metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m64-m65

Di­aqua­[N,N′-bis­­(2-pyridylmethyl­ene)propane-1,3-di­amine]manganese(II) dibromide–aqua­bromido[N,N′-bis­­(2-pyridylmethyl­ene)propane-1,3-di­amine]manganese(II) bromide–di­bromido[N,N′-bis­­(2-pyridylmethyl­ene)propane-1,3-di­amine]manganese(II) (1/2/1)

aDepartment of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea, and bSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 20 November 2008; accepted 9 December 2008; online 13 December 2008)

There are three different MnII complexes in the asymmetric unit of the title compound, [Mn(C15H16N4)(H2O)2]Br2·2{[MnBr(C15H16N4)(H2O)]Br}·[MnBr2(C15H16N4)]. In the neutral complex, the Mn2+ ion is six-coordinated in a distorted octa­hedral environment by four N atoms of the tetra­dentate ligand N,N′-bis­(2-pyridylmethyl­ene)propane-1,3-diamine (bppd) and two bromide ligands. In the two cationic complexes, the Mn2+ ions are also six-coordinated in similar environments, but one Mn ion is coordinated by four N atoms of bppd, one Br atom and one O atom of a coordinating water mol­ecule, whereas the other Mn ion is coordinated by four N atoms of bppd and two O atoms of water ligands. The complexes with two coordinated Br atoms or two H2O ligands are disposed about a twofold axis through Mn and C atoms with the special positions ([{\script{1\over 2}}], y, 0) and (0, y, [{\script{1\over 2}}]), respectively. The compound displays inter­molecular O—H⋯Br hydrogen bonding. There are inter­molecular ππ inter­actions between adjacent pyridine rings, with centroid–centroid distances of 3.822 and 3.833 Å, and a C—H⋯O inter­action is also present.

Related literature

For a structurally related complex, see: Hwang & Ha (2007[Hwang, I.-C. & Ha, K. (2007). Acta Cryst. E63, m2465.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C15H16N4)(H2O)2]Br2·2{[MnBr(C15H16N4)(H2O)]Br}·[MnBr2(C15H16N4)]

  • Mr = 1940.38

  • Monoclinic, C 2

  • a = 28.559 (2) Å

  • b = 9.2318 (6) Å

  • c = 13.8990 (9) Å

  • β = 99.111 (2)°

  • V = 3618.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.16 mm−1

  • T = 293 (2) K

  • 0.25 × 0.20 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.361, Tmax = 0.662

  • 14779 measured reflections

  • 6854 independent reflections

  • 5483 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.116

  • S = 0.98

  • 6854 reflections

  • 413 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.30 e Å−3

  • Δρmin = −2.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2901 Friedel pairs

  • Flack parameter: 0.06 (1)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1WA⋯Br2 0.932 2.34 3.261 (5) 170.1
O1—H1WB⋯Br2i 0.850 2.64 3.268 (5) 131.6
O2—H2WA⋯Br4 0.913 2.23 3.145 (5) 175.2
O2—H2WB⋯Br3ii 1.037 2.21 3.234 (4) 169.5
C4—H4⋯O2i 0.93 2.42 3.344 (9) 173
C29—H29⋯Br2iii 0.93 2.88 3.742 (7) 154
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z+1]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1990[Siemens (1990). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structure of the title compound, [Mn(C15H16N4)(H2O)2]Br2[MnBr(C15H16N4)(H2O)]Br [MnBr2(C15H16N4)], contains three different MnII complexes in the unit cell (Fig. 1). In the neutral complex, the Mn2+ ion is six-coordinated in a distorted octahedral environment by four N atoms of the tetradentate ligand N,N'-bis-(pyridin-2-ylmethylene)-propane-1,3-diamine (bppd) occupying equatorial positions and two Br atoms occupying axial positions. The complex is disposed about a twofold axis passing through Mn2 and C23 which lie on the special positions (1/2, y, 0). Within the equatorial plane, the chelating angles lie in the range of 74.5 (2)°–87.9 (3)°. The apical Br3—Mn2—Br3a [Symmetry code: (a) 1 - x, y, -z] bond angle is 174.28 (7)°. In the two cationic complexes, the Mn2+ ions are also six-coordinated in distorted octahedral environments, but one Mn ion is coordinated by four N atoms of bppd, one Br atom and one O atom of a water ligand, whereas the other Mn ion is coordinated by four N atoms of bppd and two O atoms of water ligands. The cationic diaqua complex is disposed about a twofold axis passing through Mn3 and C31 which lie on the special positions (0, y, 1/2). Within the equatorial planes, the chelating angles lie in the range of 74.2 (2)°–85.9 (2)°. The apical Br1—Mn1—O1 and O2—Mn3—O2b [Symmetry code: (b) -x, y, 1 - z] bond angles are 167.08 (13)° and 160.2 (3)°, respectively. The compound displays intermolecular hydrogen bonds between the O atoms and the Br atoms (Fig. 2, Table 1). There are also intermolecular π-π interactions between adjacent pyridine rings, with centroid-to-centroid distances of 3.822 Å and 3.833 Å, and with dihedral angles between the ring planes of 9.8° and 4.4°.

Related literature top

For a structurally related complex, see: Hwang & Ha (2007).

Experimental top

A solution of MnBr2 (0.25 g, 1.16 mmol) and N,N'-bis-(pyridin-2-ylmethylene)-propane-1,3-diamine (0.30 g, 1.19 mmol) in EtOH (20 ml) was stirred for 1 h at room temparature. After adding diethyl ether to the solution, the formed precipitate was separated by filtration and washed with acetone and dried under vacuum, to give a dark yellow powder (0.50 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a methanolic solution. MS (FAB): m/z 386, 388 (Mn(bppd)Br+); IR (KBr): 3287 cm-1 (broad).

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 (aromatic) or 0.97 (CH2) Å and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water ligands were located from Fourier difference maps, but not refined. C23 and C31 which lie on special positions are highly disordered and were therfore refined with isotropic thermal parameters Uiso = 0.08 Å2.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
Diaqua[N,N'-bis(2-pyridylmethylene)propane-1,3-diamine]manganese(II) dibromide–aquabromido[N,N'-bis(2-pyridylmethylene)propane-1,3-diamine]manganese(II) bromide–dibromido[N,N'-bis(2-pyridylmethylene)propane-1,3-diamine]manganese(II) (1/2/1) top
Crystal data top
[Mn(C15H16N4)(H2O)2]Br2·2{[MnBr(C15H16N4)(H2O)]Br}·[MnBr2(C15H16N4)]F(000) = 1912
Mr = 1940.38Dx = 1.781 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 5299 reflections
a = 28.559 (2) Åθ = 2.3–24.7°
b = 9.2318 (6) ŵ = 5.16 mm1
c = 13.8990 (9) ÅT = 293 K
β = 99.111 (2)°Plate, yellow
V = 3618.2 (4) Å30.25 × 0.20 × 0.08 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
6854 independent reflections
Radiation source: fine-focus sealed tube5483 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 26.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3235
Tmin = 0.361, Tmax = 0.662k = 1011
14779 measured reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0674P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.007
6854 reflectionsΔρmax = 1.30 e Å3
413 parametersΔρmin = 2.37 e Å3
1 restraintAbsolute structure: Flack (1983), 2901 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (1)
Crystal data top
[Mn(C15H16N4)(H2O)2]Br2·2{[MnBr(C15H16N4)(H2O)]Br}·[MnBr2(C15H16N4)]V = 3618.2 (4) Å3
Mr = 1940.38Z = 2
Monoclinic, C2Mo Kα radiation
a = 28.559 (2) ŵ = 5.16 mm1
b = 9.2318 (6) ÅT = 293 K
c = 13.8990 (9) Å0.25 × 0.20 × 0.08 mm
β = 99.111 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
6854 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5483 reflections with I > 2σ(I)
Tmin = 0.361, Tmax = 0.662Rint = 0.035
14779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.116Δρmax = 1.30 e Å3
S = 0.98Δρmin = 2.37 e Å3
6854 reflectionsAbsolute structure: Flack (1983), 2901 Friedel pairs
413 parametersAbsolute structure parameter: 0.06 (1)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.23354 (3)0.67117 (10)0.21033 (6)0.0378 (2)
Br10.21279 (2)0.65427 (9)0.02208 (4)0.0549 (2)
Br20.29708 (2)0.33983 (8)0.47346 (5)0.05364 (19)
O10.24730 (16)0.6324 (5)0.3731 (3)0.0525 (12)
H1WA0.26270.54650.39440.22 (7)*
H1WB0.25000.65450.43310.17 (5)*
N10.30105 (16)0.5427 (6)0.2189 (3)0.0385 (11)
N20.2915 (2)0.8352 (6)0.2394 (4)0.0481 (13)
N30.1850 (2)0.8506 (7)0.2407 (4)0.0519 (14)
N40.16399 (18)0.5636 (7)0.2259 (4)0.0448 (13)
C10.3072 (2)0.4038 (8)0.2018 (5)0.0508 (17)
H10.28040.34810.18080.061*
C20.3508 (3)0.3360 (10)0.2131 (5)0.0605 (19)
H20.35350.23760.20060.073*
C30.3906 (3)0.4207 (11)0.2441 (5)0.065 (2)
H30.42070.37940.25300.078*
C40.3853 (2)0.5630 (10)0.2611 (5)0.060 (2)
H40.41170.62000.28260.072*
C50.3401 (2)0.6250 (8)0.2463 (4)0.0493 (17)
C60.3324 (3)0.7804 (8)0.2573 (5)0.054 (2)
H60.35830.84010.27790.065*
C70.2857 (3)0.9905 (8)0.2476 (5)0.068 (2)
H7A0.27971.03230.18270.081*
H7B0.31491.03170.28150.081*
C80.2468 (3)1.0300 (9)0.2995 (6)0.083 (3)
H8A0.25011.13170.31670.099*
H8B0.25050.97550.35990.099*
C90.1979 (3)1.0063 (9)0.2477 (6)0.078 (3)
H9A0.19511.04660.18250.094*
H9B0.17571.05740.28170.094*
C100.1444 (3)0.8098 (10)0.2559 (5)0.060 (2)
H100.12310.87770.27310.072*
C110.1306 (2)0.6568 (10)0.2468 (4)0.0523 (18)
C120.0858 (3)0.6059 (13)0.2581 (5)0.073 (3)
H120.06320.66990.27450.087*
C130.0751 (3)0.4644 (13)0.2454 (6)0.075 (3)
H130.04500.43100.25110.090*
C140.1082 (3)0.3719 (12)0.2245 (6)0.075 (3)
H140.10160.27370.21620.090*
C150.1534 (3)0.4265 (9)0.2153 (5)0.059 (2)
H150.17650.36250.20110.070*
Mn20.50000.51666 (15)0.00000.0429 (3)
Br30.47098 (2)0.53137 (8)0.19582 (5)0.0545 (2)
N50.43259 (17)0.6317 (6)0.0202 (4)0.0448 (13)
N60.4462 (2)0.3436 (6)0.0014 (3)0.0492 (13)
C160.4249 (2)0.7700 (8)0.0343 (5)0.0545 (18)
H160.45100.83150.04570.065*
C170.3804 (3)0.8294 (10)0.0331 (5)0.064 (2)
H170.37700.92840.04230.077*
C180.3419 (3)0.7424 (11)0.0184 (5)0.063 (2)
H180.31160.78060.01640.075*
C190.3483 (2)0.5952 (10)0.0063 (5)0.0551 (19)
H190.32260.53210.00240.066*
C200.3946 (2)0.5435 (9)0.0075 (4)0.0490 (17)
C210.4047 (3)0.3865 (9)0.0003 (5)0.0542 (19)
H210.38000.31990.00510.065*
C220.4544 (3)0.1870 (9)0.0035 (6)0.070 (2)
H22A0.44300.13930.05060.084*
H22B0.43690.14860.06360.084*
C230.50000.1605 (15)0.00000.080*
H23A0.50330.09540.05550.096*0.50
H23B0.49670.09540.05550.096*0.50
Mn30.00000.20194 (14)0.50000.0406 (3)
Br40.05416 (3)0.54204 (10)0.73983 (7)0.0786 (3)
O20.01481 (15)0.2422 (5)0.6552 (3)0.0505 (11)
H2WA0.02790.32790.67860.044 (17)*
H2WB0.00130.16420.69700.045 (17)*
N70.07095 (18)0.3114 (6)0.4971 (4)0.0422 (13)
N80.0515 (2)0.0231 (7)0.4885 (4)0.0524 (14)
C240.0825 (3)0.4523 (9)0.5045 (5)0.0551 (19)
H240.05890.51790.51410.066*
C250.1267 (3)0.5054 (10)0.4988 (5)0.061 (2)
H250.13320.60400.50480.073*
C260.1613 (3)0.4073 (13)0.4840 (5)0.072 (3)
H260.19160.43960.47860.087*
C270.1512 (2)0.2644 (11)0.4771 (5)0.060 (2)
H270.17450.19740.46870.071*
C280.1051 (2)0.2195 (8)0.4830 (5)0.0470 (16)
C290.0923 (3)0.0629 (9)0.4800 (5)0.059 (2)
H290.11500.00600.47150.071*
C300.0429 (3)0.1332 (9)0.4859 (7)0.085 (3)
H30A0.04810.17000.42310.102*
H30B0.06590.17890.53530.102*
C310.00000.1720 (16)0.50000.080*
H31A0.00830.23660.55510.096*0.50
H31B0.00830.23660.44490.096*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0336 (5)0.0370 (6)0.0422 (5)0.0022 (4)0.0043 (4)0.0030 (4)
Br10.0469 (4)0.0742 (5)0.0422 (3)0.0010 (4)0.0025 (3)0.0013 (3)
Br20.0557 (4)0.0429 (4)0.0644 (4)0.0008 (3)0.0158 (3)0.0081 (3)
O10.067 (3)0.053 (3)0.038 (2)0.011 (3)0.009 (2)0.002 (2)
N10.034 (3)0.043 (3)0.039 (2)0.004 (2)0.005 (2)0.002 (2)
N20.065 (4)0.038 (3)0.040 (3)0.016 (3)0.005 (3)0.000 (2)
N30.061 (4)0.043 (3)0.048 (3)0.015 (3)0.005 (3)0.005 (3)
N40.037 (3)0.055 (4)0.043 (3)0.007 (3)0.007 (2)0.003 (3)
C10.046 (4)0.051 (4)0.058 (4)0.000 (3)0.017 (3)0.012 (3)
C20.062 (5)0.058 (5)0.067 (5)0.010 (4)0.027 (4)0.012 (4)
C30.045 (4)0.099 (7)0.052 (4)0.024 (4)0.011 (3)0.006 (4)
C40.037 (4)0.093 (7)0.050 (4)0.000 (4)0.006 (3)0.001 (4)
C50.038 (4)0.069 (5)0.041 (3)0.010 (3)0.008 (3)0.001 (3)
C60.058 (5)0.063 (5)0.040 (4)0.035 (4)0.004 (3)0.007 (3)
C70.105 (7)0.043 (4)0.053 (4)0.027 (4)0.005 (4)0.009 (3)
C80.133 (8)0.032 (4)0.073 (5)0.005 (5)0.012 (5)0.006 (4)
C90.107 (7)0.040 (5)0.080 (5)0.019 (5)0.009 (5)0.006 (4)
C100.059 (5)0.071 (6)0.049 (4)0.016 (4)0.005 (3)0.008 (4)
C110.039 (4)0.079 (6)0.038 (3)0.011 (4)0.003 (3)0.004 (4)
C120.043 (4)0.125 (9)0.051 (4)0.010 (5)0.012 (3)0.011 (5)
C130.047 (5)0.122 (9)0.057 (5)0.027 (5)0.006 (4)0.011 (5)
C140.063 (5)0.101 (8)0.062 (5)0.036 (5)0.010 (4)0.007 (5)
C150.054 (4)0.064 (5)0.059 (4)0.017 (4)0.013 (3)0.006 (4)
Mn20.0395 (7)0.0358 (8)0.0548 (8)0.0000.0117 (6)0.000
Br30.0571 (4)0.0607 (5)0.0463 (3)0.0058 (4)0.0098 (3)0.0110 (3)
N50.031 (3)0.050 (4)0.054 (3)0.005 (2)0.011 (2)0.002 (3)
N60.067 (4)0.043 (3)0.037 (3)0.011 (3)0.006 (2)0.003 (2)
C160.044 (4)0.060 (5)0.060 (4)0.002 (3)0.009 (3)0.005 (3)
C170.051 (4)0.068 (5)0.077 (5)0.017 (4)0.024 (4)0.005 (4)
C180.040 (4)0.102 (7)0.048 (4)0.004 (4)0.013 (3)0.011 (4)
C190.033 (4)0.091 (6)0.043 (4)0.007 (4)0.013 (3)0.005 (3)
C200.040 (4)0.066 (5)0.042 (3)0.009 (3)0.009 (3)0.010 (3)
C210.047 (4)0.071 (6)0.046 (4)0.026 (4)0.009 (3)0.001 (3)
C220.079 (5)0.050 (5)0.075 (5)0.014 (4)0.008 (4)0.004 (4)
Mn30.0376 (7)0.0312 (8)0.0555 (8)0.0000.0152 (6)0.000
Br40.0802 (6)0.0722 (6)0.0899 (6)0.0243 (5)0.0334 (5)0.0249 (5)
O20.051 (3)0.050 (3)0.051 (3)0.002 (2)0.012 (2)0.002 (2)
N70.035 (3)0.046 (4)0.046 (3)0.002 (3)0.010 (2)0.001 (2)
N80.062 (4)0.042 (3)0.056 (3)0.010 (3)0.018 (3)0.001 (3)
C240.055 (4)0.054 (5)0.058 (4)0.012 (4)0.012 (3)0.001 (3)
C250.048 (4)0.068 (6)0.063 (4)0.026 (4)0.001 (3)0.006 (4)
C260.045 (5)0.124 (9)0.047 (4)0.024 (5)0.001 (3)0.014 (5)
C270.034 (4)0.087 (6)0.057 (4)0.003 (4)0.006 (3)0.007 (4)
C280.039 (4)0.060 (5)0.043 (3)0.005 (3)0.007 (3)0.005 (3)
C290.057 (5)0.060 (5)0.060 (4)0.027 (4)0.011 (4)0.003 (4)
C300.102 (7)0.043 (5)0.122 (7)0.015 (5)0.056 (6)0.003 (5)
Geometric parameters (Å, º) top
Mn1—N22.232 (6)Mn2—Br32.7200 (7)
Mn1—N32.244 (6)N5—C161.315 (9)
Mn1—N12.250 (5)N5—C201.345 (8)
Mn1—N42.262 (5)N6—C211.247 (9)
Mn1—O12.263 (4)N6—C221.468 (10)
Mn1—Br12.5944 (10)C16—C171.382 (10)
O1—H1WA0.932C16—H160.9300
O1—H1WB0.850C17—C181.352 (11)
N1—C11.321 (9)C17—H170.9300
N1—C51.352 (8)C18—C191.385 (11)
N2—C61.263 (9)C18—H180.9300
N2—C71.450 (9)C19—C201.403 (9)
N3—C101.268 (9)C19—H190.9300
N3—C91.483 (10)C20—C211.484 (11)
N4—C151.303 (9)C21—H210.9300
N4—C111.349 (9)C22—C231.319 (8)
C1—C21.382 (10)C22—H22A0.9700
C1—H10.9300C22—H22B0.9700
C2—C31.390 (11)C23—C22i1.319 (8)
C2—H20.9300C23—H23A0.9700
C3—C41.347 (12)C23—H23B0.9700
C3—H30.9300Mn3—O22.164 (4)
C4—C51.398 (10)Mn3—O2ii2.164 (4)
C4—H40.9300Mn3—N8ii2.234 (6)
C5—C61.462 (11)Mn3—N82.234 (6)
C6—H60.9300Mn3—N72.270 (5)
C7—C81.464 (11)Mn3—N7ii2.270 (5)
C7—H7A0.9700O2—H2WA0.913
C7—H7B0.9700O2—H2WB1.037
C8—C91.483 (11)N7—C281.330 (8)
C8—H8A0.9700N7—C241.341 (9)
C8—H8B0.9700N8—C291.244 (9)
C9—H9A0.9700N8—C301.463 (10)
C9—H9B0.9700C24—C251.370 (10)
C10—C111.467 (12)C24—H240.9300
C10—H100.9300C25—C261.378 (12)
C11—C121.397 (11)C25—H250.9300
C12—C131.347 (13)C26—C271.350 (11)
C12—H120.9300C26—H260.9300
C13—C141.339 (13)C27—C281.394 (10)
C13—H130.9300C27—H270.9300
C14—C151.410 (10)C28—C291.491 (11)
C14—H140.9300C29—H290.9300
C15—H150.9300C30—C311.319 (9)
Mn2—N62.219 (6)C30—H30A0.9700
Mn2—N6i2.219 (6)C30—H30B0.9700
Mn2—N52.255 (5)C31—C30ii1.319 (9)
Mn2—N5i2.255 (5)C31—H31A0.9700
Mn2—Br3i2.7200 (7)C31—H31B0.9700
N2—Mn1—N385.9 (2)N6i—Mn2—Br397.41 (13)
N2—Mn1—N175.1 (2)N5—Mn2—Br388.29 (13)
N3—Mn1—N1158.3 (2)N5i—Mn2—Br389.01 (13)
N2—Mn1—N4156.6 (2)Br3i—Mn2—Br3174.28 (7)
N3—Mn1—N474.2 (2)C16—N5—C20117.2 (6)
N1—Mn1—N4121.4 (2)C16—N5—Mn2129.9 (5)
N2—Mn1—O185.40 (18)C20—N5—Mn2112.6 (5)
N3—Mn1—O186.76 (19)C21—N6—C22118.1 (6)
N1—Mn1—O181.49 (17)C21—N6—Mn2115.4 (5)
N4—Mn1—O181.42 (17)C22—N6—Mn2126.4 (5)
N2—Mn1—Br1105.54 (13)N5—C16—C17123.9 (7)
N3—Mn1—Br1100.65 (13)N5—C16—H16118.0
N1—Mn1—Br194.51 (12)C17—C16—H16118.0
N4—Mn1—Br190.37 (13)C18—C17—C16119.4 (8)
O1—Mn1—Br1167.08 (13)C18—C17—H17120.3
Mn1—O1—H1WA116.8C16—C17—H17120.3
Mn1—O1—H1WB156.5C17—C18—C19118.7 (8)
H1WA—O1—H1WB85.9C17—C18—H18120.7
C1—N1—C5118.0 (6)C19—C18—H18120.7
C1—N1—Mn1129.7 (4)C18—C19—C20118.4 (7)
C5—N1—Mn1112.3 (5)C18—C19—H19120.8
C6—N2—C7119.6 (6)C20—C19—H19120.8
C6—N2—Mn1113.6 (5)N5—C20—C19122.3 (7)
C7—N2—Mn1126.5 (5)N5—C20—C21116.1 (6)
C10—N3—C9120.1 (7)C19—C20—C21121.6 (7)
C10—N3—Mn1114.9 (5)N6—C21—C20120.2 (6)
C9—N3—Mn1125.0 (5)N6—C21—H21119.9
C15—N4—C11119.0 (7)C20—C21—H21119.9
C15—N4—Mn1127.3 (5)C23—C22—N6110.2 (9)
C11—N4—Mn1113.7 (5)C23—C22—H22A109.6
N1—C1—C2124.2 (7)N6—C22—H22A109.6
N1—C1—H1117.9C23—C22—H22B109.6
C2—C1—H1117.9N6—C22—H22B109.6
C1—C2—C3117.3 (8)H22A—C22—H22B108.1
C1—C2—H2121.4C22i—C23—C22158.6 (14)
C3—C2—H2121.4C22i—C23—H23A96.6
C4—C3—C2119.6 (7)C22—C23—H23A96.6
C4—C3—H3120.2C22i—C23—H23B96.6
C2—C3—H3120.2C22—C23—H23B96.6
C3—C4—C5120.1 (8)H23A—C23—H23B103.5
C3—C4—H4120.0O2—Mn3—O2ii160.2 (3)
C5—C4—H4120.0O2—Mn3—N8ii94.74 (19)
N1—C5—C4120.8 (7)O2ii—Mn3—N8ii99.85 (19)
N1—C5—C6116.8 (6)O2—Mn3—N899.85 (19)
C4—C5—C6122.4 (7)O2ii—Mn3—N894.74 (19)
N2—C6—C5121.4 (6)N8ii—Mn3—N884.7 (3)
N2—C6—H6119.3O2—Mn3—N784.67 (17)
C5—C6—H6119.3O2ii—Mn3—N786.56 (17)
N2—C7—C8112.9 (6)N8ii—Mn3—N7158.4 (2)
N2—C7—H7A109.0N8—Mn3—N774.2 (2)
C8—C7—H7A109.0O2—Mn3—N7ii86.56 (17)
N2—C7—H7B109.0O2ii—Mn3—N7ii84.67 (17)
C8—C7—H7B109.0N8ii—Mn3—N7ii74.2 (2)
H7A—C7—H7B107.8N8—Mn3—N7ii158.4 (2)
C7—C8—C9116.9 (7)N7—Mn3—N7ii127.1 (3)
C7—C8—H8A108.1Mn3—O2—H2WA120.5
C9—C8—H8A108.1Mn3—O2—H2WB114.1
C7—C8—H8B108.1H2WA—O2—H2WB124.8
C9—C8—H8B108.1C28—N7—C24116.9 (6)
H8A—C8—H8B107.3C28—N7—Mn3113.3 (5)
C8—C9—N3112.3 (7)C24—N7—Mn3129.7 (5)
C8—C9—H9A109.1C29—N8—C30116.5 (7)
N3—C9—H9A109.1C29—N8—Mn3115.2 (5)
C8—C9—H9B109.1C30—N8—Mn3128.3 (5)
N3—C9—H9B109.1N7—C24—C25124.0 (8)
H9A—C9—H9B107.9N7—C24—H24118.0
N3—C10—C11120.7 (7)C25—C24—H24118.0
N3—C10—H10119.6C24—C25—C26117.5 (8)
C11—C10—H10119.6C24—C25—H25121.2
N4—C11—C12120.1 (9)C26—C25—H25121.2
N4—C11—C10116.4 (6)C27—C26—C25120.1 (8)
C12—C11—C10123.5 (8)C27—C26—H26119.9
C13—C12—C11120.2 (9)C25—C26—H26119.9
C13—C12—H12119.9C26—C27—C28118.6 (8)
C11—C12—H12119.9C26—C27—H27120.7
C14—C13—C12119.6 (8)C28—C27—H27120.7
C14—C13—H13120.2N7—C28—C27122.7 (7)
C12—C13—H13120.2N7—C28—C29116.1 (6)
C13—C14—C15118.7 (9)C27—C28—C29121.1 (7)
C13—C14—H14120.7N8—C29—C28120.9 (7)
C15—C14—H14120.7N8—C29—H29119.6
N4—C15—C14122.4 (8)C28—C29—H29119.6
N4—C15—H15118.8C31—C30—N8114.9 (9)
C14—C15—H15118.8C31—C30—H30A108.6
N6—Mn2—N6i87.9 (3)N8—C30—H30A108.6
N6—Mn2—N574.5 (2)C31—C30—H30B108.6
N6i—Mn2—N5161.2 (2)N8—C30—H30B108.6
N6—Mn2—N5i161.2 (2)H30A—C30—H30B107.5
N6i—Mn2—N5i74.5 (2)C30—C31—C30ii148.5 (14)
N5—Mn2—N5i123.8 (3)C30—C31—H31A99.6
N6—Mn2—Br3i97.41 (13)C30ii—C31—H31A99.6
N6i—Mn2—Br3i86.73 (13)C30—C31—H31B99.6
N5—Mn2—Br3i89.01 (13)C30ii—C31—H31B99.6
N5i—Mn2—Br3i88.29 (13)H31A—C31—H31B104.1
N6—Mn2—Br386.73 (13)
N2—Mn1—N1—C1174.0 (6)N6—Mn2—N5—C16176.3 (6)
N3—Mn1—N1—C1156.5 (6)N6i—Mn2—N5—C16155.2 (6)
N4—Mn1—N1—C124.1 (6)N5i—Mn2—N5—C168.9 (6)
O1—Mn1—N1—C198.6 (5)Br3i—Mn2—N5—C1678.4 (6)
Br1—Mn1—N1—C169.1 (5)Br3—Mn2—N5—C1696.6 (6)
N2—Mn1—N1—C56.4 (4)N6—Mn2—N5—C209.6 (4)
N3—Mn1—N1—C523.2 (7)N6i—Mn2—N5—C2030.7 (8)
N4—Mn1—N1—C5155.5 (4)N5i—Mn2—N5—C20165.1 (5)
O1—Mn1—N1—C581.1 (4)Br3i—Mn2—N5—C20107.6 (4)
Br1—Mn1—N1—C5111.3 (4)Br3—Mn2—N5—C2077.4 (4)
N3—Mn1—N2—C6162.0 (5)N6i—Mn2—N6—C21178.5 (6)
N1—Mn1—N2—C67.5 (4)N5—Mn2—N6—C218.2 (5)
N4—Mn1—N2—C6130.7 (6)N5i—Mn2—N6—C21158.2 (6)
O1—Mn1—N2—C674.9 (5)Br3i—Mn2—N6—C2195.1 (5)
Br1—Mn1—N2—C698.1 (4)Br3—Mn2—N6—C2180.9 (5)
N3—Mn1—N2—C712.3 (5)N6i—Mn2—N6—C223.1 (4)
N1—Mn1—N2—C7178.3 (6)N5—Mn2—N6—C22176.5 (6)
N4—Mn1—N2—C743.5 (8)N5i—Mn2—N6—C2217.2 (9)
O1—Mn1—N2—C799.3 (5)Br3i—Mn2—N6—C2289.6 (5)
Br1—Mn1—N2—C787.7 (5)Br3—Mn2—N6—C2294.4 (5)
N2—Mn1—N3—C10164.7 (5)C20—N5—C16—C172.5 (10)
N1—Mn1—N3—C10136.1 (6)Mn2—N5—C16—C17171.3 (5)
N4—Mn1—N3—C102.9 (5)N5—C16—C17—C181.2 (11)
O1—Mn1—N3—C1079.1 (5)C16—C17—C18—C190.9 (11)
Br1—Mn1—N3—C1090.3 (5)C17—C18—C19—C201.5 (11)
N2—Mn1—N3—C912.7 (6)C16—N5—C20—C191.8 (9)
N1—Mn1—N3—C941.3 (9)Mn2—N5—C20—C19173.0 (5)
N4—Mn1—N3—C9179.7 (6)C16—N5—C20—C21174.9 (6)
O1—Mn1—N3—C998.3 (6)Mn2—N5—C20—C2110.2 (7)
Br1—Mn1—N3—C992.3 (5)C18—C19—C20—N50.2 (10)
N2—Mn1—N4—C15150.2 (6)C18—C19—C20—C21176.7 (6)
N3—Mn1—N4—C15177.3 (6)C22—N6—C21—C20178.5 (6)
N1—Mn1—N4—C1519.2 (7)Mn2—N6—C21—C205.7 (8)
O1—Mn1—N4—C1593.7 (6)N5—C20—C21—N63.4 (9)
Br1—Mn1—N4—C1576.3 (6)C19—C20—C21—N6179.9 (6)
N2—Mn1—N4—C1131.2 (8)C21—N6—C22—C23179.0 (5)
N3—Mn1—N4—C111.4 (4)Mn2—N6—C22—C235.8 (8)
N1—Mn1—N4—C11162.1 (4)N6—C22—C23—C22i3.2 (5)
O1—Mn1—N4—C1187.7 (4)O2—Mn3—N7—C28106.6 (4)
Br1—Mn1—N4—C11102.4 (4)O2ii—Mn3—N7—C2891.2 (4)
C5—N1—C1—C22.2 (9)N8ii—Mn3—N7—C2817.2 (8)
Mn1—N1—C1—C2177.5 (5)N8—Mn3—N7—C284.8 (4)
N1—C1—C2—C30.3 (10)N7ii—Mn3—N7—C28171.8 (5)
C1—C2—C3—C40.3 (10)O2—Mn3—N7—C2475.6 (6)
C2—C3—C4—C50.9 (11)O2ii—Mn3—N7—C2486.7 (6)
C1—N1—C5—C43.3 (8)N8ii—Mn3—N7—C24165.0 (6)
Mn1—N1—C5—C4176.4 (5)N8—Mn3—N7—C24177.4 (6)
C1—N1—C5—C6175.4 (6)N7ii—Mn3—N7—C246.0 (5)
Mn1—N1—C5—C64.9 (7)O2—Mn3—N8—C2985.7 (5)
C3—C4—C5—N12.8 (10)O2ii—Mn3—N8—C2980.9 (5)
C3—C4—C5—C6175.8 (6)N8ii—Mn3—N8—C29179.6 (6)
C7—N2—C6—C5177.6 (6)N7—Mn3—N8—C294.2 (5)
Mn1—N2—C6—C57.7 (8)N7ii—Mn3—N8—C29168.4 (5)
N1—C5—C6—N21.9 (9)O2—Mn3—N8—C3097.0 (7)
C4—C5—C6—N2176.8 (6)O2ii—Mn3—N8—C3096.4 (7)
C6—N2—C7—C8134.6 (7)N8ii—Mn3—N8—C303.1 (6)
Mn1—N2—C7—C839.4 (9)N7—Mn3—N8—C30178.5 (7)
N2—C7—C8—C972.3 (10)N7ii—Mn3—N8—C308.9 (10)
C7—C8—C9—N372.7 (10)C28—N7—C24—C250.3 (10)
C10—N3—C9—C8137.2 (8)Mn3—N7—C24—C25178.0 (5)
Mn1—N3—C9—C840.1 (9)N7—C24—C25—C260.4 (11)
C9—N3—C10—C11178.3 (6)C24—C25—C26—C271.1 (11)
Mn1—N3—C10—C114.1 (8)C25—C26—C27—C281.6 (12)
C15—N4—C11—C121.0 (9)C24—N7—C28—C270.8 (9)
Mn1—N4—C11—C12179.7 (5)Mn3—N7—C28—C27178.9 (5)
C15—N4—C11—C10178.8 (6)C24—N7—C28—C29177.0 (6)
Mn1—N4—C11—C100.1 (7)Mn3—N7—C28—C294.8 (7)
N3—C10—C11—N42.9 (9)C26—C27—C28—N71.4 (11)
N3—C10—C11—C12176.9 (6)C26—C27—C28—C29177.5 (7)
N4—C11—C12—C132.0 (11)C30—N8—C29—C28179.2 (7)
C10—C11—C12—C13177.8 (7)Mn3—N8—C29—C283.2 (9)
C11—C12—C13—C141.9 (13)N7—C28—C29—N81.2 (10)
C12—C13—C14—C150.7 (12)C27—C28—C29—N8177.6 (6)
C11—N4—C15—C140.2 (11)C29—N8—C30—C31176.8 (7)
Mn1—N4—C15—C14178.4 (5)Mn3—N8—C30—C316.0 (11)
C13—C14—C15—N40.3 (12)N8—C30—C31—C30ii3.2 (6)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1WA···Br20.9322.343.261 (5)170.1
O1—H1WB···Br2iii0.8502.643.268 (5)131.6
O2—H2WA···Br40.9132.233.145 (5)175.2
O2—H2WB···Br3iv1.0372.213.234 (4)169.5
C4—H4···O2iii0.932.423.344 (9)173
C29—H29···Br2v0.932.883.742 (7)154
Symmetry codes: (iii) x+1/2, y+1/2, z+1; (iv) x1/2, y1/2, z+1; (v) x+1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C15H16N4)(H2O)2]Br2·2{[MnBr(C15H16N4)(H2O)]Br}·[MnBr2(C15H16N4)]
Mr1940.38
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)28.559 (2), 9.2318 (6), 13.8990 (9)
β (°) 99.111 (2)
V3)3618.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)5.16
Crystal size (mm)0.25 × 0.20 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.361, 0.662
No. of measured, independent and
observed [I > 2σ(I)] reflections
14779, 6854, 5483
Rint0.035
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 0.98
No. of reflections6854
No. of parameters413
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.30, 2.37
Absolute structureFlack (1983), 2901 Friedel pairs
Absolute structure parameter0.06 (1)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1990).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1WA···Br20.9322.343.261 (5)170.1
O1—H1WB···Br2i0.8502.643.268 (5)131.6
O2—H2WA···Br40.9132.233.145 (5)175.2
O2—H2WB···Br3ii1.0372.213.234 (4)169.5
C4—H4···O2i0.932.423.344 (9)173.3
C29—H29···Br2iii0.932.883.742 (7)154.3
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y1/2, z+1; (iii) x+1/2, y1/2, z+1.
 

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHwang, I.-C. & Ha, K. (2007). Acta Cryst. E63, m2465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1990). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m64-m65
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds