organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl pyrazin-2-yl ether

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 27 November 2008; accepted 28 November 2008; online 3 December 2008)

In the title compound, C10H8N2O, the dihedral angle between the aromatic rings is 64.2 (1)° and the bridging C—O—C angle is 119.1 (1)°.

Related literature

For the structure of quinoxalinyl phenyl ether, see: Hassan et al. (2008[Hassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o1820.]). For the structure of N-(pyrazin-2-yl)aniline, see: Wan Saffiee et al. (2008[Wan Saffiee, W. A. M., Idris, A., Abdullah, Z., Aiyub, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2105.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2O

  • Mr = 172.18

  • Monoclinic, P 21 /c

  • a = 5.704 (1) Å

  • b = 8.557 (2) Å

  • c = 17.595 (4) Å

  • β = 94.382 (3)°

  • V = 856.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 (2) K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 4641 measured reflections

  • 1950 independent reflections

  • 1207 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.119

  • S = 0.97

  • 1950 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Related literature top

For the structure of quinoxalinyl phenyl ether, see: Hassan et al. (2008). For the structure of N-(pyrazin-2-yl)aniline, see: Wan Saffiee et al. (2008).

Experimental top

Phenol (0.94 g, 0.01 mol) was dissolved in a small volume of water containing sodium hydroxide (0.40 g, 0.01 mol). The mixture was heated to remove most of the water. This and 2-chloropyrazine (1.15 g, 0.01 mol) were heated for 5 h. The material was extracted with chloroform and the organic phase then dried over sodium sulfate. Evaporation of the solvent gave the crude product, which was recrystallized from chloroform.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Phenyl pyrazin-2-yl ether top
Crystal data top
C10H8N2OF(000) = 360
Mr = 172.18Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 739 reflections
a = 5.704 (1) Åθ = 3.3–26.1°
b = 8.557 (2) ŵ = 0.09 mm1
c = 17.595 (4) ÅT = 100 K
β = 94.382 (3)°Irregular block, colorless
V = 856.4 (3) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1207 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
ω scansh = 67
4641 measured reflectionsk = 1110
1950 independent reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0572P)2]
where P = (Fo2 + 2Fc2)/3
1950 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C10H8N2OV = 856.4 (3) Å3
Mr = 172.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.704 (1) ŵ = 0.09 mm1
b = 8.557 (2) ÅT = 100 K
c = 17.595 (4) Å0.20 × 0.15 × 0.10 mm
β = 94.382 (3)°
Data collection top
Bruker SMART APEX
diffractometer
1207 reflections with I > 2σ(I)
4641 measured reflectionsRint = 0.042
1950 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 0.97Δρmax = 0.20 e Å3
1950 reflectionsΔρmin = 0.27 e Å3
118 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0900 (2)0.70888 (14)0.45704 (7)0.0301 (3)
N10.4770 (3)0.56153 (17)0.60955 (8)0.0281 (4)
N20.4352 (3)0.81790 (16)0.51088 (8)0.0252 (4)
C10.0879 (3)0.8138 (2)0.39557 (9)0.0244 (4)
C20.1015 (3)0.9128 (2)0.38509 (10)0.0288 (4)
H20.22080.91300.41990.035*
C30.1150 (3)1.0127 (2)0.32238 (10)0.0320 (5)
H30.24471.08190.31400.038*
C40.0604 (3)1.0112 (2)0.27248 (10)0.0309 (5)
H40.05201.08030.23010.037*
C50.2481 (3)0.9097 (2)0.28386 (10)0.0298 (5)
H50.36720.90860.24890.036*
C60.2641 (3)0.8093 (2)0.34580 (9)0.0266 (4)
H60.39270.73930.35390.032*
C70.2816 (3)0.70451 (19)0.50838 (9)0.0225 (4)
C80.2987 (3)0.5762 (2)0.55764 (10)0.0279 (4)
H80.17990.49810.55370.033*
C90.6367 (3)0.6767 (2)0.61232 (10)0.0275 (4)
H90.76860.67070.64860.033*
C100.6149 (3)0.8027 (2)0.56430 (9)0.0274 (4)
H100.73110.88230.56900.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0285 (7)0.0309 (8)0.0299 (7)0.0092 (6)0.0033 (5)0.0105 (6)
N10.0356 (9)0.0253 (8)0.0237 (8)0.0023 (7)0.0037 (7)0.0021 (7)
N20.0304 (9)0.0229 (8)0.0222 (8)0.0055 (6)0.0020 (6)0.0000 (7)
C10.0279 (10)0.0230 (10)0.0215 (9)0.0088 (8)0.0028 (7)0.0039 (8)
C20.0233 (10)0.0323 (11)0.0307 (10)0.0049 (8)0.0021 (7)0.0031 (9)
C30.0267 (11)0.0321 (11)0.0362 (10)0.0007 (8)0.0041 (8)0.0044 (9)
C40.0338 (11)0.0344 (11)0.0237 (9)0.0062 (9)0.0037 (8)0.0068 (9)
C50.0316 (11)0.0368 (11)0.0209 (9)0.0056 (9)0.0011 (8)0.0027 (9)
C60.0280 (10)0.0256 (10)0.0255 (9)0.0014 (8)0.0020 (8)0.0032 (8)
C70.0253 (10)0.0224 (10)0.0203 (8)0.0029 (7)0.0043 (7)0.0007 (8)
C80.0319 (11)0.0246 (10)0.0274 (10)0.0060 (8)0.0048 (8)0.0015 (8)
C90.0315 (11)0.0287 (10)0.0219 (9)0.0001 (8)0.0011 (7)0.0005 (8)
C100.0295 (10)0.0287 (11)0.0238 (9)0.0076 (8)0.0003 (7)0.0011 (9)
Geometric parameters (Å, º) top
O1—C71.364 (2)C3—H30.9500
O1—C11.4050 (19)C4—C51.382 (3)
N1—C81.320 (2)C4—H40.9500
N1—C91.340 (2)C5—C61.385 (2)
N2—C71.306 (2)C5—H50.9500
N2—C101.343 (2)C6—H60.9500
C1—C21.374 (3)C7—C81.398 (2)
C1—C61.383 (2)C8—H80.9500
C2—C31.394 (2)C9—C101.370 (2)
C2—H20.9500C9—H90.9500
C3—C41.381 (3)C10—H100.9500
C7—O1—C1119.11 (13)C6—C5—H5119.8
C8—N1—C9116.18 (15)C1—C6—C5118.29 (17)
C7—N2—C10115.21 (15)C1—C6—H6120.9
C2—C1—C6122.28 (16)C5—C6—H6120.9
C2—C1—O1117.23 (15)N2—C7—O1120.23 (15)
C6—C1—O1120.38 (16)N2—C7—C8123.24 (16)
C1—C2—C3118.68 (17)O1—C7—C8116.52 (15)
C1—C2—H2120.7N1—C8—C7121.13 (16)
C3—C2—H2120.7N1—C8—H8119.4
C4—C3—C2119.90 (18)C7—C8—H8119.4
C4—C3—H3120.0N1—C9—C10121.80 (16)
C2—C3—H3120.0N1—C9—H9119.1
C3—C4—C5120.36 (17)C10—C9—H9119.1
C3—C4—H4119.8N2—C10—C9122.43 (17)
C5—C4—H4119.8N2—C10—H10118.8
C4—C5—C6120.49 (17)C9—C10—H10118.8
C4—C5—H5119.8
C7—O1—C1—C2126.78 (17)C10—N2—C7—O1179.05 (14)
C7—O1—C1—C656.9 (2)C10—N2—C7—C80.5 (2)
C6—C1—C2—C30.5 (3)C1—O1—C7—N215.5 (2)
O1—C1—C2—C3176.75 (15)C1—O1—C7—C8165.92 (14)
C1—C2—C3—C40.2 (3)C9—N1—C8—C70.6 (2)
C2—C3—C4—C50.8 (3)N2—C7—C8—N11.1 (3)
C3—C4—C5—C60.7 (3)O1—C7—C8—N1179.72 (15)
C2—C1—C6—C50.6 (3)C8—N1—C9—C100.4 (3)
O1—C1—C6—C5176.75 (14)C7—N2—C10—C90.5 (2)
C4—C5—C6—C10.0 (3)N1—C9—C10—N21.0 (3)

Experimental details

Crystal data
Chemical formulaC10H8N2O
Mr172.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.704 (1), 8.557 (2), 17.595 (4)
β (°) 94.382 (3)
V3)856.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4641, 1950, 1207
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.119, 0.97
No. of reflections1950
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

 

Acknowledgements

We thank the University of Malaya for supporting this study (grant No. FS358/2008 A).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o1820.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan Saffiee, W. A. M., Idris, A., Abdullah, Z., Aiyub, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds