organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Methyl-2-nitro­phen­yl)-4,5-di­hydro-1,3-oxazole

aShenyang Institute of Chemical Technology, Shenyang 110142, People's Republic of China, and bAgrochemicals Division, Shenyang Research Institute of Chemical Industry, Shenyang 110021, People's Republic of China
*Correspondence e-mail: kangzhuo@sinochem.com

(Received 27 November 2008; accepted 4 December 2008; online 10 December 2008)

In the title compound, C10H10N2O3, an inter­mediate in the synthesis of anthranilamide insecticides, all the non-H atoms except the nitro-group O atom lie on a crystallographic mirror plane. The H atoms of the methyl group are disordered over two sets of sites with equal occupancies. In the crystal structure, C—H⋯N links lead to chains of mol­ecules propagating in [100].

Related literature

For background to anthranilamide compounds, a new class of inseticides, see: Lahm et al. (2003[Lahm, G. P., Selby, T. P. & Stevenson, T. M. (2003). International Patent WO 03/015 519.], 2005[Lahm, G. P., Selby, T. P., Freudenberger, J. H., Stevenson, T. M., Myers, B. J., Seburyamo, G., Smith, B. K., Flexner, L., Clark, C. E. & Cordova, D. (2005). Bioorg. Med. Chem. Lett. 15, 4898-4906.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N2O3

  • Mr = 206.20

  • Monoclinic, P 21 /m

  • a = 7.7767 (10) Å

  • b = 7.3370 (10) Å

  • c = 8.6468 (12) Å

  • β = 99.414 (2)°

  • V = 486.72 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 (2) K

  • 0.24 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.834, Tmax = 1.000 (expected range = 0.818–0.981)

  • 2462 measured reflections

  • 937 independent reflections

  • 842 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.110

  • S = 1.07

  • 937 reflections

  • 90 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N1i 0.93 2.60 3.508 (3) 167
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Anthranilamide compounds as a new class of inseticides are characterized by their high levels of insecticidal activity, no-cross resistance to existing insecticides, safety to off-target animal and low toxicity to mammals (Lahm et al. 2003, 2005)

The title compound (I) as an intermediate for preparing Chlorantraniliprole analogs plays an important role in identifying the configuration of two possible products.

In the molecular structure of (I), (Fig. 1) all the non-hydrogen atoms except the nitro-group O atom lie on a crystallographic mirror plane. In the crystal, C—H···N links lead to chains of molecules propagating in [100].

Related literature top

For background to anthranilamide compounds, a new class of inseticides, see: Lahm et al. (2003, 2005).

Experimental top

2-Bromoethanamine hydrobromide (10.25 g, 50 mmol) and 3-methyl-2-nitrobenzoyl chloride (9.98 g, 50 mmol) were added into dichloromethane (200 ml), then triethylamine (16.70 g, 165 mmol) was added. The mixture was heated to reflux for 14 h and cooled down to room temperature, washed with water and brine, dried by anhydrous sulfate magnesium, then evaporated to give the title compound as a white solid. The product was dissolved in dichloromethane and left to stand at room temperature and colourless blocks of (I) were obtained.

Anal. Calcd for C10H10N2O3: C, 58.25; H, 4.89; N, 13.59; O, 23.28. Found: C, 58.20; H, 4.90; N, 13.61; O, 23.25 1H NMR(CDCl3): 2.35 (s, 3H, CH3), 4.06 (t, J=9.8 Hz, 2H, CH2), 4.40 (t, J=9.6 Hz, 2H, CH2), 7.41–7.43(m, 2H), 7.78–7.81 (m, 1H).

Refinement top

Although all H atoms were visible in difference maps, they were finally placed in geometrically calculated positions, with C—H distances in the range 0.93–0.96 Å, and included in the final refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for the non-hydrogen atoms. Symmetry code: A x, 1/2–y, z.
2-(3-Methyl-2-nitrophenyl)-4,5-dihydro-1,3-oxazole top
Crystal data top
C10H10N2O3F(000) = 216
Mr = 206.20Dx = 1.407 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 7.7767 (10) ÅCell parameters from 1713 reflections
b = 7.337 (1) Åθ = 2.7–27.9°
c = 8.6468 (12) ŵ = 0.11 mm1
β = 99.414 (2)°T = 296 K
V = 486.72 (11) Å3BLOCK, colourless
Z = 20.24 × 0.22 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
937 independent reflections
Radiation source: fine-focus sealed tube842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.834, Tmax = 1.000k = 68
2462 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.1052P]
where P = (Fo2 + 2Fc2)/3
937 reflections(Δ/σ)max < 0.001
90 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C10H10N2O3V = 486.72 (11) Å3
Mr = 206.20Z = 2
Monoclinic, P21/mMo Kα radiation
a = 7.7767 (10) ŵ = 0.11 mm1
b = 7.337 (1) ÅT = 296 K
c = 8.6468 (12) Å0.24 × 0.22 × 0.18 mm
β = 99.414 (2)°
Data collection top
Bruker SMART CCD
diffractometer
937 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
842 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 1.000Rint = 0.011
2462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.07Δρmax = 0.17 e Å3
937 reflectionsΔρmin = 0.15 e Å3
90 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2190 (2)0.25001.12373 (17)0.0794 (6)
O20.33918 (12)0.10351 (17)0.61731 (13)0.0628 (4)
N10.4057 (2)0.25000.95534 (19)0.0617 (6)
N20.27535 (19)0.25000.64083 (17)0.0428 (4)
C10.0249 (3)0.25000.4054 (2)0.0520 (5)
H1A0.07050.32680.38930.078*0.50
H1B0.13090.29520.34490.078*0.50
H1C0.00410.12800.37280.078*0.50
C20.0410 (2)0.25000.5759 (2)0.0430 (5)
C30.2030 (3)0.25000.6245 (3)0.0533 (5)
H30.30340.25000.54950.064*
C40.2181 (3)0.25000.7801 (3)0.0630 (6)
H40.32810.25000.80920.076*
C50.0709 (3)0.25000.8946 (3)0.0589 (6)
H50.08280.25000.99980.071*
C60.0946 (2)0.25000.8531 (2)0.0434 (5)
C70.1040 (2)0.25000.6938 (2)0.0381 (4)
C80.2508 (2)0.25000.9762 (2)0.0428 (5)
C90.3878 (3)0.25001.2242 (3)0.0671 (7)
H90.40210.14241.29020.081*
C100.5156 (3)0.25001.1111 (2)0.0580 (6)
H100.58900.35761.12510.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0487 (9)0.1510 (17)0.0384 (8)0.0000.0066 (7)0.000
O20.0475 (6)0.0714 (8)0.0701 (8)0.0137 (5)0.0117 (5)0.0128 (5)
N10.0353 (9)0.1100 (16)0.0376 (9)0.0000.0005 (7)0.000
N20.0323 (8)0.0582 (10)0.0363 (8)0.0000.0013 (6)0.000
C10.0451 (11)0.0637 (13)0.0437 (11)0.0000.0033 (8)0.000
C20.0358 (10)0.0443 (10)0.0463 (10)0.0000.0010 (8)0.000
C30.0316 (9)0.0658 (13)0.0594 (13)0.0000.0020 (8)0.000
C40.0322 (10)0.0932 (17)0.0649 (14)0.0000.0114 (9)0.000
C50.0397 (11)0.0885 (16)0.0505 (12)0.0000.0130 (9)0.000
C60.0347 (10)0.0516 (11)0.0434 (10)0.0000.0046 (8)0.000
C70.0290 (8)0.0422 (10)0.0428 (10)0.0000.0047 (7)0.000
C80.0408 (10)0.0521 (11)0.0352 (9)0.0000.0057 (7)0.000
C90.0550 (13)0.1013 (19)0.0413 (11)0.0000.0030 (10)0.000
C100.0445 (11)0.0834 (16)0.0418 (11)0.0000.0058 (8)0.000
Geometric parameters (Å, º) top
O1—C81.339 (2)C3—C41.370 (3)
O1—C91.451 (3)C3—H30.9300
O2—N21.2149 (13)C4—C51.385 (3)
N1—C81.247 (2)C4—H40.9300
N1—C101.472 (2)C5—C61.391 (3)
N2—O2i1.2149 (13)C5—H50.9300
N2—C71.478 (2)C6—C71.391 (3)
C1—C21.501 (3)C6—C81.478 (3)
C1—H1A0.9600C9—C101.504 (3)
C1—H1B0.9600C9—H90.9700
C1—H1C0.9600C9—H9i0.9700
C2—C71.391 (2)C10—H100.9700
C2—C31.391 (3)C10—H10i0.9700
C8—O1—C9106.31 (16)C6—C5—H5119.8
C8—N1—C10107.34 (17)C7—C6—C5117.07 (18)
O2i—N2—O2124.43 (16)C7—C6—C8122.89 (17)
O2i—N2—C7117.75 (8)C5—C6—C8120.04 (18)
O2—N2—C7117.75 (8)C2—C7—C6123.93 (17)
C2—C1—H1A109.5C2—C7—N2115.90 (16)
C2—C1—H1B109.5C6—C7—N2120.18 (15)
H1A—C1—H1B109.5N1—C8—O1118.10 (17)
C2—C1—H1C109.5N1—C8—C6126.55 (17)
H1A—C1—H1C109.5O1—C8—C6115.35 (16)
H1B—C1—H1C109.5O1—C9—C10103.87 (16)
C7—C2—C3116.38 (18)O1—C9—H9111.0
C7—C2—C1122.16 (17)C10—C9—H9i111.0
C3—C2—C1121.46 (17)O1—C9—H9i111.0
C4—C3—C2121.60 (18)C10—C9—H9i111.0
C4—C3—H3119.2H9—C9—H9i109.0
C2—C3—H3119.2N1—C10—C9104.38 (16)
C3—C4—C5120.52 (19)N1—C10—H10110.9
C3—C4—H4119.7C9—C10—H10110.9
C5—C4—H4119.7N1—C10—H10i110.9
C4—C5—C6120.5 (2)C9—C10—H10i110.9
C4—C5—H5119.8H10—C10—H10i108.9
C7—C2—C3—C40.0O2—N2—C7—C288.46 (13)
C1—C2—C3—C4180.0O2i—N2—C7—C691.54 (13)
C2—C3—C4—C50.0O2—N2—C7—C691.54 (13)
C3—C4—C5—C60.0C10—N1—C8—O10.0
C4—C5—C6—C70.0C10—N1—C8—C6180.0
C4—C5—C6—C8180.0C9—O1—C8—N10.0
C3—C2—C7—C60.0C9—O1—C8—C6180.0
C1—C2—C7—C6180.0C7—C6—C8—N10.0
C3—C2—C7—N2180.0C5—C6—C8—N1180.0
C1—C2—C7—N20.0C7—C6—C8—O1180.0
C5—C6—C7—C20.0C5—C6—C8—O10.0
C8—C6—C7—C2180.0C8—O1—C9—C100.0
C5—C6—C7—N2180.0C8—N1—C10—C90.0
C8—C6—C7—N20.0O1—C9—C10—N10.0
O2i—N2—C7—C288.46 (13)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N1ii0.932.603.508 (3)167
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H10N2O3
Mr206.20
Crystal system, space groupMonoclinic, P21/m
Temperature (K)296
a, b, c (Å)7.7767 (10), 7.337 (1), 8.6468 (12)
β (°) 99.414 (2)
V3)486.72 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.834, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2462, 937, 842
Rint0.011
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.07
No. of reflections937
No. of parameters90
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N1i0.932.603.508 (3)167
Symmetry code: (i) x1, y, z.
 

References

First citationBruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLahm, G. P., Selby, T. P., Freudenberger, J. H., Stevenson, T. M., Myers, B. J., Seburyamo, G., Smith, B. K., Flexner, L., Clark, C. E. & Cordova, D. (2005). Bioorg. Med. Chem. Lett. 15, 4898–4906.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLahm, G. P., Selby, T. P. & Stevenson, T. M. (2003). International Patent WO 03/015 519.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds