organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o208-o209

1-(4-tert-Butyl­benz­yl)-3-(3,4,5-tri­meth­oxy­benz­yl)benzimidazolium bromide monohydrate

aDepartment of Natural Sciences, Fayetteville State University, Fayetteville, NC 28301, USA, bDepartment of Chemistry, Faculty of Pharmacy, Mersin University, Mersin, TR 33169, Turkey, cDepartment of Chemistry, Clemson University, Clemson, SC 29634, USA, dDepartment of Chemistry, Faculty of Science and Arts, İnönü University, Malatya, TR 44280, Turkey, and eDepartment of Chemistry, Faculty of Science, Ege University, Bornova-İzmir, TR 35100, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com

(Received 11 December 2008; accepted 18 December 2008; online 24 December 2008)

A novel N-heterocyclic carbene derivative, C28H33N2O3+·Br·H2O, was synthesized and characterized by elemental analysis, 1H and 13C-NMR and IR spectroscopy and a single-crystal X-ray diffraction study. Ions of the title compound are linked by ππ stacking inter­actions (face–face separation 3.441 Å) and C—H⋯Br and O—H⋯Br inter­actions. Intra- and intermolecular C—H⋯O inter­actions are also present. The C—N bond lengths for the compound [1.329 (3), 1.325 (3), 1.389 (3) and 1.391 (3) Å] are all shorter than the average single C—N bond length of 1.48 Å, thus showing varying degrees of double-bond character.

Related literature

For the synthesis, see: Yaşar et al. (2008[Yaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. L. & Bruneau, L. (2008). Eur. J. Org. Chem. 12, 2142-2149.]). For general background, see: Herrmann (2002[Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.]); Arduengo & Krafczyc (1998[Arduengo, A. J. & Krafczyc, R. (1998). Chem. Ztg. 32, 6-14.]); Herrmann et al. (1995[Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2371-2374.], 1998[Herrmann, W. A., Reisinger, C. P. & Spiegler, M. (1998). J. Organomet. Chem. 557, 93-96.]); Navarro et al. (2006[Navarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem. 71, 685-692.]). For related compounds, see: Yaşar et al. (2008[Yaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. L. & Bruneau, L. (2008). Eur. J. Org. Chem. 12, 2142-2149.]); Arslan et al. (2009[Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2009). Acta Cryst. E65, o121-o122.] and references therein). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C28H33N2O3+·Br·H2O

  • Mr = 543.49

  • Triclinic, [P \overline 1]

  • a = 10.389 (2) Å

  • b = 10.436 (2) Å

  • c = 14.038 (3) Å

  • α = 109.79 (3)°

  • β = 90.70 (3)°

  • γ = 103.57 (3)°

  • V = 1385.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 298 (2) K

  • 0.48 × 0.29 × 0.26 mm

Data collection
  • Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas,USA.]) Tmin = 0.514, Tmax = 0.673

  • 11938 measured reflections

  • 4860 independent reflections

  • 3921 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.112

  • S = 1.08

  • 4860 reflections

  • 328 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯Br1i 0.87 (3) 2.54 (3) 3.393 (3) 169 (5)
O4—H4B⋯Br1ii 0.88 (5) 2.52 (5) 3.399 (3) 176 (5)
C1—H1⋯Br1 0.96 2.65 3.587 (3) 165
C3—H3⋯O2iii 0.96 2.57 3.294 (4) 132
C6—H6⋯O4 0.96 2.38 3.305 (5) 161
C10—H10⋯O4 0.96 2.59 3.463 (5) 152
C14—H14⋯Br1 0.96 2.88 3.823 (3) 167
C18—H18A⋯Br1iv 0.96 2.82 3.718 (3) 155
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) x+1, y, z; (iv) -x+2, -y+2, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-heterocyclic carbenes have attracted much interest as a new class of compound in organometallic chemistry. The applications of N-heterocyclic carbenes were first reported by Herrmann in 1998 (Herrmann et al., 1998). Recently, Herrmann et al. and other researchers have designed new N-heterocyclic carbene compounds and have used them to prepare new catalysts for Suzuki-Miyura, Sonogashira, Stille and Heck reactions (Herrmann, 2002; Herrmann et al., 1995; Navarro et al., 2006; Arduengo & Krafczyc, 1998).

Recently, we have focused on the synthesis, characterization and use of palladium, platinum and ruthenium N-heterocyclic carbene complexes as catalysts for Suzuki-Miyura and Heck reactions (Yaşar et al., 2008; Arslan et al., 2009, and references therein).

In the present work, we report the preparation and characterization of a novel N-heterocyclic carbene derivative, 1-(4-tert-butylbenzyl)-3-(3,4,5-trimethoxybenzyl)benzimidazolium bromide monohydrate, (I). The compound was purified by re-crystallization from ethanol:diethylether mixture (1:1) and characterized by elemental analysis, 1H and 13C-NMR and IR spectroscopy. The analytical and spectroscopic data are consistent with the proposed structure given in Scheme 1.

The molecular structure of the title compound is depicted in Figure 1. The crystal structure is composed of a 1-(4-tert-butylbenzyl)-3-(3,4,5-trimethoxybenzyl)benzimidazolium cation, a Br anion and solvent water molecules. All bond lengths in (I) are in normal ranges (Allen et al.,1987). The benzimidazole ring is almost coplanar with a maximum and a minimum deviation of 0.016 (2) Å for atom C2 and, 0.002 (2) Å for atom C6, respectively. In the crystal structure, π···π stacking interactions occurs between parallel benzimidazole rings, with a face-face separation of 3.441 Å (Figure 2) (Macrae et al., 2006). The dihedral angle between the benzimidazole ring and 4-tert-butylbenzyl and 3,4,5-trimethoxybenzyl groups are 70.23 (3)° and 73.48 (3) o, respectively.

The C—N bond lengths for the investigated compound are all shorter than the average single C—N bond length of 1.48 Å, being N1—C1 = 1.329 (3) Å, N2—C1 =1.325 (3) Å, N1—C7 = 1.389 (3) Å, and N2—C2 = 1.391 (3) Å thus showing varying degrees of double bond character in these C—N bonds. The other CN bond lengths are in agreement with the expected 1.48 Å C—N single bond lengths. This information indicates a partial electron delocalization within the C7—N1—C1—N2—C2 fragment. The N1—C1—N2 bond angle is also consistent with this hypothesis.

The crystal packing is shown in Figure 3. The intermolecular C—H···Br and O—H···Br hydrogen bonds (Figure 4, Table 1) and π···π stacking interactions link the molecules of the title compound.

Related literature top

For the synthesis, see: Yaşar et al. (2008). For general background, see: Herrmann (2002); Arduengo & Krafczyc (1998); Herrmann et al. (1995, 1998); Navarro et al. (2006). For related compounds, see: Yaşar et al. (2008); Arslan et al. (2009 and references therein). For bond-length data, see: Allen et al. (1987).

Experimental top

4-tertbutylbenzyl bromide (2.27 g, 10.0 mmol) was slowly added to a solution of 1-(3,4,5-trimethoxylbenzyl) benzimidazole (II) (2.98 g, 10.0 mmol) in DMF (5 mL) and the resulting mixture was stirred at room temperature for 5 h (Scheme 2). Diethylether (10 ml) was added to obtain a white crystalline solid which was filtered off. The solid was washed with diethylether (3 x 10 ml) dried under vacuum and the crude product was re-crystallized from ethanole/diethylether. M.p. = 246–247°C; yield 4.47 g, 85%; ν(CN) = 1594 cm-1. 1H NMR (δ, 200.13 MHz, CDCl3): 1.25 (s, 9H, CH2C6H4C(CH3)3-p); 3.86 and 3.79 (s, 9H, CH2C6H2(OCH3)3-3,4,5); 5.81 (s,4H, CH2C6H2(OCH3)3-3,4,5 and CH2C6H4C(CH3)3-p); 6.90 (s, 2H, CH2C6H2(OCH3)3-3,4,5); 7.33 and 7.48 (m, 8H, NC6H4N and CH2C6H4C(CH3)3-p); 11.64 (s, 1H, NCHN). 13C NMR (δ, 50 MHz, CDCl3): 31.6 (CH2C6H4C(CH3)3-p); 35.1 (CH2C6H4C(CH3)3-p); 51.6 (CH2C6H4C(CH3)3-p); 52.1 (CH2C6H2(OCH3)3-3,4,5); 57.2 and 61.2 (CH2C6H2(OCH3)3-3,4,5); 106.5, 131.7, 138.9 and 152.9 (CH2C6H2(OCH3)3-3,4,5); 114.2, 127.5, 128.7, 130.1, 131.8 and 143.2 (NC6H4N); 114.1, 126.7, 128.5 and 130.9 (CH2C6H4C(CH3)3-p); 154.2 (NCHN). Anal. Found: C, 63.96; H, 6.28; N: 5.35. Calc. for C28H33N2O3Br: C, 64.00; H, 6.33; N, 5.33.

Refinement top

All H atoms attached to carbons were geometrically fixed and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å, and Uiso(H) = 1.5Ueq(C) of the attached C atom for methyl H atoms and 1.2Ueq(C) for other H atoms. The water H atoms were located from a Fourier map and their distances were constrained to 0.86 Å and the Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalClear (Rigaku/MSC, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I).
[Figure 3] Fig. 3. A packing diagram for (I).
[Figure 4] Fig. 4. Hydrogen bonding for (I). Symmetry: O4A = x, 1 + y, z; O4B =1 - x,1 - y,1 - z; Br1A, etc. = 1 - x, 2 - y, 1 - z.
[Figure 5] Fig. 5. The preparation of the title compound.
1-(4-tert-Butylbenzyl)-3-(3,4,5-trimethoxybenzyl)benzimidazolium bromide monohydrate top
Crystal data top
C28H33N2O3+·Br·H2OZ = 2
Mr = 543.49F(000) = 568
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.389 (2) ÅCell parameters from 4659 reflections
b = 10.436 (2) Åθ = 3.2–26.4°
c = 14.038 (3) ŵ = 1.52 mm1
α = 109.79 (3)°T = 298 K
β = 90.70 (3)°Rod, colorless
γ = 103.57 (3)°0.48 × 0.29 × 0.26 mm
V = 1385.1 (6) Å3
Data collection top
Mercury CCD
diffractometer
4860 independent reflections
Radiation source: Sealed Tube3921 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.022
Detector resolution: 14.6306 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scansh = 1212
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1212
Tmin = 0.514, Tmax = 0.673l = 1616
11938 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.6557P]
where P = (Fo2 + 2Fc2)/3
4860 reflections(Δ/σ)max = 0.001
328 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.55 e Å3
Crystal data top
C28H33N2O3+·Br·H2Oγ = 103.57 (3)°
Mr = 543.49V = 1385.1 (6) Å3
Triclinic, P1Z = 2
a = 10.389 (2) ÅMo Kα radiation
b = 10.436 (2) ŵ = 1.52 mm1
c = 14.038 (3) ÅT = 298 K
α = 109.79 (3)°0.48 × 0.29 × 0.26 mm
β = 90.70 (3)°
Data collection top
Mercury CCD
diffractometer
4860 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3921 reflections with I > 2σ(I)
Tmin = 0.514, Tmax = 0.673Rint = 0.022
11938 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.31 e Å3
4860 reflectionsΔρmin = 0.55 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.75295 (3)0.93707 (4)0.51515 (3)0.06917 (15)
N10.8315 (2)0.5830 (2)0.57685 (15)0.0384 (5)
N21.0326 (2)0.7189 (2)0.62364 (16)0.0407 (5)
C10.9118 (3)0.7064 (3)0.5843 (2)0.0439 (6)
H10.88580.77660.56400.053*
C21.0322 (2)0.5974 (2)0.64403 (18)0.0363 (5)
C31.1313 (3)0.5558 (3)0.6834 (2)0.0497 (7)
H31.21960.61590.70500.060*
C41.0966 (3)0.4233 (3)0.6901 (2)0.0609 (8)
H41.16260.39020.71680.073*
C50.9681 (3)0.3364 (3)0.6591 (2)0.0573 (7)
H50.94830.24490.66500.069*
C60.8695 (3)0.3772 (3)0.6207 (2)0.0449 (6)
H60.78110.31700.59970.054*
C70.9039 (2)0.5104 (2)0.61354 (18)0.0351 (5)
C80.6876 (2)0.5379 (3)0.5428 (2)0.0454 (6)
H8A0.66170.43770.50840.054*
H8B0.66990.58140.49550.054*
C90.6061 (2)0.5776 (3)0.6319 (2)0.0438 (6)
C100.5443 (3)0.4785 (3)0.6729 (2)0.0456 (6)
H100.55230.38350.64490.055*
C110.4705 (3)0.5178 (3)0.7550 (2)0.0521 (7)
C120.4583 (3)0.6547 (3)0.7952 (2)0.0537 (7)
C130.5222 (3)0.7534 (3)0.7543 (2)0.0553 (7)
C140.5963 (3)0.7155 (3)0.6720 (2)0.0508 (7)
H140.63990.78390.64350.061*
C150.4234 (4)0.2906 (4)0.7695 (3)0.0873 (12)
H15A0.38730.24140.69980.131*
H15B0.37830.24160.81120.131*
H15C0.51660.29510.77560.131*
C160.4304 (4)0.7401 (6)0.9699 (3)0.1083 (17)
H16A0.47380.67350.98050.162*
H16B0.36200.75261.01500.162*
H16C0.49440.82860.98350.162*
C170.5773 (7)0.9936 (4)0.7672 (4)0.119 (2)
H17A0.67050.99840.77360.179*
H17B0.56221.08230.80820.179*
H17C0.54780.97310.69730.179*
C181.1457 (3)0.8450 (3)0.6461 (2)0.0536 (7)
H18A1.14510.88260.59250.064*
H18B1.22770.81820.64830.064*
C191.1387 (3)0.9570 (3)0.7460 (2)0.0450 (6)
C201.0657 (4)1.0516 (3)0.7490 (2)0.0671 (9)
H201.02051.04660.68730.081*
C211.0563 (4)1.1546 (3)0.8403 (2)0.0677 (9)
H211.00481.21980.84030.081*
C221.1192 (3)1.1659 (3)0.9317 (2)0.0452 (6)
C231.1931 (3)1.0704 (3)0.9268 (2)0.0532 (7)
H231.23901.07520.98830.064*
C241.2033 (3)0.9667 (3)0.8350 (2)0.0533 (7)
H241.25580.90190.83420.064*
C251.1111 (3)1.2836 (3)1.0308 (2)0.0591 (8)
C260.9702 (4)1.3046 (5)1.0365 (3)0.0903 (13)
H26A0.96651.37791.09930.135*
H26B0.90851.21861.03340.135*
H26C0.94721.33060.98040.135*
C271.2089 (5)1.4190 (4)1.0328 (4)0.1013 (15)
H27A1.29761.40661.03150.152*
H27B1.20371.49471.09370.152*
H27C1.18681.44080.97450.152*
C281.1443 (4)1.2485 (5)1.1241 (3)0.0840 (11)
H28A1.23531.24351.12660.126*
H28B1.08701.15941.11960.126*
H28C1.13151.32041.18460.126*
O10.4055 (2)0.4294 (3)0.80195 (18)0.0717 (6)
O20.3740 (2)0.6898 (3)0.86948 (17)0.0741 (7)
O30.5058 (3)0.8868 (3)0.8002 (2)0.0870 (8)
O40.5832 (3)0.1696 (3)0.4946 (3)0.0969 (10)
H4A0.499 (2)0.144 (6)0.501 (4)0.145*
H4B0.623 (5)0.107 (5)0.501 (4)0.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0556 (2)0.0784 (2)0.0980 (3)0.02072 (16)0.01227 (17)0.0592 (2)
N10.0361 (11)0.0451 (11)0.0394 (12)0.0158 (9)0.0067 (9)0.0176 (9)
N20.0412 (12)0.0386 (11)0.0437 (12)0.0106 (9)0.0121 (9)0.0156 (9)
C10.0482 (15)0.0452 (14)0.0470 (15)0.0210 (12)0.0139 (12)0.0208 (12)
C20.0364 (12)0.0393 (12)0.0342 (13)0.0132 (10)0.0078 (10)0.0117 (10)
C30.0378 (14)0.0634 (17)0.0469 (16)0.0149 (13)0.0004 (12)0.0169 (13)
C40.0558 (18)0.073 (2)0.067 (2)0.0308 (16)0.0007 (15)0.0315 (16)
C50.067 (2)0.0494 (16)0.0648 (19)0.0205 (15)0.0037 (15)0.0284 (14)
C60.0463 (15)0.0391 (13)0.0477 (15)0.0082 (11)0.0045 (12)0.0148 (11)
C70.0348 (12)0.0396 (12)0.0330 (12)0.0147 (10)0.0060 (10)0.0119 (10)
C80.0360 (13)0.0599 (16)0.0433 (15)0.0190 (12)0.0027 (11)0.0173 (12)
C90.0329 (13)0.0567 (15)0.0432 (14)0.0176 (12)0.0004 (11)0.0155 (12)
C100.0366 (13)0.0535 (15)0.0483 (16)0.0120 (12)0.0020 (11)0.0195 (12)
C110.0363 (14)0.0673 (18)0.0546 (17)0.0098 (13)0.0039 (12)0.0260 (14)
C120.0355 (14)0.079 (2)0.0471 (16)0.0209 (14)0.0077 (12)0.0187 (14)
C130.0541 (17)0.0633 (18)0.0550 (17)0.0314 (15)0.0114 (14)0.0175 (14)
C140.0493 (16)0.0589 (17)0.0537 (17)0.0222 (13)0.0107 (13)0.0260 (13)
C150.091 (3)0.081 (3)0.099 (3)0.006 (2)0.019 (2)0.054 (2)
C160.078 (3)0.170 (5)0.054 (2)0.022 (3)0.013 (2)0.016 (3)
C170.195 (6)0.063 (2)0.112 (4)0.055 (3)0.059 (4)0.030 (2)
C180.0514 (16)0.0446 (15)0.0592 (18)0.0025 (12)0.0187 (14)0.0175 (13)
C190.0452 (14)0.0382 (13)0.0515 (16)0.0060 (11)0.0132 (12)0.0184 (11)
C200.097 (3)0.0610 (19)0.0488 (18)0.0340 (18)0.0027 (17)0.0174 (14)
C210.097 (3)0.0613 (19)0.0550 (19)0.0438 (19)0.0010 (18)0.0179 (15)
C220.0462 (15)0.0448 (14)0.0458 (15)0.0110 (12)0.0085 (12)0.0176 (12)
C230.0498 (16)0.0567 (17)0.0518 (17)0.0147 (13)0.0032 (13)0.0170 (13)
C240.0456 (15)0.0498 (15)0.0653 (19)0.0185 (13)0.0051 (14)0.0170 (14)
C250.0622 (19)0.0573 (17)0.0523 (18)0.0180 (15)0.0122 (15)0.0103 (14)
C260.091 (3)0.113 (3)0.072 (3)0.056 (3)0.024 (2)0.018 (2)
C270.127 (4)0.053 (2)0.093 (3)0.002 (2)0.024 (3)0.000 (2)
C280.087 (3)0.112 (3)0.0454 (19)0.032 (2)0.0076 (18)0.0146 (19)
O10.0604 (14)0.0848 (16)0.0758 (16)0.0089 (12)0.0203 (12)0.0416 (13)
O20.0492 (12)0.1158 (19)0.0554 (14)0.0316 (13)0.0177 (10)0.0202 (13)
O30.111 (2)0.0785 (16)0.0900 (19)0.0592 (16)0.0421 (16)0.0286 (14)
O40.0533 (14)0.0568 (14)0.174 (3)0.0082 (12)0.0014 (18)0.0367 (17)
Geometric parameters (Å, º) top
N1—C11.329 (3)C16—H16A0.9599
N1—C71.389 (3)C16—H16B0.9599
N1—C81.478 (3)C16—H16C0.9599
N2—C11.325 (3)C17—O31.407 (5)
N2—C21.391 (3)C17—H17A0.9599
N2—C181.481 (3)C17—H17B0.9599
C1—H10.9600C17—H17C0.9599
C2—C31.382 (4)C18—C191.507 (4)
C2—C71.393 (3)C18—H18A0.9600
C3—C41.380 (4)C18—H18B0.9600
C3—H30.9600C19—C201.370 (4)
C4—C51.394 (5)C19—C241.372 (4)
C4—H40.9600C20—C211.389 (4)
C5—C61.368 (4)C20—H200.9600
C5—H50.9600C21—C221.388 (4)
C6—C71.390 (3)C21—H210.9600
C6—H60.9600C22—C231.380 (4)
C8—C91.513 (4)C22—C251.532 (4)
C8—H8A0.9600C23—C241.399 (4)
C8—H8B0.9600C23—H230.9600
C9—C101.383 (4)C24—H240.9600
C9—C141.386 (4)C25—C271.526 (5)
C10—C111.390 (4)C25—C261.529 (5)
C10—H100.9600C25—C281.530 (5)
C11—O11.369 (3)C26—H26A0.9599
C11—C121.385 (4)C26—H26B0.9599
C12—O21.380 (3)C26—H26C0.9599
C12—C131.385 (4)C27—H27A0.9599
C13—O31.374 (4)C27—H27B0.9599
C13—C141.392 (4)C27—H27C0.9599
C14—H140.9600C28—H28A0.9599
C15—O11.422 (5)C28—H28B0.9599
C15—H15A0.9599C28—H28C0.9599
C15—H15B0.9599O4—H4A0.87 (2)
C15—H15C0.9599O4—H4B0.88 (5)
C16—O21.394 (5)
C1—N1—C7108.2 (2)H16A—C16—H16C109.5
C1—N1—C8125.0 (2)H16B—C16—H16C109.5
C7—N1—C8126.6 (2)O3—C17—H17A109.5
C1—N2—C2108.4 (2)O3—C17—H17B109.5
C1—N2—C18124.9 (2)H17A—C17—H17B109.5
C2—N2—C18126.6 (2)O3—C17—H17C109.5
N2—C1—N1110.5 (2)H17A—C17—H17C109.5
N2—C1—H1124.8H17B—C17—H17C109.5
N1—C1—H1124.8N2—C18—C19111.7 (2)
C3—C2—N2132.0 (2)N2—C18—H18A109.3
C3—C2—C7121.6 (2)C19—C18—H18A109.3
N2—C2—C7106.3 (2)N2—C18—H18B109.3
C4—C3—C2116.5 (3)C19—C18—H18B109.3
C4—C3—H3121.7H18A—C18—H18B107.9
C2—C3—H3121.7C20—C19—C24118.7 (3)
C3—C4—C5121.6 (3)C20—C19—C18119.6 (3)
C3—C4—H4119.2C24—C19—C18121.7 (3)
C5—C4—H4119.2C19—C20—C21120.7 (3)
C6—C5—C4122.1 (3)C19—C20—H20119.7
C6—C5—H5118.9C21—C20—H20119.7
C4—C5—H5118.9C22—C21—C20121.9 (3)
C5—C6—C7116.5 (3)C22—C21—H21119.1
C5—C6—H6121.8C20—C21—H21119.1
C7—C6—H6121.8C23—C22—C21116.4 (3)
N1—C7—C6131.8 (2)C23—C22—C25122.7 (3)
N1—C7—C2106.6 (2)C21—C22—C25120.8 (3)
C6—C7—C2121.6 (2)C22—C23—C24121.9 (3)
N1—C8—C9111.2 (2)C22—C23—H23119.1
N1—C8—H8A109.4C24—C23—H23119.1
C9—C8—H8A109.4C19—C24—C23120.4 (3)
N1—C8—H8B109.4C19—C24—H24119.8
C9—C8—H8B109.4C23—C24—H24119.8
H8A—C8—H8B108.0C27—C25—C26109.6 (3)
C10—C9—C14120.8 (2)C27—C25—C28110.0 (3)
C10—C9—C8120.6 (2)C26—C25—C28107.1 (3)
C14—C9—C8118.6 (2)C27—C25—C22108.2 (3)
C9—C10—C11119.5 (3)C26—C25—C22110.5 (3)
C9—C10—H10120.3C28—C25—C22111.5 (3)
C11—C10—H10120.3C25—C26—H26A109.5
O1—C11—C12114.9 (3)C25—C26—H26B109.5
O1—C11—C10124.7 (3)H26A—C26—H26B109.5
C12—C11—C10120.4 (3)C25—C26—H26C109.5
O2—C12—C11120.2 (3)H26A—C26—H26C109.5
O2—C12—C13120.0 (3)H26B—C26—H26C109.5
C11—C12—C13119.6 (3)C25—C27—H27A109.5
O3—C13—C12115.3 (3)C25—C27—H27B109.5
O3—C13—C14124.1 (3)H27A—C27—H27B109.5
C12—C13—C14120.6 (3)C25—C27—H27C109.5
C9—C14—C13119.1 (3)H27A—C27—H27C109.5
C9—C14—H14120.5H27B—C27—H27C109.5
C13—C14—H14120.5C25—C28—H28A109.5
O1—C15—H15A109.5C25—C28—H28B109.5
O1—C15—H15B109.5H28A—C28—H28B109.5
H15A—C15—H15B109.5C25—C28—H28C109.5
O1—C15—H15C109.5H28A—C28—H28C109.5
H15A—C15—H15C109.5H28B—C28—H28C109.5
H15B—C15—H15C109.5C11—O1—C15117.4 (3)
O2—C16—H16A109.5C12—O2—C16116.4 (3)
O2—C16—H16B109.5C13—O3—C17117.6 (3)
H16A—C16—H16B109.5H4A—O4—H4B110 (5)
O2—C16—H16C109.5
C2—N2—C1—N10.4 (3)O2—C12—C13—O36.4 (4)
C18—N2—C1—N1177.7 (2)C11—C12—C13—O3179.1 (3)
C7—N1—C1—N20.1 (3)O2—C12—C13—C14173.2 (3)
C8—N1—C1—N2175.6 (2)C11—C12—C13—C141.4 (5)
C1—N2—C2—C3179.0 (3)C10—C9—C14—C130.4 (4)
C18—N2—C2—C33.8 (4)C8—C9—C14—C13179.7 (3)
C1—N2—C2—C70.6 (3)O3—C13—C14—C9179.9 (3)
C18—N2—C2—C7177.8 (2)C12—C13—C14—C90.5 (4)
N2—C2—C3—C4177.6 (3)C1—N2—C18—C1981.3 (3)
C7—C2—C3—C40.5 (4)C2—N2—C18—C1995.5 (3)
C2—C3—C4—C50.3 (4)N2—C18—C19—C2086.2 (3)
C3—C4—C5—C60.1 (5)N2—C18—C19—C2493.5 (3)
C4—C5—C6—C70.2 (4)C24—C19—C20—C210.5 (5)
C1—N1—C7—C6178.2 (3)C18—C19—C20—C21179.1 (3)
C8—N1—C7—C66.3 (4)C19—C20—C21—C220.3 (6)
C1—N1—C7—C20.3 (3)C20—C21—C22—C230.8 (5)
C8—N1—C7—C2175.2 (2)C20—C21—C22—C25177.9 (3)
C5—C6—C7—N1178.4 (3)C21—C22—C23—C240.6 (4)
C5—C6—C7—C20.0 (4)C25—C22—C23—C24177.7 (3)
C3—C2—C7—N1179.1 (2)C20—C19—C24—C230.7 (4)
N2—C2—C7—N10.5 (2)C18—C19—C24—C23178.9 (3)
C3—C2—C7—C60.4 (4)C22—C23—C24—C190.1 (4)
N2—C2—C7—C6178.2 (2)C23—C22—C25—C2798.5 (4)
C1—N1—C8—C990.8 (3)C21—C22—C25—C2778.4 (4)
C7—N1—C8—C984.0 (3)C23—C22—C25—C26141.5 (3)
N1—C8—C9—C10100.3 (3)C21—C22—C25—C2641.6 (4)
N1—C8—C9—C1478.9 (3)C23—C22—C25—C2822.5 (4)
C14—C9—C10—C110.5 (4)C21—C22—C25—C28160.6 (3)
C8—C9—C10—C11179.7 (2)C12—C11—O1—C15175.0 (3)
C9—C10—C11—O1179.8 (3)C10—C11—O1—C155.2 (5)
C9—C10—C11—C120.3 (4)C11—C12—O2—C1692.8 (4)
O1—C11—C12—O26.6 (4)C13—C12—O2—C1692.7 (4)
C10—C11—C12—O2173.3 (3)C12—C13—O3—C17175.0 (4)
O1—C11—C12—C13178.9 (3)C14—C13—O3—C175.5 (6)
C10—C11—C12—C131.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···Br1i0.87 (3)2.54 (3)3.393 (3)169 (5)
O4—H4B···Br1ii0.88 (5)2.52 (5)3.399 (3)176 (5)
C1—H1···Br10.962.653.587 (3)165
C3—H3···O2iii0.962.573.294 (4)132
C6—H6···O40.962.383.305 (5)161
C10—H10···O40.962.593.463 (5)152
C14—H14···Br10.962.883.823 (3)167
C18—H18A···Br1iv0.962.823.718 (3)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+1, y, z; (iv) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC28H33N2O3+·Br·H2O
Mr543.49
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.389 (2), 10.436 (2), 14.038 (3)
α, β, γ (°)109.79 (3), 90.70 (3), 103.57 (3)
V3)1385.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.48 × 0.29 × 0.26
Data collection
DiffractometerMercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.514, 0.673
No. of measured, independent and
observed [I > 2σ(I)] reflections
11938, 4860, 3921
Rint0.022
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.08
No. of reflections4860
No. of parameters328
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.55

Computer programs: CrystalClear (Rigaku/MSC, 2001), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···Br1i0.87 (3)2.54 (3)3.393 (3)169 (5)
O4—H4B···Br1ii0.88 (5)2.52 (5)3.399 (3)176 (5)
C1—H1···Br10.962.653.587 (3)165
C3—H3···O2iii0.962.573.294 (4)132
C6—H6···O40.962.383.305 (5)161
C10—H10···O40.962.593.463 (5)152
C14—H14···Br10.962.883.823 (3)167
C18—H18A···Br1iv0.962.823.718 (3)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+1, y, z; (iv) x+2, y+2, z+1.
 

Acknowledgements

We thank the Technological and Scientific Research Council of Turkey TÜBİTAK-CNRS [TBAG-U/181 (106 T716)] and İnönü University Research Fund (İÜ BAP: 2008/Güdümlü 3) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArduengo, A. J. & Krafczyc, R. (1998). Chem. Ztg. 32, 6–14.  CAS Google Scholar
First citationArslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2009). Acta Cryst. E65, o121–o122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHerrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290–1309.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2371–2374.  CrossRef CAS Web of Science Google Scholar
First citationHerrmann, W. A., Reisinger, C. P. & Spiegler, M. (1998). J. Organomet. Chem. 557, 93–96.  CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas,USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNavarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem. 71, 685–692.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. L. & Bruneau, L. (2008). Eur. J. Org. Chem. 12, 2142–2149.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o208-o209
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds