organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3S,4S,5R)-4-Hydr­­oxy-3-methyl-5-[(2S,3R)-3-methyl­pent-4-en-2-yl]-4,5-di­hydro­furan-2(3H)-one

aFakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany, and bFachbereich Chemie, Universität Duisburg-Essen, Campus Essen UniversitätsStrasse 7, 45117 Essen, Germany
*Correspondence e-mail: hans.preut@udo.edu

(Received 21 November 2008; accepted 12 December 2008; online 17 December 2008)

The relative configuration of the title compound, C11H18O3, was corroborated by single-crystal X-ray diffraction analysis. In the crystal, mol­ecules are linked via a O—H⋯O hydrogen bond and a chain of mol­ecules is formed along [010].

Related literature

For further synthetic details, see: Abraham, Körner & Hierse­mann (2004[Abraham, L., Körner, M. & Hiersemann, M. (2004). Tetrahedron Lett. 45, 3647-3650.]); Abraham, Körner et al. (2004[Abraham, L., Körner, M., Schwab, P. & Hiersemann, M. (2004). Adv. Synth. Catal. 346, 1281-1294.]); Evans et al. (1981[Evans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127-2129.], 1999[Evans, D. A., Miller, S. J., Lectka, T. & Matt, V. P. (1999). J. Am. Chem. Soc. 121, 7559-7573.]); Körner & Hiersemann (2006[Körner, M. & Hiersemann, M. (2006). Synlett, pp. 121-123.], 2007[Körner, M. & Hiersemann, M. (2007). Org. Lett. 9, 4979-4982.]); Mitsunobu (1981[Mitsunobu, O. (1981). Synthesis, pp. 1-28.]); Mitsunobu & Yamada (1967[Mitsunobu, O. & Yamada, M. (1967). Bull. Chem. Soc. Jpn, 40, 2380-2382.]); Mitsunobu et al. (1967[Mitsunobu, O., Yamada, M. & Mukaiyama, T. (1967). Bull. Chem. Soc. Jpn, 40, 935-939.]); Otera et al. (1992[Otera, J., Niibo, Y. & Nozaki, H. (1992). Tetrahedron Lett. 33, 3655-3658.]); Pollex & Hiersemann (2005[Pollex, A. & Hiersemann, M. (2005). Org. Lett. 7, 5705-5708.]).

[Scheme 1]

Experimental

Crystal data
  • C11H18O3

  • Mr = 198.25

  • Monoclinic, P 21

  • a = 7.604 (2) Å

  • b = 6.574 (2) Å

  • c = 11.323 (4) Å

  • β = 91.211 (7)°

  • V = 565.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 (2) K

  • 0.35 × 0.10 × 0.07 mm

Data collection
  • Siemens SMART three-axis goniometer with APEXII area-detector diffractometer

  • Absorption correction: none

  • 7868 measured reflections

  • 1507 independent reflections

  • 1076 reflections with I > 2σ(I)

  • Rint = 0.131

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.098

  • S = 0.98

  • 1507 reflections

  • 132 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.84 2.02 2.830 (3) 163
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound, (I), was synthesized using a catalytic asymmetric Claisen rearrangement (Abraham, Körner et al., 2004; Abraham, Körner & Hiersemann, 2004; Pollex & Hiersemann, 2005; Körner & Hiersemann, 2006, 2007), a diastereoselective reduction with K-Selectride (Körner & Hiersemann, 2006, 2007), a Mitsunobu reaction (Mitsunobu & Yamada, 1967; Mitsunobu et al., 1967; Mitsunobu, 1981) and an Evans aldol addition (Evans et al., 1981). In order to verify the relative configuration of the obtained aldol adduct, 4-(tert-butyldimethylsilyloxy)-3-hydroxy-2,5,6-trimethyloct-7-enoyl)-4-isopropyloxazolidin-2-one, (II), a γ-lactone, (I), was prepared by removal of the silyl protecting group (Otera et al., 1992) and subsequent in situ lactonization. Fig. 1 depicts the structure of the isolated diastereomer (I). The configuration of the chiral C atoms in (I) can be attributed to the stereochemical course of the Evans aldol addition (C3 S and C4 S), the diastereoselective reduction with K-Selectride (C5 S) followed by Mitsunobu reaction (C5 R), and the catalytic asymmetric Claisen rearrangement (C[2] S and C[3] R) using the chiral Lewis acid [Cu{(S,S)-tert-Butyl-box}](H2O)2(SbF6)2 (Evans et al., 1999).

In the crystal, an O—H···O hydrogen bond (Table 1) links the molecules into chains propagating in [010].

Related literature top

For further synthetic details, see: Abraham, Körner & Hiersemann (2004); Abraham, Körner et al. (2004); Evans et al. (1981, 1999); Körner & Hiersemann (2006, 2007); Mitsunobu (1981); Mitsunobu & Yamada (1967); Mitsunobu et al. (1967); Otera et al. (1992); Pollex & Hiersemann (2005).

Experimental top

The title compound, (I), was synthesized from the corresponding syn-aldol adduct, (II), using tetrabutylammonium fluoride (TBAF) in the presence of acetic acid (Otera et al., 1992) for the removal of the silyl protecting group. The subsequent lactonization proceeded in situ.

To a solution of diastereomerically pure (II) (66 mg, 0.15 mmol, 1.0 eq) in tetrahydrofuran (0.8 ml) was added acetic acid (0.9 µl, 0.015 mmol, 0.1 eq) in tetrahydrofuran (0.1 ml) and TBAF (1 M in tetrahydrofuran, 0.225 ml, 1.5 eq) at 273 K. After stirring for 20 min at 273 K, the mixture was allowed to warm to room temperature. After stirring the reaction mixture for 4.5 h at room temperature, the reaction was quenched by the addition of sat. aqueous NH4Cl solution. The phases were separated, and the aqueous phase was extracted with CH2Cl2 (3 × 5 ml). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure. Flash chromatography (isohexane/ethyl acetate 20/1 to 10/1 to 5/1) afforded (I) as a single diastereomer in quantitative yield (29.6 mg, 0.15 mmol) as colourless crystals. Colourless needles of (I) were obtained by vapor diffusion recrystallization technique from isohexane and ethyl acetate: mp 361 K; Rf 0.35 (cyclohexane/ethyl acetate 2/1); 1H NMR (CDCl3, 400 MHz, δ): 0.92 (d, J = 6.8 Hz, 3H), 1.05 (d, J = 6.8 Hz, 3H), 1.31 (d, J = 7.1 Hz, 3H), 1.73 (dqd, J = 6.8, 6.8, 3.6 Hz, 1H), 2.14 (br. s, 1 H), 2.33 (apparent sex, J = 7.7 Hz, 1H), 2.59 (dq, J = 8.6, 7.1 Hz, 1H), 3.91 (dd, J = 8.6 Hz, 1H), 4.20 (dd, J = 8.6, 3.6 Hz, 1H), 5.04 (d, 3J(Z) = 10.0 Hz, 1H), 5.05 (d, 3J(E) = 17.8 Hz, 1H), 5.73 (ddd, 3J(E) = 17.8 Hz, 3J(Z) = 10.0 Hz, 3J = 7.7 Hz, 1H); 13C NMR (CDCl3, 100 MHz, δ): 10.7 (CH3), 12.8 (CH3), 17.2 (CH3), 39.4 (CH), 41.0 (CH), 44.2 (CH), 77.2 (CH), 85.2 (CH), 115.1 (CH2), 143.0 (CH), 176.7 (C); IR (cm-1): 3405(br,s) (ν O—H, OH in H-bridges), 3090(w) 3005(w) (ν C—H, olefin), 2965(s) 2935(m) 2900(m) 2855(w) (νas,s C—H, CH2, CH3, CH), 1740(s) (ν C=O, lactone), 1640(w) (ν C=C), 1460(s) (δas C—H, CH3, CH2), 1380(s) (δs C—H, CH3); Anal. Calcd. for C11H18O3: C, 66.6; H, 9.2; Found: C, 66.7; H, 9.3; [α]D20 +61.4 (c 0.487, CHCl3).

Refinement top

The H atoms were geometrically placed (C—H = 0.95–1.00Å, O—H = 0.84Å) and refined as riding with Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms shown at the 30% probability level.
(3S,4S,5R)-4-Hydroxy-3-methyl-5-[(2S,3R)-3- methylpent-4-en-2-yl]-4,5-dihydrofuran-2(3H)-one top
Crystal data top
C11H18O3F(000) = 216
Mr = 198.25Dx = 1.163 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1365 reflections
a = 7.604 (2) Åθ = 2.7–26.3°
b = 6.574 (2) ŵ = 0.08 mm1
c = 11.323 (4) ÅT = 173 K
β = 91.211 (7)°Needle, colourless
V = 565.9 (3) Å30.35 × 0.10 × 0.07 mm
Z = 2
Data collection top
Siemens SMART three-axis goniometer with APEXII area-detector system
diffractometer
1076 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.131
Graphite monochromatorθmax = 28.3°, θmin = 1.8°
Detector resolution: 512 pixels mm-1h = 910
Data collection strategy APEX 2/COSMO scansk = 88
7868 measured reflectionsl = 1514
1507 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0279P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
1507 reflectionsΔρmax = 0.19 e Å3
132 parametersΔρmin = 0.19 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.077 (11)
Crystal data top
C11H18O3V = 565.9 (3) Å3
Mr = 198.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.604 (2) ŵ = 0.08 mm1
b = 6.574 (2) ÅT = 173 K
c = 11.323 (4) Å0.35 × 0.10 × 0.07 mm
β = 91.211 (7)°
Data collection top
Siemens SMART three-axis goniometer with APEXII area-detector system
diffractometer
1076 reflections with I > 2σ(I)
7868 measured reflectionsRint = 0.131
1507 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.098H-atom parameters constrained
S = 0.98Δρmax = 0.19 e Å3
1507 reflectionsΔρmin = 0.19 e Å3
132 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2255 (2)0.2085 (3)0.91883 (16)0.0351 (5)
O20.1493 (2)0.7353 (3)0.96072 (16)0.0382 (5)
H20.20760.83180.99040.057*
O30.2839 (2)0.0670 (3)1.09375 (17)0.0408 (5)
C10.3186 (5)0.7143 (7)0.4846 (3)0.0700 (11)
H1A0.19940.73450.46070.084*
H1B0.40960.73020.42920.084*
C20.3570 (4)0.6651 (5)0.5929 (3)0.0471 (8)
H2A0.47830.64690.61180.057*
C30.2316 (4)0.6337 (4)0.6919 (2)0.0381 (7)
H30.26150.73780.75350.046*
C40.2658 (4)0.4224 (4)0.7492 (2)0.0352 (7)
H40.39590.40820.76150.042*
C50.1827 (3)0.4084 (4)0.8699 (2)0.0305 (6)
H50.05220.42260.86100.037*
C60.2512 (3)0.5554 (4)0.9651 (2)0.0309 (6)
H60.37780.58770.95220.037*
C70.2319 (4)0.4339 (4)1.0786 (2)0.0324 (6)
H70.10860.45221.10590.039*
C80.2500 (3)0.2207 (4)1.0367 (2)0.0327 (6)
C90.0401 (4)0.6683 (5)0.6558 (3)0.0513 (8)
H9A0.02460.80890.62880.077*
H9B0.03480.64340.72360.077*
H9C0.00720.57480.59160.077*
C100.2046 (4)0.2460 (5)0.6698 (3)0.0468 (8)
H10A0.24870.11730.70250.070*
H10B0.25030.26500.59020.070*
H10C0.07580.24290.66570.070*
C110.3561 (4)0.4916 (5)1.1806 (3)0.0477 (8)
H11A0.33520.40201.24810.071*
H11B0.33470.63311.20350.071*
H11C0.47810.47671.15580.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0416 (11)0.0232 (11)0.0406 (11)0.0024 (9)0.0034 (8)0.0022 (8)
O20.0413 (11)0.0230 (10)0.0504 (12)0.0052 (9)0.0008 (9)0.0046 (9)
O30.0428 (12)0.0276 (11)0.0520 (13)0.0029 (9)0.0009 (10)0.0033 (9)
C10.078 (2)0.083 (3)0.050 (2)0.008 (2)0.0124 (17)0.006 (2)
C20.0516 (19)0.0459 (19)0.0439 (19)0.0065 (15)0.0038 (15)0.0007 (14)
C30.0457 (18)0.0296 (15)0.0391 (17)0.0013 (13)0.0026 (14)0.0019 (12)
C40.0367 (16)0.0273 (15)0.0418 (16)0.0022 (13)0.0027 (12)0.0043 (13)
C50.0327 (14)0.0184 (13)0.0403 (16)0.0005 (12)0.0005 (12)0.0025 (12)
C60.0294 (15)0.0194 (14)0.0441 (16)0.0010 (11)0.0024 (12)0.0012 (12)
C70.0328 (15)0.0250 (14)0.0396 (16)0.0016 (12)0.0010 (12)0.0060 (12)
C80.0275 (14)0.0268 (14)0.0440 (17)0.0030 (12)0.0027 (12)0.0020 (14)
C90.057 (2)0.0446 (19)0.0527 (19)0.0102 (16)0.0027 (15)0.0093 (14)
C100.066 (2)0.0294 (16)0.0447 (17)0.0034 (16)0.0029 (15)0.0096 (14)
C110.054 (2)0.0397 (17)0.0489 (19)0.0075 (15)0.0091 (15)0.0000 (14)
Geometric parameters (Å, º) top
O1—C81.347 (3)C5—C61.531 (4)
O1—C51.460 (3)C5—H51.0000
O2—C61.414 (3)C6—C71.522 (4)
O2—H20.8400C6—H61.0000
O3—C81.223 (3)C7—C81.487 (4)
C1—C21.296 (4)C7—C111.524 (4)
C1—H1A0.9500C7—H71.0000
C1—H1B0.9500C9—H9A0.9800
C2—C31.501 (4)C9—H9B0.9800
C2—H2A0.9500C9—H9C0.9800
C3—C91.521 (4)C10—H10A0.9800
C3—C41.553 (4)C10—H10B0.9800
C3—H31.0000C10—H10C0.9800
C4—C51.520 (4)C11—H11A0.9800
C4—C101.534 (4)C11—H11B0.9800
C4—H41.0000C11—H11C0.9800
C8—O1—C5110.4 (2)C7—C6—H6110.2
C6—O2—H2109.5C5—C6—H6110.2
C2—C1—H1A120.0C8—C7—C6102.4 (2)
C2—C1—H1B120.0C8—C7—C11114.6 (2)
H1A—C1—H1B120.0C6—C7—C11116.1 (2)
C1—C2—C3127.4 (3)C8—C7—H7107.8
C1—C2—H2A116.3C6—C7—H7107.8
C3—C2—H2A116.3C11—C7—H7107.8
C2—C3—C9113.5 (2)O3—C8—O1119.8 (3)
C2—C3—C4109.4 (2)O3—C8—C7129.1 (2)
C9—C3—C4113.4 (2)O1—C8—C7111.1 (2)
C2—C3—H3106.7C3—C9—H9A109.5
C9—C3—H3106.7C3—C9—H9B109.5
C4—C3—H3106.7H9A—C9—H9B109.5
C5—C4—C10110.8 (2)C3—C9—H9C109.5
C5—C4—C3111.1 (2)H9A—C9—H9C109.5
C10—C4—C3112.7 (2)H9B—C9—H9C109.5
C5—C4—H4107.3C4—C10—H10A109.5
C10—C4—H4107.3C4—C10—H10B109.5
C3—C4—H4107.3H10A—C10—H10B109.5
O1—C5—C4107.56 (19)C4—C10—H10C109.5
O1—C5—C6103.3 (2)H10A—C10—H10C109.5
C4—C5—C6117.0 (2)H10B—C10—H10C109.5
O1—C5—H5109.5C7—C11—H11A109.5
C4—C5—H5109.5C7—C11—H11B109.5
C6—C5—H5109.5H11A—C11—H11B109.5
O2—C6—C7113.9 (2)C7—C11—H11C109.5
O2—C6—C5109.0 (2)H11A—C11—H11C109.5
C7—C6—C5103.1 (2)H11B—C11—H11C109.5
O2—C6—H6110.2
C1—C2—C3—C90.8 (5)C4—C5—C6—O290.6 (3)
C1—C2—C3—C4126.9 (4)O1—C5—C6—C730.1 (2)
C2—C3—C4—C5163.2 (2)C4—C5—C6—C7148.1 (2)
C9—C3—C4—C569.1 (3)O2—C6—C7—C8146.5 (2)
C2—C3—C4—C1071.8 (3)C5—C6—C7—C828.6 (3)
C9—C3—C4—C1055.9 (3)O2—C6—C7—C1188.0 (3)
C8—O1—C5—C4144.9 (2)C5—C6—C7—C11154.1 (2)
C8—O1—C5—C620.6 (2)C5—O1—C8—O3178.6 (2)
C10—C4—C5—O155.7 (3)C5—O1—C8—C72.0 (3)
C3—C4—C5—O1178.3 (2)C6—C7—C8—O3161.8 (3)
C10—C4—C5—C6171.3 (2)C11—C7—C8—O335.3 (4)
C3—C4—C5—C662.6 (3)C6—C7—C8—O117.5 (3)
O1—C5—C6—O2151.49 (19)C11—C7—C8—O1144.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.842.022.830 (3)163
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H18O3
Mr198.25
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)7.604 (2), 6.574 (2), 11.323 (4)
β (°) 91.211 (7)
V3)565.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.10 × 0.07
Data collection
DiffractometerSiemens SMART three-axis goniometer with APEXII area-detector system
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7868, 1507, 1076
Rint0.131
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.098, 0.98
No. of reflections1507
No. of parameters132
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.842.022.830 (3)163
Symmetry code: (i) x, y+1, z.
 

References

First citationAbraham, L., Körner, M. & Hiersemann, M. (2004). Tetrahedron Lett. 45, 3647–3650.  Web of Science CrossRef CAS Google Scholar
First citationAbraham, L., Körner, M., Schwab, P. & Hiersemann, M. (2004). Adv. Synth. Catal. 346, 1281–1294.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127–2129.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. A., Miller, S. J., Lectka, T. & Matt, V. P. (1999). J. Am. Chem. Soc. 121, 7559–7573.  Web of Science CrossRef CAS Google Scholar
First citationKörner, M. & Hiersemann, M. (2006). Synlett, pp. 121–123.  Google Scholar
First citationKörner, M. & Hiersemann, M. (2007). Org. Lett. 9, 4979–4982.  Web of Science PubMed Google Scholar
First citationMitsunobu, O. (1981). Synthesis, pp. 1–28.  CrossRef Web of Science Google Scholar
First citationMitsunobu, O. & Yamada, M. (1967). Bull. Chem. Soc. Jpn, 40, 2380–2382.  CrossRef CAS Web of Science Google Scholar
First citationMitsunobu, O., Yamada, M. & Mukaiyama, T. (1967). Bull. Chem. Soc. Jpn, 40, 935–939.  CrossRef CAS Web of Science Google Scholar
First citationOtera, J., Niibo, Y. & Nozaki, H. (1992). Tetrahedron Lett. 33, 3655–3658.  CrossRef CAS Web of Science Google Scholar
First citationPollex, A. & Hiersemann, M. (2005). Org. Lett. 7, 5705–5708.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds