organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Methyl­pyridin-3-amine

aCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: hpf@njut.edu.cn

(Received 21 November 2008; accepted 2 December 2008; online 13 December 2008)

In the mol­ecule of the title compound, C6H8N2, the methyl C and amine N atoms are 0.021 (2) and 0.058 (2) Å from the pyridine ring plane. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules.

Related literature

For a related structure, see: Sawanishi et al. (1987[Sawanishi, H., Tajima, K. & Tsuchiya, T. (1987). Chem. Pharm. Bull. 35, 4101-4109.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8N2

  • Mr = 108.14

  • Monoclinic, P 21 /n

  • a = 8.4240 (17) Å

  • b = 7.0560 (14) Å

  • c = 10.658 (2) Å

  • β = 105.23 (3)°

  • V = 611.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.978, Tmax = 0.993

  • 1183 measured reflections

  • 1106 independent reflections

  • 746 reflections with I > 2σ(I)

  • Rint = 0.059

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.154

  • S = 1.02

  • 1106 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N1i 0.86 2.29 3.131 (3) 165
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Some derivatives of 3-pyridinecarboxylic acid are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1) the bond lengths (Allen et al., 1987) and angles are within normal ranges. Atoms C1 and N2 are 0.021 (2) Å and 0.058 (2) Å away from the pyridine ring plane.

In the crystal structure, intermolecular N-H···N hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure.

Related literature top

For a related structure, see: Sawanishi et al. (1987). For bond-length data, see: Allen et al. (1987). Figure 2 and scheme are corrupted: please provide new versions.

Experimental top

For the preparation of the title compound, bromine (17.3 g) was added slowly to sodium hydroxide solution (303 ml, 5%), and then 3-pyridinecarboxamide (13 g) was added in about 20 min at 273-278 K. The mixture was heated in an oil bath at 343-353 K for 4 h. The product was extracted with CH2Cl2, washed with water and dried (yield; 8 g, 77.6%) (Sawanishi et al., 1987). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
6-Methylpyridin-3-amine top
Crystal data top
C6H8N2F(000) = 232
Mr = 108.14Dx = 1.175 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 8.4240 (17) Åθ = 10–12°
b = 7.0560 (14) ŵ = 0.07 mm1
c = 10.658 (2) ÅT = 294 K
β = 105.23 (3)°Block, colorless
V = 611.3 (2) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
746 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 25.3°, θmin = 2.8°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.978, Tmax = 0.993l = 1212
1183 measured reflections3 standard reflections every 120 min
1106 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.05P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1106 reflectionsΔρmax = 0.19 e Å3
73 parametersΔρmin = 0.19 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C6H8N2V = 611.3 (2) Å3
Mr = 108.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4240 (17) ŵ = 0.07 mm1
b = 7.0560 (14) ÅT = 294 K
c = 10.658 (2) Å0.30 × 0.20 × 0.10 mm
β = 105.23 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
746 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.059
Tmin = 0.978, Tmax = 0.9933 standard reflections every 120 min
1183 measured reflections intensity decay: 1%
1106 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05773 parameters
wR(F2) = 0.154H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
1106 reflectionsΔρmin = 0.19 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8161 (3)0.0759 (3)0.11504 (18)0.0480 (6)
N21.0351 (3)0.4188 (3)0.3558 (2)0.0595 (7)
H2A0.96920.51370.33610.071*
H2B1.12370.42850.41770.071*
C10.8752 (4)0.2454 (4)0.0569 (3)0.0616 (8)
H1B0.77340.22350.00760.092*
H1C0.86260.35070.11050.092*
H1D0.96020.27300.01480.092*
C20.9206 (4)0.0734 (4)0.1390 (2)0.0483 (7)
C30.8578 (3)0.2310 (4)0.1886 (2)0.0474 (7)
H3A0.78570.33330.17090.057*
C40.9987 (3)0.2519 (4)0.2884 (2)0.0478 (7)
C51.1033 (3)0.0962 (4)0.3130 (2)0.0503 (7)
H5A1.20090.10070.37880.060*
C61.0608 (4)0.0656 (4)0.2385 (2)0.0544 (7)
H6A1.12900.17130.25660.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0679 (13)0.0494 (13)0.0253 (10)0.0054 (11)0.0098 (9)0.0006 (10)
N20.0703 (15)0.0579 (15)0.0413 (13)0.0013 (12)0.0013 (11)0.0182 (11)
C10.096 (2)0.0527 (17)0.0366 (14)0.0081 (15)0.0191 (14)0.0067 (13)
C20.0835 (18)0.0426 (14)0.0242 (12)0.0001 (13)0.0234 (12)0.0044 (11)
C30.0707 (16)0.0446 (14)0.0302 (13)0.0036 (12)0.0190 (12)0.0017 (11)
C40.0772 (17)0.0489 (15)0.0206 (11)0.0019 (13)0.0187 (11)0.0033 (11)
C50.0622 (15)0.0554 (16)0.0301 (12)0.0096 (13)0.0062 (11)0.0047 (12)
C60.0844 (19)0.0481 (15)0.0326 (13)0.0087 (14)0.0190 (13)0.0038 (12)
Geometric parameters (Å, º) top
N1—C31.338 (3)C1—H1D0.9600
N1—C21.353 (3)C2—C61.365 (4)
N2—C41.371 (3)C3—C41.378 (4)
N2—H2A0.8600C3—H3A0.9300
N2—H2B0.8600C4—C51.390 (4)
C1—C21.487 (3)C5—C61.383 (4)
C1—H1B0.9600C5—H5A0.9300
C1—H1C0.9600C6—H6A0.9300
C3—N1—C2117.9 (2)N1—C3—C4125.4 (2)
C4—N2—H2A120.0N1—C3—H3A117.3
C4—N2—H2B120.0C4—C3—H3A117.3
H2A—N2—H2B120.0N2—C4—C3121.6 (2)
C2—C1—H1B109.5N2—C4—C5122.5 (2)
C2—C1—H1C109.5C3—C4—C5115.9 (2)
H1B—C1—H1C109.5C6—C5—C4119.2 (2)
C2—C1—H1D109.5C6—C5—H5A120.4
H1B—C1—H1D109.5C4—C5—H5A120.4
H1C—C1—H1D109.5C2—C6—C5121.3 (3)
N1—C2—C6120.2 (2)C2—C6—H6A119.3
N1—C2—C1118.1 (2)C5—C6—H6A119.3
C6—C2—C1121.7 (3)
C3—N1—C2—C62.2 (3)N2—C4—C5—C6178.1 (2)
C3—N1—C2—C1179.6 (2)C3—C4—C5—C60.3 (4)
C2—N1—C3—C40.5 (4)N1—C2—C6—C52.9 (4)
N1—C3—C4—N2177.4 (2)C1—C2—C6—C5178.9 (2)
N1—C3—C4—C50.4 (4)C4—C5—C6—C21.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N1i0.862.293.131 (3)165
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H8N2
Mr108.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)8.4240 (17), 7.0560 (14), 10.658 (2)
β (°) 105.23 (3)
V3)611.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.978, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
1183, 1106, 746
Rint0.059
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.154, 1.02
No. of reflections1106
No. of parameters73
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N1i0.862.293.131 (3)165
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSawanishi, H., Tajima, K. & Tsuchiya, T. (1987). Chem. Pharm. Bull. 35, 4101–4109.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds