organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­methyl­anilinium chloride monohydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte, Tunisia
*Correspondence e-mail: wajda_sta@yahoo.fr

(Received 4 December 2008; accepted 6 December 2008; online 10 December 2008)

In the title compound, C8H12N+·Cl·H2O, the crystal packing is influenced by O—H⋯Cl, N—H⋯Cl and N—H⋯O hydrogen bonds, resulting in a two-dimensional network propagating parallel to (001).

Related literature

For related literature, see: Aloui et al. (2006[Aloui, Z., Abid, S. & Rzaigui, M. (2006). Anal. Sci. (Japan), 22, x201-x202.]); Masse et al. (1993[Masse, R., Bagieu-Beucher, M., Pecault, J., Levy, J. P. & Zyss, J. (1993). Nonlin. Opt. 5, 413-423.]); Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+·Cl·H2O

  • Mr = 175.65

  • Monoclinic, P 21

  • a = 7.515 (4) Å

  • b = 7.441 (3) Å

  • c = 9.019 (2) Å

  • β = 102.87 (3)°

  • V = 491.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 (2) K

  • 0.50 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: none

  • 2058 measured reflections

  • 1260 independent reflections

  • 1166 reflections with I > 2σ(I)

  • Rint = 0.025

  • 2 standard reflections frequency: 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.081

  • S = 1.10

  • 1260 reflections

  • 111 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), unique data only

  • Flack parameter: 0.17 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H30⋯Cl1i 0.81 (4) 2.37 (4) 3.168 (3) 171 (4)
O1—H31⋯Cl1 0.78 (4) 2.44 (4) 3.219 (3) 174 (5)
N1—H1A⋯O1ii 0.89 1.82 2.705 (4) 171
N1—H1B⋯Cl1iii 0.89 2.29 3.167 (2) 169
N1—H1C⋯Cl1iv 0.89 2.30 3.189 (3) 173
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+2]; (iii) [-x+2, y+{\script{1\over 2}}, -z+2]; (iv) x, y, z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The preparation of inorganic anion and organic cation salts continues to be a focus area in chemistry and material science because of their abilities to combine the properties of organic and inorganic compounds within one single molecular scale, so as to exhibit some interesting crystal structure and some special properties, such as second-order nonlinear optical response, magnetism, luminescence, and even multifunctional properties (Masse et al., 1993). It is therefore vital to design and synthesize novel salts with inorganic anions and organic cations so as to explore their various properties. In this context, we report the synthesis and the crystal structure of a the title compound, (I), (Fig. 1). The crystal packing can be described as a typical layered organization. A projection of such a layer shows that the Cl- anions are linked to the water molecules by O—H···Cl hydrogen bonds to form infinite corrugated chains along the b direction (Fig. 2). These chains are themselves connected via N—H···O and N—H···Cl hydrogen bonds originating from NH3+ groups, so as to built inorganic layers spreading around the (a,b) plane. The 2,5-xylidinium cations are anchored onto the successive inorganic layers via hydrogen bonds and electrostatic interactions, to compensate their negative charges.

The examination of the organic cation shows that the values of the N—C, C—C distances and N—C—C, C—C—C angles range from 1.376 (3) to 1.503 (3) Å and 115.72 (19) to 122.80 (19)°, respectively. These values show no significant difference from those obtained in other organic materials associated with the same organic groups (Aloui et al., 2006).

In this structure, the water molecule play a very important role in the cohesion of the various groups. It participates with the organic cation and chloride anion in an H-bonding scheme of N—H···O and O—H···Cl interactions in the asymmetrical unit. Among these five H-bonds, only one could be considered to be strong according to the well known criterion of Blessing and Brown: N···O = 2.705 (4)Å (Blessing, 1986). The four remaining hydrogen bonds are relatively weak, and their donor···acceptor distances vary from 3.167 (2) to 3.219 (3) Å. Thus, these different interactions (hydrogen bonds, Van der Waals, and electrostatic) form a stable three-dimensional network.

Related literature top

For related literature, see: Aloui et al. (2006); Masse et al. (1993); Blessing (1986).

Experimental top

The title compound was prepared by slow addition, at room temperature, of an aqueous hydrochloric acid solution to an alcoholic solution of 2,5-xylidine in a 1:1 molar ratio. A crystalline precipitate was formed. After dissolution by adding H2O, the solution was slowly evaporated at room temperature over several days resulting in the formation of transparent plates of (I).

Refinement top

The water H atoms were located in a difference map and freely refined. The other H atoms were positioned geometrically (N—H = 0.89, C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the atomic arrangement of the title compound along the b axis with H bonds shown as dashed lines.
2,5-Dimethylanilinium chloride monohydrate top
Crystal data top
C8H12N+·Cl·H2OF(000) = 188
Mr = 175.65Dx = 1.187 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 7.515 (4) Åθ = 9.0–10.8°
b = 7.441 (3) ŵ = 0.34 mm1
c = 9.019 (2) ÅT = 293 K
β = 102.87 (3)°Plate, colourless
V = 491.7 (4) Å30.50 × 0.30 × 0.20 mm
Z = 2
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.025
Radiation source: Enraf Nonius FR590θmax = 28.0°, θmin = 2.3°
Graphite monochromatorh = 99
non–profiled ω scansk = 09
2058 measured reflectionsl = 511
1260 independent reflections2 standard reflections every 120 min
1166 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap and geom
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.0061P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1260 reflectionsΔρmax = 0.20 e Å3
111 parametersΔρmin = 0.14 e Å3
1 restraintAbsolute structure: Flack (1983), unique data only
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.17 (9)
Crystal data top
C8H12N+·Cl·H2OV = 491.7 (4) Å3
Mr = 175.65Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.515 (4) ŵ = 0.34 mm1
b = 7.441 (3) ÅT = 293 K
c = 9.019 (2) Å0.50 × 0.30 × 0.20 mm
β = 102.87 (3)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.025
2058 measured reflections2 standard reflections every 120 min
1260 independent reflections intensity decay: 5%
1166 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081Δρmax = 0.20 e Å3
S = 1.10Δρmin = 0.14 e Å3
1260 reflectionsAbsolute structure: Flack (1983), unique data only
111 parametersAbsolute structure parameter: 0.17 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H300.343 (5)0.410 (6)0.541 (3)0.068 (9)*
H310.467 (5)0.287 (7)0.548 (4)0.101 (13)*
Cl10.77059 (6)0.20498 (11)0.51544 (5)0.05039 (16)
C10.7901 (2)0.5395 (3)1.1684 (2)0.0384 (4)
N10.8345 (2)0.5589 (3)1.33479 (17)0.0417 (4)
H1A0.76240.64181.36170.062*
H1B0.95050.59231.36600.062*
H1C0.81740.45431.37740.062*
C60.9259 (3)0.5724 (3)1.0904 (2)0.0431 (4)
H61.04050.61011.14310.052*
C20.6147 (2)0.4859 (3)1.0962 (2)0.0427 (4)
C50.8914 (3)0.5491 (3)0.9335 (3)0.0487 (5)
C30.5844 (3)0.4628 (4)0.9399 (2)0.0541 (5)
H30.46980.42480.88730.065*
C70.4674 (3)0.4531 (4)1.1817 (3)0.0560 (6)
H7A0.50860.36541.25990.084*
H7B0.35970.40971.11280.084*
H7C0.43990.56341.22710.084*
C40.7171 (3)0.4937 (4)0.8597 (3)0.0551 (6)
H40.69020.47730.75480.066*
O10.3659 (3)0.3043 (4)0.5526 (3)0.0783 (6)
C81.0363 (4)0.5817 (4)0.8458 (3)0.0682 (7)
H8A1.13390.65020.90710.102*
H8B0.98500.64720.75460.102*
H8C1.08280.46870.81970.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0441 (2)0.0462 (2)0.0622 (3)0.0054 (3)0.01468 (18)0.0086 (3)
C10.0394 (9)0.0301 (8)0.0461 (9)0.0005 (7)0.0105 (7)0.0040 (7)
N10.0388 (7)0.0414 (8)0.0458 (8)0.0036 (7)0.0115 (6)0.0009 (7)
C60.0421 (9)0.0341 (9)0.0555 (11)0.0039 (8)0.0157 (8)0.0023 (9)
C20.0378 (8)0.0371 (9)0.0541 (11)0.0006 (8)0.0120 (8)0.0042 (9)
C50.0574 (11)0.0372 (9)0.0567 (11)0.0024 (9)0.0237 (9)0.0033 (10)
C30.0486 (11)0.0568 (14)0.0545 (12)0.0063 (11)0.0064 (9)0.0123 (11)
C70.0400 (10)0.0655 (16)0.0649 (14)0.0104 (11)0.0169 (9)0.0068 (12)
C40.0658 (13)0.0554 (13)0.0450 (11)0.0011 (12)0.0143 (9)0.0082 (10)
O10.0586 (11)0.0618 (13)0.1229 (18)0.0097 (10)0.0381 (11)0.0362 (12)
C80.0852 (18)0.0626 (17)0.0694 (15)0.0123 (15)0.0439 (14)0.0039 (14)
Geometric parameters (Å, º) top
C1—C61.383 (3)C3—C41.376 (3)
C1—C21.393 (3)C3—H30.9300
C1—N11.470 (2)C7—H7A0.9600
N1—H1A0.8900C7—H7B0.9600
N1—H1B0.8900C7—H7C0.9600
N1—H1C0.8900C4—H40.9300
C6—C51.391 (3)O1—H300.80 (4)
C6—H60.9300O1—H310.78 (4)
C2—C31.388 (3)C8—H8A0.9600
C2—C71.503 (3)C8—H8B0.9600
C5—C41.393 (3)C8—H8C0.9600
C5—C81.501 (3)
C6—C1—C2122.80 (19)C4—C3—H3118.7
C6—C1—N1118.46 (17)C2—C3—H3118.7
C2—C1—N1118.73 (18)C2—C7—H7A109.5
C1—N1—H1A109.5C2—C7—H7B109.5
C1—N1—H1B109.5H7A—C7—H7B109.5
H1A—N1—H1B109.5C2—C7—H7C109.5
C1—N1—H1C109.5H7A—C7—H7C109.5
H1A—N1—H1C109.5H7B—C7—H7C109.5
H1B—N1—H1C109.5C3—C4—C5120.8 (2)
C1—C6—C5120.3 (2)C3—C4—H4119.6
C1—C6—H6119.9C5—C4—H4119.6
C5—C6—H6119.9H30—O1—H31110 (4)
C3—C2—C1115.72 (19)C5—C8—H8A109.5
C3—C2—C7121.90 (19)C5—C8—H8B109.5
C1—C2—C7122.38 (19)H8A—C8—H8B109.5
C6—C5—C4117.7 (2)C5—C8—H8C109.5
C6—C5—C8121.6 (2)H8A—C8—H8C109.5
C4—C5—C8120.7 (2)H8B—C8—H8C109.5
C4—C3—C2122.7 (2)
C2—C1—C6—C51.2 (3)C1—C6—C5—C8179.4 (2)
N1—C1—C6—C5177.61 (19)C1—C2—C3—C41.2 (4)
C6—C1—C2—C31.5 (3)C7—C2—C3—C4179.4 (3)
N1—C1—C2—C3177.3 (2)C2—C3—C4—C50.6 (4)
C6—C1—C2—C7179.1 (2)C6—C5—C4—C30.2 (4)
N1—C1—C2—C72.1 (3)C8—C5—C4—C3179.7 (3)
C1—C6—C5—C40.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H30···Cl1i0.81 (4)2.37 (4)3.168 (3)171 (4)
O1—H31···Cl10.78 (4)2.44 (4)3.219 (3)174 (5)
N1—H1A···O1ii0.891.822.705 (4)171
N1—H1B···Cl1iii0.892.293.167 (2)169
N1—H1C···Cl1iv0.892.303.189 (3)173
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y+1/2, z+2; (iii) x+2, y+1/2, z+2; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H12N+·Cl·H2O
Mr175.65
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)7.515 (4), 7.441 (3), 9.019 (2)
β (°) 102.87 (3)
V3)491.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2058, 1260, 1166
Rint0.025
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.081, 1.10
No. of reflections1260
No. of parameters111
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.14
Absolute structureFlack (1983), unique data only
Absolute structure parameter0.17 (9)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H30···Cl1i0.81 (4)2.37 (4)3.168 (3)171 (4)
O1—H31···Cl10.78 (4)2.44 (4)3.219 (3)174 (5)
N1—H1A···O1ii0.891.822.705 (4)171
N1—H1B···Cl1iii0.892.293.167 (2)169
N1—H1C···Cl1iv0.892.303.189 (3)173
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y+1/2, z+2; (iii) x+2, y+1/2, z+2; (iv) x, y, z+1.
 

References

First citationAloui, Z., Abid, S. & Rzaigui, M. (2006). Anal. Sci. (Japan), 22, x201–x202.  CSD CrossRef CAS Google Scholar
First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMasse, R., Bagieu-Beucher, M., Pecault, J., Levy, J. P. & Zyss, J. (1993). Nonlin. Opt. 5, 413–423.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds