organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o109-o110

1,3-Bis[4-(di­methyl­amino)benz­yl]-4,5,6,7-tetra­hydro-1H-1,3-diazepan-2-ium chloride

aDepartment of Natural Sciences, Fayetteville State University, Fayetteville, NC 28301, USA, bDepartment of Chemistry, Faculty of Pharmacy, Mersin University, Mersin, TR 33169, Turkey, cDepartment of Chemistry, Clemson University, Clemson, SC 29634, USA, dDepartment of Chemistry, Faculty of Science and Arts, İnönü University, Malatya, TR 44280, Turkey, and eDepartment of Chemistry, Faculty of Science, Ege University, Bornova-İzmir, TR 35100, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com

(Received 12 November 2008; accepted 8 December 2008; online 13 December 2008)

The title N-heterocyclic carbene derivative, C23H33N4+·Cl, has been synthesized and characterized by elemental analysis, 1H and 13C NMR, IR spectroscopy and a single-crystal X-ray diffraction study. Ions of the title compound are linked by three C—H⋯Cl inter­actions. The seven-membered 1,3-diazepane ring has a form inter­mediate between twist-chair and twist-boat.

Related literature

For the synthesis, see: Özdemir et al. (2005[Özdemir, I., Gürbüz, N., Gök, Y., Çetinkaya, E. & Çetinkaya, B. (2005). Synlett, 15, 2394-2396.]); Yaşar et al. (2008[Yaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. & Bruneau, L. (2008). Eur. J. Org. Chem. 12, 2142-2149.]). For general background, see: Hermann (2002[Hermann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.]); Littke & Fu (2002[Littke, A. F. & Fu, G. C. (2002). Angew. Chem. Int. Ed. 41, 4176-4211.]); Evans & Boeyens (1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related compounds, see: Arslan et al. (2007a[Arslan, H., VanDerveer, D., Özdemir, İ., Demir, S. & Çetinkaya, B. (2007a). Acta Cryst. E63, m770-m771.],b[Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, I. & Çetinkaya, B. (2007b). Acta Cryst. E63, m942-m944.],c[Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2007c). Acta Cryst. E63, m1001-m1003.]). For general background to the use of N-heterocyclic carbenes as phosphine mimics and in catalysis, see: Arduengo & Krafczyk (1998[Arduengo, A. J. & Krafczyk, R. (1998). Chem. Unserer. Z. 32, 6-14.]); Dullius et al. (1998[Dullius, J. E. L., Suarez, P. A. Z., Einloft, S., de Souza, R. F., Dupont, J., Fischer, J. & De Cian, A. (1998). Organometallics, 17, 815-819.]); Glorius (2007[Glorius, F. (2007). Topics in Organometallic Chemistry, Vol. 21, N-Heterocyclic Carbenes inTransition Metal Catalysis. Heidelberg: Springer.]); Hermann & Köcher (1997[Hermann, W. A. & Köcher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162-2187.]); Nolan (2006[Nolan, S. P. (2006). N-HeterocyclicCarbenes in Synthesis. Weinheim: Wiley.]); Regitz (1996[Regitz, M. (1996). Angew. Chem. Int. Ed. Engl. 35, 725-728.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & &Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H33N4+·Cl

  • Mr = 400.98

  • Orthorhombic, P b c n

  • a = 22.663 (5) Å

  • b = 10.081 (2) Å

  • c = 9.6368 (19) Å

  • V = 2201.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 153 (2) K

  • 0.46 × 0.12 × 0.07 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas,USA.]) Tmin = 0.918, Tmax = 0.987

  • 14704 measured reflections

  • 1947 independent reflections

  • 1481 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.160

  • S = 1.10

  • 1947 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1i 0.96 2.53 3.486 (4) 180
C2—H2A⋯Cl1ii 0.96 2.82 3.688 (3) 151
C4—H4A⋯Cl1ii 0.96 2.81 3.682 (3) 152
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z+1.

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-heterocyclic carbenes, which can be considered phosphine mimics, have attracted considerable attentionas possible alternatives for widely used phosphine ligands (Regitz, 1996; Hermann & Köcher, 1997; Arduengo & Krafczyk, 1998; Dullius et al., 1998; Evans & Boeyens, 1989; Hermann, 2002; Littke & Fu, 2002). N-heterocyclic carbene-containing metal complexes have also revealed excellent catalytic properties in a wide range of metal-catalyzed transformations (Glorius, 2007; Nolan, 2006). Catalysts containing these ligands are useful in Heck, Suzuki and Sonogashira couplings, Buchwald Hartwig amination, olefin metathesis, hydroformylation and hydrogenation.

In recent years, we have pursued investigations on the synthesis, characterization, crystal structure, and catalytic activities of new N-heterocyclic carbene derivatives (Yaşar et al., 2008; Arslan et al., 2007a, 2007b, 2007c). In the present work, we report the preparation and characterization of a novel N-heterocyclic carbene derivative, 1,3-bis(4-(dimethylamino)benzyl)-4,5,6,7-tetrahydro-1H-1,3-diazepin-2-ium chloride, (I). The ligand was purified by re-crystallization from an ethanol:diethylether mixture (1:2) and was characterized by elemental analysis and 1H and 13C-NMR spectroscopy. The analytical and spectroscopic data are consistent with the proposed structure given in Scheme 1.

The molecular structure of the title compound, (I), is depicted in Fig. 1. The structure consists of a 1,3-bis(4-(dimethylamino)benzyl)-4,5,6,7-tetrahydro-1H-1,3-diazepin-2-ium cation and a Cl-anion. All bond lengths are in normal ranges (Allen et al., 1987). A seven-membered ring should have the chair, the boat, the twist chair or the twist boat according to Cremer & Pople (1975). The conformation of a seven-membered ring can be numerically described by four ring puckering parameters, q2, q3, ϕ2 and ϕ3. The 1,3-diazepane ring exhibits a puckered conformation, with puckering parameters Cremer & Pople (1975), q2= 0.374 (3) Å, q3 = 0.462 (3) Å, ϕ2= 347.1 (4) °, ϕ3= 115.7 (3)°, and QT= 0.595 (3) Å. The largest deviations from the mean plane are 0.403 (3) Å for atoms C3 and C3A. q2 should be 0 for a 100% twist chair form. According to Cremer & Pople ring-puckering analysis results, the 1,3-diazepane seven-membered ring can be accurately described as an intermediate form between the 44% twist chair form and the 55% twist boat form.

The crystal packing is shown in Fig. 2. Although there are no intramolecular D—H···A contacts, intermolecular C—H···Cl hydrogen bonds link the molecules of (I) into one-dimensional chains extending along the [010] direction (Fig. 3, Table 1) (Macrae et al., 2006).

Related literature top

For the synthesis, see: Özdemir et al. (2005); Yaşar et al. (2008). For general background, see: Hermann (2002); Littke & Fu (2002); Evans & Boeyens (1989). For puckering parameters, see: Cremer & Pople (1975). For related compounds, see: Arslan et al. (2007a,b,c). For related literature, see: Arduengo & Krafczyk (1998); Dullius et al. (1998); Glorius (2007); Hermann & Köcher (1997); Nolan (2006); Regitz (1996). For bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of 1,4-bis(p-dimethylaminobenzylamino)butane (1 mmol) CH(OEt)3 (30 ml), NH4Cl (1 mmol) was added; the reaction mixture was heated for 18 h at 100 °C (Scheme 2). A white solid was precipitated. Then, the precipitate was crystallized from EtOH-Et2O (1:2) mixture (Özdemir et al., 2005). 1,3-bis(4-(dimethylamino)benzyl)-4,5,6,7-tetrahydro-1H-1,3-diazepin-2-ium chloride: Yield: 3.11 g (92%), M.p. 247–248 °C. 1H NMR (300.13 MHz, DMSO) δ = 1.68 (quintet, J = 6.8 Hz, 4H, NCH2CH2CH2CH2N), 2.89 (s, 12H, p-(CH3)2NC6H4CH2), 3.52 (t, J = 6.8 Hz, 4H, NCH2CH2CH2CH2N), 4.54 (s, 4H, p-(CH3)2NC6H4CH2), 6.73 and 7.27 (d, J =8.4 Hz, 8H, p-(CH3)2NC6H4CH2), 8.87 (s,1H, 2-CH). 13C{1H}NMR (75.47 MHz, DMSO): δ = 24.7, 48.7 (NCH2CH2CH2CH2N), 40.7 (p-(CH3)2NC6H4CH2), 60.1 (p-(CH3)2NC6H4CH2), 112.9, 122.2, 130.1, 151.1 (p-(CH3)2NC6H4CH2), 158.3 (2-CH). Anal. Calcd. for C23H33N4Cl: C, 68.89; H, 8.29; N, 13.97. Found: C, 68.88; H, 8.30; N, 13.94.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalClear (Rigaku/MSC, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I).
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of linear chains of hydrogen-bonded (dashed lines) cations and anions along the [010] direction.
[Figure 4] Fig. 4. The formation of the title compound.
1,3-Bis[4-(dimethylamino)benzyl]-4,5,6,7-tetrahydro-1H-1,3- diazepan-2-ium chloride top
Crystal data top
C23H33N4+·ClF(000) = 864
Mr = 400.98Dx = 1.210 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 5004 reflections
a = 22.663 (5) Åθ = 3.1–26.4°
b = 10.081 (2) ŵ = 0.19 mm1
c = 9.6368 (19) ÅT = 153 K
V = 2201.7 (8) Å3Rod, colorless
Z = 40.46 × 0.12 × 0.07 mm
Data collection top
Rigaku Mercury CCD
diffractometer
1947 independent reflections
Radiation source: Sealed Tube1481 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.053
Detector resolution: 14.6306 pixels mm-1θmax = 25.1°, θmin = 3.1°
ω scansh = 2723
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1211
Tmin = 0.918, Tmax = 0.987l = 1111
14704 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0629P)2 + 3.1587P]
where P = (Fo2 + 2Fc2)/3
1947 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C23H33N4+·ClV = 2201.7 (8) Å3
Mr = 400.98Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 22.663 (5) ŵ = 0.19 mm1
b = 10.081 (2) ÅT = 153 K
c = 9.6368 (19) Å0.46 × 0.12 × 0.07 mm
Data collection top
Rigaku Mercury CCD
diffractometer
1947 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1481 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.987Rint = 0.053
14704 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.10Δρmax = 0.28 e Å3
1947 reflectionsΔρmin = 0.30 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50000.27328 (9)0.25000.0326 (3)
N10.53058 (10)0.3281 (2)0.8530 (2)0.0263 (5)
N20.81399 (11)0.3446 (3)0.8340 (3)0.0465 (8)
C10.50000.3809 (4)0.75000.0234 (8)
H10.50000.47610.75000.028*
C20.54103 (13)0.1885 (3)0.8905 (3)0.0320 (7)
H2A0.53910.18100.98970.038*
H2B0.58050.16560.86310.038*
C30.49952 (13)0.0887 (3)0.8287 (3)0.0299 (7)
H3A0.46020.10740.85990.036*
H3B0.51000.00190.86160.036*
C40.56701 (12)0.4207 (3)0.9380 (3)0.0286 (6)
H4A0.55880.40621.03450.034*
H4B0.55640.51040.91600.034*
C50.63188 (12)0.4015 (3)0.9123 (3)0.0280 (6)
C60.65910 (13)0.4560 (3)0.7968 (3)0.0361 (7)
H60.63590.50680.73270.043*
C70.71893 (14)0.4394 (3)0.7709 (4)0.0410 (8)
H70.73640.47910.69020.049*
C80.75396 (13)0.3648 (3)0.8622 (3)0.0359 (7)
C90.72698 (13)0.3100 (3)0.9785 (3)0.0359 (7)
H90.75000.25851.04250.043*
C100.66696 (13)0.3289 (3)1.0031 (3)0.0316 (7)
H100.64940.29091.08460.038*
C110.84333 (15)0.4411 (4)0.7441 (5)0.0577 (11)
H11A0.82430.44240.65520.087*
H11B0.88400.41660.73280.087*
H11C0.84100.52760.78540.087*
C120.85025 (15)0.2829 (4)0.9408 (4)0.0569 (11)
H12A0.85010.33741.02250.085*
H12B0.89000.27370.90740.085*
H12C0.83460.19700.96280.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0410 (6)0.0223 (5)0.0347 (5)0.0000.0031 (4)0.000
N10.0280 (12)0.0207 (11)0.0302 (12)0.0008 (9)0.0021 (10)0.0010 (10)
N20.0300 (14)0.0458 (17)0.064 (2)0.0016 (12)0.0035 (13)0.0117 (15)
C10.0210 (17)0.0196 (18)0.030 (2)0.0000.0053 (16)0.000
C20.0399 (16)0.0206 (14)0.0356 (16)0.0035 (12)0.0043 (13)0.0019 (12)
C30.0376 (15)0.0191 (13)0.0331 (16)0.0013 (12)0.0030 (13)0.0035 (11)
C40.0303 (14)0.0239 (14)0.0315 (15)0.0006 (11)0.0013 (12)0.0053 (12)
C50.0300 (15)0.0251 (14)0.0290 (15)0.0003 (11)0.0000 (11)0.0032 (12)
C60.0331 (16)0.0372 (17)0.0379 (17)0.0004 (13)0.0013 (13)0.0056 (14)
C70.0386 (17)0.0415 (18)0.0430 (19)0.0055 (14)0.0073 (14)0.0058 (15)
C80.0299 (15)0.0327 (16)0.0450 (17)0.0011 (12)0.0007 (14)0.0093 (14)
C90.0353 (16)0.0350 (17)0.0373 (17)0.0069 (13)0.0062 (13)0.0036 (14)
C100.0348 (16)0.0299 (15)0.0300 (15)0.0002 (12)0.0000 (12)0.0013 (13)
C110.0358 (18)0.045 (2)0.092 (3)0.0136 (15)0.0185 (19)0.014 (2)
C120.0326 (17)0.067 (3)0.071 (3)0.0097 (17)0.0076 (18)0.024 (2)
Geometric parameters (Å, º) top
N1—C11.322 (3)C5—C61.386 (4)
N1—C21.472 (3)C5—C101.391 (4)
N1—C41.491 (3)C6—C71.389 (4)
N2—C81.402 (4)C6—H60.9600
N2—C121.456 (5)C7—C81.404 (5)
N2—C111.462 (5)C7—H70.9600
C1—N1i1.322 (3)C8—C91.391 (4)
C1—H10.9600C9—C101.394 (4)
C2—C31.501 (4)C9—H90.9600
C2—H2A0.9600C10—H100.9600
C2—H2B0.9600C11—H11A0.9599
C3—C3i1.517 (6)C11—H11B0.9599
C3—H3A0.9600C11—H11C0.9599
C3—H3B0.9600C12—H12A0.9599
C4—C51.503 (4)C12—H12B0.9599
C4—H4A0.9600C12—H12C0.9599
C4—H4B0.9600
C1—N1—C2130.8 (3)C10—C5—C4121.5 (3)
C1—N1—C4116.8 (2)C5—C6—C7122.1 (3)
C2—N1—C4112.0 (2)C5—C6—H6119.0
C8—N2—C12118.2 (3)C7—C6—H6119.0
C8—N2—C11117.3 (3)C6—C7—C8120.3 (3)
C12—N2—C11116.5 (3)C6—C7—H7119.9
N1i—C1—N1132.6 (4)C8—C7—H7119.9
N1i—C1—H1113.7C9—C8—N2121.7 (3)
N1—C1—H1113.7C9—C8—C7118.0 (3)
N1—C2—C3116.3 (2)N2—C8—C7120.3 (3)
N1—C2—H2A108.2C8—C9—C10120.8 (3)
C3—C2—H2A108.2C8—C9—H9119.6
N1—C2—H2B108.2C10—C9—H9119.6
C3—C2—H2B108.2C5—C10—C9121.5 (3)
H2A—C2—H2B107.4C5—C10—H10119.2
C2—C3—C3i112.8 (2)C9—C10—H10119.2
C2—C3—H3A109.0N2—C11—H11A109.5
C3i—C3—H3A109.0N2—C11—H11B109.5
C2—C3—H3B109.0H11A—C11—H11B109.5
C3i—C3—H3B109.0N2—C11—H11C109.5
H3A—C3—H3B107.8H11A—C11—H11C109.5
N1—C4—C5111.8 (2)H11B—C11—H11C109.5
N1—C4—H4A109.3N2—C12—H12A109.5
C5—C4—H4A109.3N2—C12—H12B109.5
N1—C4—H4B109.3H12A—C12—H12B109.5
C5—C4—H4B109.3N2—C12—H12C109.5
H4A—C4—H4B107.9H12A—C12—H12C109.5
C6—C5—C10117.4 (3)H12B—C12—H12C109.5
C6—C5—C4121.1 (3)
C2—N1—C1—N1i0.7 (2)C12—N2—C8—C910.0 (4)
C4—N1—C1—N1i171.0 (2)C11—N2—C8—C9157.9 (3)
C1—N1—C2—C318.0 (4)C12—N2—C8—C7171.5 (3)
C4—N1—C2—C3170.0 (2)C11—N2—C8—C723.6 (5)
N1—C2—C3—C3i59.9 (4)C6—C7—C8—C90.5 (5)
C1—N1—C4—C5109.3 (2)C6—C7—C8—N2178.0 (3)
C2—N1—C4—C563.9 (3)N2—C8—C9—C10178.6 (3)
N1—C4—C5—C680.0 (3)C7—C8—C9—C100.1 (5)
N1—C4—C5—C10100.1 (3)C6—C5—C10—C90.8 (4)
C10—C5—C6—C70.2 (5)C4—C5—C10—C9179.3 (3)
C4—C5—C6—C7179.9 (3)C8—C9—C10—C50.7 (5)
C5—C6—C7—C80.4 (5)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl1ii0.962.533.486 (4)180
C2—H2A···Cl1iii0.962.823.688 (3)151
C4—H4A···Cl1iii0.962.813.682 (3)152
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC23H33N4+·Cl
Mr400.98
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)153
a, b, c (Å)22.663 (5), 10.081 (2), 9.6368 (19)
V3)2201.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.46 × 0.12 × 0.07
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.918, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
14704, 1947, 1481
Rint0.053
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.160, 1.10
No. of reflections1947
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: CrystalClear (Rigaku/MSC, 2001), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl1i0.962.533.486 (4)180.0
C2—H2A···Cl1ii0.962.823.688 (3)151.0
C4—H4A···Cl1ii0.962.813.682 (3)152.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1.
 

Acknowledgements

We thank the Technological and Scientific Research Council of Turkey TÜBİTAK-CNRS [TBAG-U/181 (106 T716)] and İnonu University research fund (BAP 2008/03 Güdümlü) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & &Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArduengo, A. J. & Krafczyk, R. (1998). Chem. Unserer. Z. 32, 6–14.  Web of Science CrossRef CAS Google Scholar
First citationArslan, H., VanDerveer, D., Özdemir, İ., Demir, S. & Çetinkaya, B. (2007a). Acta Cryst. E63, m770–m771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArslan, H., VanDerveer, D., Yaşar, S., Özdemir, I. & Çetinkaya, B. (2007b). Acta Cryst. E63, m942–m944.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2007c). Acta Cryst. E63, m1001–m1003.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDullius, J. E. L., Suarez, P. A. Z., Einloft, S., de Souza, R. F., Dupont, J., Fischer, J. & De Cian, A. (1998). Organometallics, 17, 815-819.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGlorius, F. (2007). Topics in Organometallic Chemistry, Vol. 21, N-Heterocyclic Carbenes inTransition Metal Catalysis. Heidelberg: Springer.  Google Scholar
First citationHermann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290–1309.  CrossRef Google Scholar
First citationHermann, W. A. & Köcher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162–2187.  CrossRef Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas,USA.  Google Scholar
First citationLittke, A. F. & Fu, G. C. (2002). Angew. Chem. Int. Ed. 41, 4176–4211.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNolan, S. P. (2006). N-HeterocyclicCarbenes in Synthesis. Weinheim: Wiley.  Google Scholar
First citationÖzdemir, I., Gürbüz, N., Gök, Y., Çetinkaya, E. & Çetinkaya, B. (2005). Synlett, 15, 2394–2396.  Google Scholar
First citationRegitz, M. (1996). Angew. Chem. Int. Ed. Engl. 35, 725–728.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. & Bruneau, L. (2008). Eur. J. Org. Chem. 12, 2142–2149.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o109-o110
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds