurthy, R., Govindaraghavan, S. & Narayanasamy, J. (1999). Pestic. Sci. 52, 145-151.]). For related structures, see: Khawar Rauf et al. (2006a[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o3859-o3861.], 2007[Khawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o2665-o2666.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For bond lengths and angles in N,N′-disubstituted thio­urea compounds, see: Arslan et al. (2004[Arslan, H., Flörke, U. & Külcü, N. (2004). Turk. J. Chem. 28, 673-678.]); Khawar Rauf et al. (2006b[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o4296-o4298.]); Yamin & Yusof, (2003[Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151-o152.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8Cl4N2OS

  • Mr = 394.08

  • Monoclinic, P 21 /c

  • a = 14.7737 (13) Å

  • b = 10.3744 (6) Å

  • c = 10.6935 (11) Å

  • β = 97.250 (7)°

  • V = 1625.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 173 (2) K

  • 0.42 × 0.38 × 0.21 mm

Data collection
  • Stoe IPDSII two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.715, Tmax = 0.841

  • 12823 measured reflections

  • 3724 independent reflections

  • 3306 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.087

  • S = 1.05

  • 3724 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.91 (2) 1.89 (2) 2.6581 (17) 141 (2)
N1—H1⋯S1i 0.82 (2) 2.57 (2) 3.3653 (14) 163 (2)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Aliphatic and acylthioureas are well known for their fungicidal,antiviral, pesticidal and plant-growth regulating activities (Upadlgaya & Srivastava, 1982; Wegner et al., 1986). Symmetrical and unsymmetrical thioureas have shown antifungal activity against the plant pathogens Pyricularia oryzae and Drechslera oryzae (Krishnamurthy et al., 1999). The background to this study has been set out in our previous work on the structural and biological chemistry of chloro substituted N,N'-disubstituted thioureas (Khawar Rauf et al., 2006a; 2007).The biological studies of these thiourea derivatives are under investigation. Herein, as a continuation of these studies, the structure of the title compound (I) is described (Fig. 1). Bond lengths and angles, can be regarded as typical for N,N'-disubstituted thiourea compounds as found in the Cambridge Structural Database v5.28 (Allen, 2002; Khawar Rauf et al., 2006b; Arslan et al., 2004; Yamin & Yusof, 2003).The molecule exists in the thione form with typical thiourea C—S and C—O bonds, as well as shortened C—N bond lengths. The thiocarbonyl and carbonyl groups are almost coplanar. The molecule features an intramolecular N—H···O hydrogen bond and in the crystal structure, molecules associate via N—H···S intermolecular hydrogen bonds to form centrosymmetric dimers (Table 1; Fig 2).In addition to the intramolecular hydrogen bond, O1 is involved in a short O···Cl contact [O1···Cl2i: 3.0936 (14) Å, symmetry operator i: 1 - x, 1 - y, 1 - z].

Related literature top

For general background, see: Upadlgaya & Srivastava (1982); Wegner et al. (1986); Krishnamurthy et al. (1999). For background to this study, see: Khawar Rauf et al. (2006a, 2007). For a description of the Cambridge Structural Database, see: Allen (2002). For bond lengths and angles in N,N'-disubstituted thiourea compounds, see: Arslan et al. (2004); Khawar Rauf et al. (2006b); Yamin & Yusof, (2003).

Experimental top

Freshly prepared 2,6-dichlorobenzoyl isothiocyanate (2.32 g, 10 mmol) was stirred in acetone (40 ml) for 20 minutes. Neat 3,5-dichloroaniline (1.62 g, 10 mmol) was then added and the resulting mixture was stirred for 1 h. The reaction mixture was then poured into acidified (pH 4) water and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol/ 1,1-dichloromethane (1:10 v/v) to give fine crystals of (I), with an overall yield of 80%.

Refinement top

Hydrogen atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with C—H = 0.95 Å Uiso(H) = 1.2Ueq(C). The H atoms bonded to N were freely refined.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial packing diagram of (I) with view onto the ac plane. Hydrogen bonds shown as dashed lines.
1-(2,6-Dichlorobenzoyl)-3-(3,5-dichlorophenyl)thiourea top
Crystal data top
C14H8Cl4N2OSF(000) = 792
Mr = 394.08Dx = 1.610 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13230 reflections
a = 14.7737 (13) Åθ = 3.8–27.8°
b = 10.3744 (6) ŵ = 0.86 mm1
c = 10.6935 (11) ÅT = 173 K
β = 97.250 (7)°Plate, colourless
V = 1625.9 (2) Å30.42 × 0.38 × 0.21 mm
Z = 4
Data collection top
Stoe IPDSII two-circle
diffractometer
3724 independent reflections
Radiation source: fine-focus sealed tube3306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.5°, θmin = 3.7°
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
h = 1919
Tmin = 0.715, Tmax = 0.841k = 1313
12823 measured reflectionsl = 1013
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.486P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3724 reflectionsΔρmax = 0.44 e Å3
208 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0246 (15)
Crystal data top
C14H8Cl4N2OSV = 1625.9 (2) Å3
Mr = 394.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.7737 (13) ŵ = 0.86 mm1
b = 10.3744 (6) ÅT = 173 K
c = 10.6935 (11) Å0.42 × 0.38 × 0.21 mm
β = 97.250 (7)°
Data collection top
Stoe IPDSII two-circle
diffractometer
3724 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
3306 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.841Rint = 0.046
12823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.44 e Å3
3724 reflectionsΔρmin = 0.36 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.35875 (3)0.16745 (4)0.09234 (4)0.02939 (13)
Cl20.39163 (3)0.58457 (4)0.39696 (4)0.02796 (12)
Cl30.93189 (3)0.14605 (4)0.52460 (4)0.03065 (13)
Cl40.97033 (3)0.59117 (4)0.27286 (4)0.02639 (12)
C10.46669 (10)0.35599 (15)0.26849 (14)0.0171 (3)
O10.50255 (7)0.29825 (13)0.36158 (11)0.0257 (3)
N10.51344 (8)0.40910 (14)0.17722 (13)0.0185 (3)
H10.4844 (15)0.443 (2)0.115 (2)0.028 (5)*
S10.64669 (2)0.48065 (5)0.04928 (4)0.02559 (13)
C20.60770 (10)0.41647 (15)0.17586 (15)0.0168 (3)
N20.65773 (8)0.36848 (14)0.27949 (13)0.0178 (3)
H20.6248 (15)0.327 (2)0.333 (2)0.033 (6)*
C110.36443 (10)0.37608 (15)0.24447 (14)0.0170 (3)
C120.30851 (10)0.29239 (16)0.16745 (15)0.0196 (3)
C130.21408 (11)0.30756 (19)0.14814 (18)0.0265 (4)
H130.17710.25060.09410.032*
C140.17491 (11)0.40754 (19)0.2093 (2)0.0300 (4)
H140.11050.41770.19780.036*
C150.22860 (12)0.49305 (18)0.28705 (18)0.0270 (4)
H150.20140.56100.32880.032*
C160.32308 (10)0.47701 (16)0.30247 (15)0.0195 (3)
C210.75373 (10)0.37152 (16)0.31296 (14)0.0170 (3)
C220.79148 (10)0.27196 (16)0.39134 (15)0.0196 (3)
H220.75390.20540.41750.024*
C230.88510 (10)0.27226 (16)0.43034 (15)0.0208 (3)
C240.94227 (10)0.36829 (17)0.39447 (15)0.0217 (3)
H241.00620.36660.42050.026*
C250.90178 (10)0.46720 (16)0.31857 (15)0.0189 (3)
C260.80870 (10)0.47105 (16)0.27637 (15)0.0184 (3)
H260.78320.53940.22420.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0285 (2)0.0291 (2)0.0314 (2)0.00172 (16)0.00678 (17)0.00990 (17)
Cl20.0319 (2)0.0247 (2)0.0269 (2)0.00439 (15)0.00228 (17)0.00444 (16)
Cl30.0275 (2)0.0330 (2)0.0291 (2)0.00629 (16)0.00562 (16)0.01025 (18)
Cl40.01753 (19)0.0297 (2)0.0324 (2)0.00597 (14)0.00488 (15)0.00171 (16)
C10.0145 (6)0.0204 (8)0.0165 (7)0.0021 (5)0.0017 (5)0.0004 (6)
O10.0169 (5)0.0394 (7)0.0207 (6)0.0008 (5)0.0015 (4)0.0116 (5)
N10.0121 (6)0.0269 (7)0.0160 (6)0.0004 (5)0.0005 (5)0.0066 (5)
S10.01402 (18)0.0436 (3)0.0194 (2)0.00106 (16)0.00325 (14)0.01158 (17)
C20.0135 (6)0.0201 (8)0.0168 (7)0.0008 (5)0.0018 (5)0.0010 (6)
N20.0120 (6)0.0237 (7)0.0177 (6)0.0012 (5)0.0014 (5)0.0037 (5)
C110.0138 (6)0.0216 (8)0.0158 (7)0.0009 (5)0.0032 (5)0.0048 (6)
C120.0172 (7)0.0226 (8)0.0192 (8)0.0013 (6)0.0035 (5)0.0014 (6)
C130.0169 (7)0.0316 (9)0.0298 (9)0.0065 (6)0.0021 (6)0.0016 (7)
C140.0135 (7)0.0371 (10)0.0391 (10)0.0025 (7)0.0016 (7)0.0051 (8)
C150.0222 (8)0.0267 (9)0.0330 (10)0.0065 (6)0.0065 (7)0.0029 (7)
C160.0191 (7)0.0205 (8)0.0186 (7)0.0009 (6)0.0015 (6)0.0028 (6)
C210.0126 (6)0.0226 (8)0.0157 (7)0.0014 (5)0.0009 (5)0.0016 (6)
C220.0178 (7)0.0232 (8)0.0178 (7)0.0002 (6)0.0016 (5)0.0013 (6)
C230.0213 (7)0.0244 (8)0.0157 (7)0.0050 (6)0.0010 (6)0.0017 (6)
C240.0142 (6)0.0298 (9)0.0204 (8)0.0020 (6)0.0009 (5)0.0026 (7)
C250.0150 (7)0.0242 (8)0.0178 (7)0.0024 (6)0.0027 (5)0.0019 (6)
C260.0147 (6)0.0213 (8)0.0188 (7)0.0007 (5)0.0011 (5)0.0005 (6)
Geometric parameters (Å, º) top
Cl1—C121.7397 (17)C13—C141.390 (3)
Cl2—C161.7417 (17)C13—H130.9500
Cl3—C231.7414 (17)C14—C151.393 (3)
Cl4—C251.7445 (16)C14—H140.9500
C1—O11.224 (2)C15—C161.395 (2)
C1—N11.3796 (19)C15—H150.9500
C1—C111.5146 (19)C21—C261.400 (2)
N1—C21.3967 (18)C21—C221.401 (2)
N1—H10.82 (2)C22—C231.393 (2)
S1—C21.6745 (16)C22—H220.9500
C2—N21.347 (2)C23—C241.391 (2)
N2—C211.4186 (18)C24—C251.395 (2)
N2—H20.91 (2)C24—H240.9500
C11—C121.394 (2)C25—C261.393 (2)
C11—C161.396 (2)C26—H260.9500
C12—C131.393 (2)
O1—C1—N1124.54 (14)C14—C15—C16118.71 (16)
O1—C1—C11121.70 (13)C14—C15—H15120.6
N1—C1—C11113.75 (13)C16—C15—H15120.6
C1—N1—C2128.18 (14)C15—C16—C11121.63 (15)
C1—N1—H1118.9 (15)C15—C16—Cl2119.48 (13)
C2—N1—H1112.9 (15)C11—C16—Cl2118.89 (12)
N2—C2—N1114.54 (13)C26—C21—C22120.66 (14)
N2—C2—S1127.07 (11)C26—C21—N2122.87 (14)
N1—C2—S1118.38 (11)C22—C21—N2116.38 (14)
C2—N2—C21128.79 (13)C23—C22—C21118.86 (15)
C2—N2—H2114.5 (15)C23—C22—H22120.6
C21—N2—H2116.7 (15)C21—C22—H22120.6
C12—C11—C16118.01 (13)C24—C23—C22122.24 (15)
C12—C11—C1121.24 (14)C24—C23—Cl3119.19 (12)
C16—C11—C1120.72 (14)C22—C23—Cl3118.57 (13)
C13—C12—C11121.66 (15)C23—C24—C25117.16 (14)
C13—C12—Cl1119.56 (13)C23—C24—H24121.4
C11—C12—Cl1118.78 (11)C25—C24—H24121.4
C14—C13—C12118.88 (16)C26—C25—C24122.87 (15)
C14—C13—H13120.6C26—C25—Cl4118.19 (13)
C12—C13—H13120.6C24—C25—Cl4118.93 (12)
C13—C14—C15121.08 (15)C25—C26—C21118.19 (14)
C13—C14—H14119.5C25—C26—H26120.9
C15—C14—H14119.5C21—C26—H26120.9
O1—C1—N1—C24.9 (3)C14—C15—C16—Cl2178.83 (14)
C11—C1—N1—C2174.63 (15)C12—C11—C16—C151.5 (2)
C1—N1—C2—N22.2 (2)C1—C11—C16—C15176.47 (15)
C1—N1—C2—S1177.27 (14)C12—C11—C16—Cl2178.89 (12)
N1—C2—N2—C21173.75 (15)C1—C11—C16—Cl23.2 (2)
S1—C2—N2—C216.9 (3)C2—N2—C21—C2630.3 (3)
O1—C1—C11—C1295.3 (2)C2—N2—C21—C22152.93 (16)
N1—C1—C11—C1285.17 (19)C26—C21—C22—C231.2 (2)
O1—C1—C11—C1682.6 (2)N2—C21—C22—C23178.08 (14)
N1—C1—C11—C1696.94 (18)C21—C22—C23—C240.2 (2)
C16—C11—C12—C130.1 (2)C21—C22—C23—Cl3178.45 (12)
C1—C11—C12—C13177.83 (15)C22—C23—C24—C251.1 (2)
C16—C11—C12—Cl1179.03 (12)Cl3—C23—C24—C25179.77 (12)
C1—C11—C12—Cl13.0 (2)C23—C24—C25—C261.5 (2)
C11—C12—C13—C141.1 (3)C23—C24—C25—Cl4179.11 (12)
Cl1—C12—C13—C14179.72 (14)C24—C25—C26—C210.5 (2)
C12—C13—C14—C151.1 (3)Cl4—C25—C26—C21179.94 (12)
C13—C14—C15—C160.2 (3)C22—C21—C26—C250.9 (2)
C14—C15—C16—C111.5 (3)N2—C21—C26—C25177.49 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.91 (2)1.89 (2)2.6581 (17)141 (2)
N1—H1···S1i0.82 (2)2.57 (2)3.3653 (14)163 (2)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H8Cl4N2OS
Mr394.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)14.7737 (13), 10.3744 (6), 10.6935 (11)
β (°) 97.250 (7)
V3)1625.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.42 × 0.38 × 0.21
Data collection
DiffractometerStoe IPDSII two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2003; Blessing, 1995)
Tmin, Tmax0.715, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
12823, 3724, 3306
Rint0.046
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 1.05
No. of reflections3724
No. of parameters208
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.36

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.91 (2)1.89 (2)2.6581 (17)141 (2)
N1—H1···S1i0.82 (2)2.57 (2)3.3653 (14)163 (2)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

MKR is grateful to the HEC-Pakistan for financial support for the PhD program under scholarship No. [ILC–0363104].

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArslan, H., Flörke, U. & Külcü, N. (2004). Turk. J. Chem. 28, 673–678.  CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o3859–o3861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o4296–o4298.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o2665–o2666.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamurthy, R., Govindaraghavan, S. & Narayanasamy, J. (1999). Pestic. Sci. 52, 145–151.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUpadlgaya, J. S. & Srivastava, P. K. (1982). J. Indian Chem. Soc. 59, 767–769.  Google Scholar
First citationWegner, P., Hans, R., Frank, H. & Joppien, H. (1986). Eur. Patent No. 190 611.  Google Scholar
First citationYamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds