organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o68-o69

4,4′-Di­chloro-2,2′-[2,2-di­methyl­propane-1,3-diylbis(nitrilo­methyl­­idyne)]diphenol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 10 November 2008; accepted 15 November 2008; online 10 December 2008)

The crystal of the title Schiff base compound, C19H20Cl2N2O2, contains of two crystallographically independent mol­ecules with similar conformations. In each mol­ecule, two intramolecular O—H⋯N bonds generate S(6) motifs. The N atoms are also in close proximity to two H atoms of the dimethyl­propane groups, with H⋯N distances between 2.59 and 2.62 Å. The imine group is coplanar with the benzene ring. The dihedral angles between the benzene rings in the two independent mol­ecules are 58.20 (12) and 47.95 (12)°. The structure displays short inter­molecular Cl⋯Cl [3.3869 (11) Å] and Cl⋯O [3.175 (2)–3.204 (2) Å] inter­actions. The crystal structure is further stabilized by weak inter­molecular C—H⋯O, C—H⋯π and ππ [centroid–centroid distances 3.6416 (13)–3.8705 (14) Å] inter­actions.

Related literature

For the values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For information on Schiff base ligands and complexes and their applications, see: Calligaris & Randaccio (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]); Casellato & Vigato (1977[Casellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31-50.]). For similar structures, see: Bomfim et al. (2005[Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53-o56.]); Fun et al. (2008[Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1895-o1896.]); Glidewell et al. (2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551-o3553.], 2006[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1-o4.]); Li et al. (2005[Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156-o4157.]); Sun et al. (2004[Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707-o1708.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20Cl2N2O2

  • Mr = 379.27

  • Monoclinic, C 2/c

  • a = 31.6843 (8) Å

  • b = 6.2236 (2) Å

  • c = 37.9015 (10) Å

  • β = 99.779 (1)°

  • V = 7365.2 (4) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 100.0 (1) K

  • 0.35 × 0.06 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.882, Tmax = 0.986

  • 38685 measured reflections

  • 8427 independent reflections

  • 5995 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.116

  • S = 1.12

  • 8426 reflections

  • 467 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1OA⋯N1A 0.92 (4) 1.76 (4) 2.594 (3) 150 (4)
O2A—H2OA⋯N2A 0.86 (4) 1.82 (4) 2.591 (3) 148 (3)
O1B—H1OB⋯N1B 0.84 (4) 1.80 (4) 2.579 (3) 153 (3)
O2B—H2OB⋯N2B 0.82 (4) 1.85 (4) 2.595 (3) 151 (4)
C16A—H16A⋯O2Ai 0.95 2.54 3.291 (3) 136
C18A—H18CCg1 0.98 2.73 3.634 (3) 153
Symmetry code: (i) -x, -y-1, -z. Cg1 is the centroid of the C12B–C17B benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In the field of coordination chemistry, Schiff base is one of most prevalent versatile ligands. The Schiff base compounds have received much attention due to their important role in the development of coordination chemistry related to catalysis and enzymatic reaction, magnetism and supramolecular architectures (Casellato & Vigato 1977). In comparison to the Schiff base metal complexes, there is only a relatively small number of free Schiff base ligands which have been characterized structurally (Calligaris & Randaccio, 1987). Structures of Schiff bases derived from substituted benzaldehydes and closely related to the title compound have been reported (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2005, 2006; Sun et al., 2004).

In the title compound (I, Fig. 1), bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable with the related bromo-substituted compound (Fun et al., 2008). The asymmetric unit of (I) consists of two crystallographically independent molecules A and B. The intramolecular O—H···N hydrogen bonds generate S(6) ring motifs. The nitrogen atoms are also in close proximity to the hydrogen atoms of the dimethylpropane groups with H···N distances between 2.59 and 2.61 Å. The imino group is coplanar with the benzene ring. The dihedral angles between the benzene rings in molecules A and B are 58.20 (18) and 47.95 (12)°, respectively. The interesting feature of the crystal structure is the short intermolecular Cl···Cl [3.3869 (11) Å] and Cl···O [3.175 (2)– 3.204 (2) Å] interactions which are shorter than the sum of the van der Waals radii of the relevant atoms. The short distances between the centroids of the six-membered rings prove existence of π-π interactions [Cg1···Cg1i: 3.8711 (15) Å, (i) -x, -y, -z; Cg2···Cg2ii: 3.6424 (14) Å; (ii) 1/2 - x, 1/2 - y, - z; Cg1 and Cg2 are the centroids of the C12A–C17A and C12B–C17B benzene rings, respectively]. The crystal structures is further stabilized by a weak intermolecular C—H···π interaction.

Related literature top

For the values of bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For information on Schiff base ligands and complexes and their applications, see: Calligaris & Randaccio (1987); Casellato & Vigato (1977). For similar structures, see: Bomfim et al. (2005); Fun et al. (2008); Glidewell et al. (2005, 2006); Li et al. (2005); Sun et al. (2004).

Experimental top

The synthetic method has been described earlier (Fun et al., 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

The H atoms of the hydroxy groups were located from the difference Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and with Uiso(H)= 1.2–1.5Ueq(C). The reflection (002) was omitted as its intensity was affected by the beam backstop.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability ellipsoids for non-H atoms. Intramolecular interactions are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b axis showing stacking of the molecules. Intermolecular interactions are shown as dashed lines.
4,4'-Dichloro-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethylidyne)]diphenol top
Crystal data top
C19H20Cl2N2O2F(000) = 3168
Mr = 379.27Dx = 1.368 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5309 reflections
a = 31.6843 (8) Åθ = 3.4–30.1°
b = 6.2236 (2) ŵ = 0.37 mm1
c = 37.9015 (10) ÅT = 100 K
β = 99.779 (1)°Needle, yellow
V = 7365.2 (4) Å30.35 × 0.06 × 0.04 mm
Z = 16
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8427 independent reflections
Radiation source: fine-focus sealed tube5995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ and ω scansθmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 4040
Tmin = 0.882, Tmax = 0.986k = 78
38685 measured reflectionsl = 4848
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0306P)2 + 13.412P]
where P = (Fo2 + 2Fc2)/3
8426 reflections(Δ/σ)max = 0.001
467 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C19H20Cl2N2O2V = 7365.2 (4) Å3
Mr = 379.27Z = 16
Monoclinic, C2/cMo Kα radiation
a = 31.6843 (8) ŵ = 0.37 mm1
b = 6.2236 (2) ÅT = 100 K
c = 37.9015 (10) Å0.35 × 0.06 × 0.04 mm
β = 99.779 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8427 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5995 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.986Rint = 0.071
38685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0306P)2 + 13.412P]
where P = (Fo2 + 2Fc2)/3
8426 reflectionsΔρmax = 0.36 e Å3
467 parametersΔρmin = 0.28 e Å3
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.20434 (2)0.24028 (13)0.342722 (18)0.02856 (19)
Cl2A0.10707 (2)0.18921 (13)0.037623 (19)0.02636 (18)
O1A0.19084 (7)0.3584 (4)0.22147 (6)0.0279 (5)
O2A0.04369 (6)0.3662 (3)0.04252 (5)0.0210 (5)
N1A0.15011 (7)0.0613 (4)0.18134 (6)0.0181 (5)
N2A0.09054 (7)0.0464 (4)0.06983 (5)0.0174 (5)
C1A0.19459 (8)0.2139 (5)0.24847 (7)0.0192 (6)
C2A0.21551 (8)0.2762 (5)0.28245 (7)0.0227 (7)
H2AA0.22780.41550.28590.027*
C3A0.21833 (8)0.1362 (5)0.31082 (7)0.0224 (7)
H3AA0.23210.18020.33390.027*
C4A0.20119 (8)0.0684 (5)0.30591 (7)0.0194 (6)
C5A0.18131 (8)0.1363 (5)0.27247 (7)0.0183 (6)
H5AA0.17010.27800.26930.022*
C6A0.17774 (8)0.0043 (5)0.24335 (7)0.0169 (6)
C7A0.15660 (8)0.0679 (5)0.20798 (7)0.0173 (6)
H7AA0.14750.21310.20470.021*
C8A0.12920 (8)0.0176 (5)0.14647 (6)0.0180 (6)
H8AA0.12480.17460.14780.022*
H8AB0.10080.05120.14000.022*
C9A0.15625 (8)0.0312 (5)0.11724 (7)0.0161 (6)
C10A0.13207 (8)0.0569 (5)0.08150 (7)0.0205 (6)
H10A0.12760.21320.08400.025*
H10B0.15000.03650.06280.025*
C11A0.05717 (8)0.0714 (5)0.06549 (6)0.0164 (6)
H11A0.05990.22080.07050.020*
C12A0.01462 (8)0.0191 (5)0.05293 (6)0.0146 (6)
C13A0.02175 (8)0.1099 (5)0.05161 (6)0.0166 (6)
H13A0.01880.25420.05990.020*
C14A0.06164 (8)0.0290 (5)0.03844 (7)0.0185 (6)
C15A0.06648 (8)0.1812 (5)0.02600 (6)0.0189 (6)
H15A0.09420.23550.01670.023*
C16A0.03102 (8)0.3103 (5)0.02717 (6)0.0185 (6)
H16A0.03430.45330.01840.022*
C17A0.00971 (8)0.2331 (5)0.04116 (6)0.0158 (6)
C18A0.19908 (8)0.0873 (5)0.12550 (7)0.0235 (7)
H18A0.21540.03390.14810.035*
H18B0.19390.24160.12760.035*
H18C0.21540.06220.10610.035*
C19A0.16397 (9)0.2728 (5)0.11457 (7)0.0236 (7)
H19A0.17920.32600.13760.035*
H19B0.18130.30010.09590.035*
H19C0.13640.34700.10850.035*
Cl1B0.45316 (2)0.03381 (13)0.374929 (16)0.02321 (17)
Cl2B0.16982 (2)0.49487 (13)0.022491 (17)0.02330 (17)
O1B0.43547 (7)0.3355 (4)0.23065 (5)0.0242 (5)
O2B0.31272 (6)0.1018 (3)0.06627 (5)0.0214 (5)
N1B0.40114 (7)0.0212 (4)0.20579 (5)0.0183 (5)
N2B0.35608 (7)0.2186 (4)0.09782 (5)0.0179 (5)
C1B0.43973 (8)0.2439 (5)0.26335 (7)0.0174 (6)
C2B0.45942 (8)0.3620 (5)0.29294 (7)0.0198 (6)
H2BA0.47000.50210.28960.024*
C3B0.46363 (8)0.2767 (5)0.32686 (7)0.0190 (6)
H3BA0.47710.35760.34690.023*
C4B0.44814 (8)0.0720 (5)0.33167 (6)0.0174 (6)
C5B0.42920 (8)0.0493 (5)0.30294 (6)0.0165 (6)
H5BA0.41900.18970.30670.020*
C6B0.42492 (8)0.0344 (5)0.26820 (7)0.0160 (6)
C7B0.40641 (8)0.0972 (5)0.23753 (7)0.0166 (6)
H7BA0.39820.24110.24120.020*
C8B0.38462 (8)0.1593 (5)0.17565 (6)0.0181 (6)
H8BA0.38000.30560.18450.022*
H8BB0.35670.10320.16350.022*
C9B0.41600 (8)0.1705 (5)0.14872 (6)0.0155 (6)
C10B0.39544 (8)0.3118 (5)0.11726 (7)0.0182 (6)
H10C0.38910.45500.12640.022*
H10D0.41610.33180.10060.022*
C11B0.32341 (8)0.3398 (5)0.08917 (6)0.0168 (6)
H11B0.32480.48600.09650.020*
C12B0.28383 (8)0.2557 (5)0.06813 (6)0.0154 (6)
C13B0.24910 (8)0.3932 (5)0.05820 (6)0.0166 (6)
H13B0.25040.53720.06660.020*
C14B0.21274 (8)0.3199 (5)0.03607 (6)0.0162 (6)
C15B0.21020 (8)0.1105 (5)0.02371 (6)0.0179 (6)
H15B0.18540.06310.00790.021*
C16B0.24363 (8)0.0291 (5)0.03426 (6)0.0183 (6)
H16B0.24140.17390.02620.022*
C17B0.28073 (8)0.0403 (5)0.05664 (6)0.0167 (6)
C18B0.45789 (8)0.2777 (5)0.16634 (7)0.0199 (6)
H18D0.45170.42140.17470.030*
H18E0.47730.28950.14880.030*
H18F0.47140.19060.18670.030*
C19B0.42487 (9)0.0548 (5)0.13544 (7)0.0211 (6)
H19D0.39790.12130.12430.032*
H19E0.43830.14280.15570.032*
H19F0.44410.04430.11780.032*
H1OA0.1757 (12)0.292 (7)0.2017 (10)0.059 (12)*
H2OA0.0665 (11)0.295 (6)0.0505 (9)0.046 (11)*
H1OB0.4234 (11)0.242 (6)0.2164 (9)0.041 (11)*
H2OB0.3331 (11)0.033 (6)0.0771 (9)0.048 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0378 (4)0.0266 (4)0.0191 (3)0.0004 (4)0.0016 (3)0.0006 (3)
Cl2A0.0180 (3)0.0278 (4)0.0317 (4)0.0071 (3)0.0004 (3)0.0009 (4)
O1A0.0364 (12)0.0192 (12)0.0271 (11)0.0081 (11)0.0025 (9)0.0016 (10)
O2A0.0201 (10)0.0174 (12)0.0245 (10)0.0017 (10)0.0011 (8)0.0052 (9)
N1A0.0165 (11)0.0191 (14)0.0188 (11)0.0005 (11)0.0029 (9)0.0013 (11)
N2A0.0174 (11)0.0217 (14)0.0127 (10)0.0015 (11)0.0009 (8)0.0007 (10)
C1A0.0142 (12)0.0186 (16)0.0252 (13)0.0005 (13)0.0045 (10)0.0012 (13)
C2A0.0185 (13)0.0193 (17)0.0300 (15)0.0043 (14)0.0035 (11)0.0063 (14)
C3A0.0144 (13)0.0275 (18)0.0237 (14)0.0009 (14)0.0012 (11)0.0089 (14)
C4A0.0145 (12)0.0216 (17)0.0214 (13)0.0013 (13)0.0008 (10)0.0007 (13)
C5A0.0180 (13)0.0146 (15)0.0220 (13)0.0005 (13)0.0029 (10)0.0031 (13)
C6A0.0121 (11)0.0176 (16)0.0211 (13)0.0019 (13)0.0035 (10)0.0030 (13)
C7A0.0140 (12)0.0183 (16)0.0203 (13)0.0016 (13)0.0056 (10)0.0021 (13)
C8A0.0153 (12)0.0192 (16)0.0193 (12)0.0027 (13)0.0024 (10)0.0013 (13)
C9A0.0141 (12)0.0174 (16)0.0175 (12)0.0002 (13)0.0046 (10)0.0020 (12)
C10A0.0156 (13)0.0249 (18)0.0214 (13)0.0032 (13)0.0039 (10)0.0011 (13)
C11A0.0218 (13)0.0151 (16)0.0129 (12)0.0022 (13)0.0045 (10)0.0000 (12)
C12A0.0204 (13)0.0134 (15)0.0097 (11)0.0026 (13)0.0011 (9)0.0015 (11)
C13A0.0208 (13)0.0128 (15)0.0158 (12)0.0005 (13)0.0022 (10)0.0007 (12)
C14A0.0186 (13)0.0210 (17)0.0158 (12)0.0072 (14)0.0023 (10)0.0048 (13)
C15A0.0177 (13)0.0241 (17)0.0134 (12)0.0055 (14)0.0012 (10)0.0001 (12)
C16A0.0264 (14)0.0143 (15)0.0143 (12)0.0021 (14)0.0024 (10)0.0005 (12)
C17A0.0196 (13)0.0176 (16)0.0104 (11)0.0017 (13)0.0031 (9)0.0027 (12)
C18A0.0191 (13)0.0257 (18)0.0252 (14)0.0034 (14)0.0022 (11)0.0003 (14)
C19A0.0221 (14)0.0248 (18)0.0241 (14)0.0006 (15)0.0043 (11)0.0056 (14)
Cl1B0.0253 (3)0.0287 (4)0.0162 (3)0.0025 (4)0.0053 (2)0.0007 (3)
Cl2B0.0172 (3)0.0252 (4)0.0255 (3)0.0033 (3)0.0020 (2)0.0031 (3)
O1B0.0327 (12)0.0183 (12)0.0210 (10)0.0053 (11)0.0030 (9)0.0026 (10)
O2B0.0213 (10)0.0169 (12)0.0247 (10)0.0035 (10)0.0001 (8)0.0025 (9)
N1B0.0176 (11)0.0182 (14)0.0192 (11)0.0006 (11)0.0033 (9)0.0011 (11)
N2B0.0188 (11)0.0189 (14)0.0150 (10)0.0013 (11)0.0001 (8)0.0029 (10)
C1B0.0132 (12)0.0186 (16)0.0210 (13)0.0005 (13)0.0043 (10)0.0004 (13)
C2B0.0161 (13)0.0148 (16)0.0291 (14)0.0034 (13)0.0057 (11)0.0010 (13)
C3B0.0134 (12)0.0211 (17)0.0226 (13)0.0030 (13)0.0029 (10)0.0079 (13)
C4B0.0153 (12)0.0223 (17)0.0158 (12)0.0022 (13)0.0065 (10)0.0001 (12)
C5B0.0144 (12)0.0156 (15)0.0207 (12)0.0008 (12)0.0061 (10)0.0001 (12)
C6B0.0127 (12)0.0157 (15)0.0202 (12)0.0008 (13)0.0043 (10)0.0018 (12)
C7B0.0129 (12)0.0147 (15)0.0231 (13)0.0001 (12)0.0052 (10)0.0006 (12)
C8B0.0141 (12)0.0217 (17)0.0181 (12)0.0024 (13)0.0017 (10)0.0035 (13)
C9B0.0134 (12)0.0156 (15)0.0170 (12)0.0005 (12)0.0014 (10)0.0013 (12)
C10B0.0174 (13)0.0181 (16)0.0186 (12)0.0015 (13)0.0019 (10)0.0010 (12)
C11B0.0224 (14)0.0159 (15)0.0123 (11)0.0023 (13)0.0034 (10)0.0009 (12)
C12B0.0182 (13)0.0171 (15)0.0117 (11)0.0002 (13)0.0047 (10)0.0011 (12)
C13B0.0193 (13)0.0150 (15)0.0162 (12)0.0008 (13)0.0049 (10)0.0025 (12)
C14B0.0163 (12)0.0187 (16)0.0142 (12)0.0037 (13)0.0039 (10)0.0049 (12)
C15B0.0170 (13)0.0253 (17)0.0116 (12)0.0068 (13)0.0034 (10)0.0016 (12)
C16B0.0239 (14)0.0157 (16)0.0165 (12)0.0027 (14)0.0065 (10)0.0013 (12)
C17B0.0204 (13)0.0185 (16)0.0125 (11)0.0021 (13)0.0065 (10)0.0011 (12)
C18B0.0159 (13)0.0211 (17)0.0220 (13)0.0005 (13)0.0012 (10)0.0019 (13)
C19B0.0224 (14)0.0194 (17)0.0205 (13)0.0013 (14)0.0012 (11)0.0017 (13)
Geometric parameters (Å, º) top
Cl1A—C4A1.747 (3)Cl1B—C4B1.749 (3)
Cl2A—C14A1.747 (3)Cl2B—C14B1.750 (3)
O1A—C1A1.352 (3)O1B—C1B1.350 (3)
O1A—H1OA0.92 (4)O1B—H1OB0.84 (4)
O2A—C17A1.352 (3)O2B—C17B1.348 (3)
O2A—H2OA0.86 (4)O2B—H2OB0.82 (4)
N1A—C7A1.280 (3)N1B—C7B1.277 (3)
N1A—C8A1.459 (3)N1B—C8B1.454 (3)
N2A—C11A1.274 (3)N2B—C11B1.278 (3)
N2A—C10A1.464 (3)N2B—C10B1.457 (3)
C1A—C2A1.400 (4)C1B—C2B1.396 (4)
C1A—C6A1.410 (4)C1B—C6B1.408 (4)
C2A—C3A1.375 (4)C2B—C3B1.376 (4)
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—C4A1.385 (4)C3B—C4B1.388 (4)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.382 (3)C4B—C5B1.376 (4)
C5A—C6A1.398 (4)C5B—C6B1.401 (3)
C5A—H5AA0.9500C5B—H5BA0.9500
C6A—C7A1.464 (3)C6B—C7B1.461 (4)
C7A—H7AA0.9500C7B—H7BA0.9500
C8A—C9A1.542 (3)C8B—C9B1.543 (3)
C8A—H8AA0.9900C8B—H8BA0.9900
C8A—H8AB0.9900C8B—H8BB0.9900
C9A—C18A1.529 (4)C9B—C19B1.531 (4)
C9A—C19A1.529 (4)C9B—C18B1.534 (3)
C9A—C10A1.539 (3)C9B—C10B1.535 (4)
C10A—H10A0.9900C10B—H10C0.9900
C10A—H10B0.9900C10B—H10D0.9900
C11A—C12A1.464 (3)C11B—C12B1.464 (3)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.398 (4)C12B—C13B1.394 (4)
C12A—C17A1.405 (4)C12B—C17B1.408 (4)
C13A—C14A1.373 (4)C13B—C14B1.382 (3)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.390 (4)C14B—C15B1.383 (4)
C15A—C16A1.376 (4)C15B—C16B1.376 (4)
C15A—H15A0.9500C15B—H15B0.9500
C16A—C17A1.395 (4)C16B—C17B1.396 (4)
C16A—H16A0.9500C16B—H16B0.9500
C18A—H18A0.9800C18B—H18D0.9800
C18A—H18B0.9800C18B—H18E0.9800
C18A—H18C0.9800C18B—H18F0.9800
C19A—H19A0.9800C19B—H19D0.9800
C19A—H19B0.9800C19B—H19E0.9800
C19A—H19C0.9800C19B—H19F0.9800
C1A—O1A—H1OA107 (2)C1B—O1B—H1OB105 (2)
C17A—O2A—H2OA108 (2)C17B—O2B—H2OB107 (3)
C7A—N1A—C8A119.4 (2)C7B—N1B—C8B119.6 (3)
C11A—N2A—C10A118.0 (2)C11B—N2B—C10B118.8 (2)
O1A—C1A—C2A118.6 (3)O1B—C1B—C2B118.5 (3)
O1A—C1A—C6A121.9 (2)O1B—C1B—C6B121.8 (2)
C2A—C1A—C6A119.5 (3)C2B—C1B—C6B119.7 (2)
C3A—C2A—C1A120.1 (3)C3B—C2B—C1B120.4 (3)
C3A—C2A—H2AA119.9C3B—C2B—H2BA119.8
C1A—C2A—H2AA119.9C1B—C2B—H2BA119.8
C2A—C3A—C4A120.4 (2)C2B—C3B—C4B119.8 (3)
C2A—C3A—H3AA119.8C2B—C3B—H3BA120.1
C4A—C3A—H3AA119.8C4B—C3B—H3BA120.1
C5A—C4A—C3A120.8 (3)C5B—C4B—C3B121.1 (2)
C5A—C4A—Cl1A120.0 (2)C5B—C4B—Cl1B119.6 (2)
C3A—C4A—Cl1A119.2 (2)C3B—C4B—Cl1B119.4 (2)
C4A—C5A—C6A119.7 (3)C4B—C5B—C6B120.0 (3)
C4A—C5A—H5AA120.1C4B—C5B—H5BA120.0
C6A—C5A—H5AA120.1C6B—C5B—H5BA120.0
C5A—C6A—C1A119.5 (2)C5B—C6B—C1B119.1 (2)
C5A—C6A—C7A119.6 (3)C5B—C6B—C7B120.1 (3)
C1A—C6A—C7A120.9 (3)C1B—C6B—C7B120.8 (2)
N1A—C7A—C6A121.1 (3)N1B—C7B—C6B120.8 (3)
N1A—C7A—H7AA119.4N1B—C7B—H7BA119.6
C6A—C7A—H7AA119.4C6B—C7B—H7BA119.6
N1A—C8A—C9A111.3 (2)N1B—C8B—C9B111.1 (2)
N1A—C8A—H8AA109.4N1B—C8B—H8BA109.4
C9A—C8A—H8AA109.4C9B—C8B—H8BA109.4
N1A—C8A—H8AB109.4N1B—C8B—H8BB109.4
C9A—C8A—H8AB109.4C9B—C8B—H8BB109.4
H8AA—C8A—H8AB108.0H8BA—C8B—H8BB108.0
C18A—C9A—C19A110.0 (2)C19B—C9B—C18B110.4 (2)
C18A—C9A—C10A107.5 (2)C19B—C9B—C10B110.3 (2)
C19A—C9A—C10A110.7 (2)C18B—C9B—C10B108.1 (2)
C18A—C9A—C8A109.9 (2)C19B—C9B—C8B110.6 (2)
C19A—C9A—C8A110.8 (2)C18B—C9B—C8B109.8 (2)
C10A—C9A—C8A107.9 (2)C10B—C9B—C8B107.7 (2)
N2A—C10A—C9A113.4 (2)N2B—C10B—C9B112.2 (2)
N2A—C10A—H10A108.9N2B—C10B—H10C109.2
C9A—C10A—H10A108.9C9B—C10B—H10C109.2
N2A—C10A—H10B108.9N2B—C10B—H10D109.2
C9A—C10A—H10B108.9C9B—C10B—H10D109.2
H10A—C10A—H10B107.7H10C—C10B—H10D107.9
N2A—C11A—C12A121.2 (3)N2B—C11B—C12B120.7 (3)
N2A—C11A—H11A119.4N2B—C11B—H11B119.7
C12A—C11A—H11A119.4C12B—C11B—H11B119.7
C13A—C12A—C17A119.1 (2)C13B—C12B—C17B119.4 (2)
C13A—C12A—C11A119.9 (3)C13B—C12B—C11B119.4 (3)
C17A—C12A—C11A121.0 (2)C17B—C12B—C11B121.2 (2)
C14A—C13A—C12A120.3 (3)C14B—C13B—C12B120.0 (3)
C14A—C13A—H13A119.8C14B—C13B—H13B120.0
C12A—C13A—H13A119.8C12B—C13B—H13B120.0
C13A—C14A—C15A120.6 (3)C13B—C14B—C15B120.7 (3)
C13A—C14A—Cl2A120.1 (2)C13B—C14B—Cl2B119.9 (2)
C15A—C14A—Cl2A119.2 (2)C15B—C14B—Cl2B119.3 (2)
C16A—C15A—C14A119.8 (2)C16B—C15B—C14B120.0 (2)
C16A—C15A—H15A120.1C16B—C15B—H15B120.0
C14A—C15A—H15A120.1C14B—C15B—H15B120.0
C15A—C16A—C17A120.6 (3)C15B—C16B—C17B120.6 (3)
C15A—C16A—H16A119.7C15B—C16B—H16B119.7
C17A—C16A—H16A119.7C17B—C16B—H16B119.7
O2A—C17A—C16A118.9 (3)O2B—C17B—C16B118.6 (3)
O2A—C17A—C12A121.6 (2)O2B—C17B—C12B122.1 (2)
C16A—C17A—C12A119.5 (3)C16B—C17B—C12B119.3 (3)
C9A—C18A—H18A109.5C9B—C18B—H18D109.5
C9A—C18A—H18B109.5C9B—C18B—H18E109.5
H18A—C18A—H18B109.5H18D—C18B—H18E109.5
C9A—C18A—H18C109.5C9B—C18B—H18F109.5
H18A—C18A—H18C109.5H18D—C18B—H18F109.5
H18B—C18A—H18C109.5H18E—C18B—H18F109.5
C9A—C19A—H19A109.5C9B—C19B—H19D109.5
C9A—C19A—H19B109.5C9B—C19B—H19E109.5
H19A—C19A—H19B109.5H19D—C19B—H19E109.5
C9A—C19A—H19C109.5C9B—C19B—H19F109.5
H19A—C19A—H19C109.5H19D—C19B—H19F109.5
H19B—C19A—H19C109.5H19E—C19B—H19F109.5
O1A—C1A—C2A—C3A177.3 (3)O1B—C1B—C2B—C3B178.6 (2)
C6A—C1A—C2A—C3A2.1 (4)C6B—C1B—C2B—C3B1.4 (4)
C1A—C2A—C3A—C4A1.1 (4)C1B—C2B—C3B—C4B0.1 (4)
C2A—C3A—C4A—C5A0.6 (4)C2B—C3B—C4B—C5B1.1 (4)
C2A—C3A—C4A—Cl1A178.7 (2)C2B—C3B—C4B—Cl1B179.4 (2)
C3A—C4A—C5A—C6A1.2 (4)C3B—C4B—C5B—C6B0.7 (4)
Cl1A—C4A—C5A—C6A178.0 (2)Cl1B—C4B—C5B—C6B179.81 (19)
C4A—C5A—C6A—C1A0.2 (4)C4B—C5B—C6B—C1B0.8 (4)
C4A—C5A—C6A—C7A179.9 (2)C4B—C5B—C6B—C7B177.5 (2)
O1A—C1A—C6A—C5A177.9 (2)O1B—C1B—C6B—C5B178.2 (2)
C2A—C1A—C6A—C5A1.5 (4)C2B—C1B—C6B—C5B1.8 (4)
O1A—C1A—C6A—C7A2.1 (4)O1B—C1B—C6B—C7B3.5 (4)
C2A—C1A—C6A—C7A178.5 (2)C2B—C1B—C6B—C7B176.5 (2)
C8A—N1A—C7A—C6A179.6 (2)C8B—N1B—C7B—C6B176.9 (2)
C5A—C6A—C7A—N1A175.0 (2)C5B—C6B—C7B—N1B177.9 (2)
C1A—C6A—C7A—N1A5.0 (4)C1B—C6B—C7B—N1B3.8 (4)
C7A—N1A—C8A—C9A126.1 (3)C7B—N1B—C8B—C9B122.3 (3)
N1A—C8A—C9A—C18A63.0 (3)N1B—C8B—C9B—C19B57.4 (3)
N1A—C8A—C9A—C19A58.7 (3)N1B—C8B—C9B—C18B64.6 (3)
N1A—C8A—C9A—C10A180.0 (2)N1B—C8B—C9B—C10B177.9 (2)
C11A—N2A—C10A—C9A120.4 (3)C11B—N2B—C10B—C9B135.0 (2)
C18A—C9A—C10A—N2A178.7 (2)C19B—C9B—C10B—N2B57.0 (3)
C19A—C9A—C10A—N2A58.7 (3)C18B—C9B—C10B—N2B177.7 (2)
C8A—C9A—C10A—N2A62.8 (3)C8B—C9B—C10B—N2B63.7 (3)
C10A—N2A—C11A—C12A178.3 (2)C10B—N2B—C11B—C12B177.0 (2)
N2A—C11A—C12A—C13A174.1 (2)N2B—C11B—C12B—C13B178.2 (2)
N2A—C11A—C12A—C17A7.7 (4)N2B—C11B—C12B—C17B0.5 (4)
C17A—C12A—C13A—C14A1.0 (4)C17B—C12B—C13B—C14B2.6 (4)
C11A—C12A—C13A—C14A177.2 (2)C11B—C12B—C13B—C14B175.1 (2)
C12A—C13A—C14A—C15A0.5 (4)C12B—C13B—C14B—C15B0.3 (4)
C12A—C13A—C14A—Cl2A178.79 (19)C12B—C13B—C14B—Cl2B178.03 (19)
C13A—C14A—C15A—C16A0.6 (4)C13B—C14B—C15B—C16B1.9 (4)
Cl2A—C14A—C15A—C16A178.70 (19)Cl2B—C14B—C15B—C16B179.76 (19)
C14A—C15A—C16A—C17A0.8 (4)C14B—C15B—C16B—C17B1.7 (4)
C15A—C16A—C17A—O2A178.7 (2)C15B—C16B—C17B—O2B179.9 (2)
C15A—C16A—C17A—C12A2.3 (4)C15B—C16B—C17B—C12B0.6 (4)
C13A—C12A—C17A—O2A178.6 (2)C13B—C12B—C17B—O2B178.0 (2)
C11A—C12A—C17A—O2A3.1 (4)C11B—C12B—C17B—O2B4.4 (4)
C13A—C12A—C17A—C16A2.4 (4)C13B—C12B—C17B—C16B2.7 (4)
C11A—C12A—C17A—C16A175.8 (2)C11B—C12B—C17B—C16B174.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···N1A0.92 (4)1.76 (4)2.594 (3)150 (4)
O2A—H2OA···N2A0.86 (4)1.82 (4)2.591 (3)148 (3)
O1B—H1OB···N1B0.84 (4)1.80 (4)2.579 (3)153 (3)
O2B—H2OB···N2B0.82 (4)1.85 (4)2.595 (3)151 (4)
C16A—H16A···O2Ai0.952.543.291 (3)136
C18A—H18C···Cg10.982.733.634 (3)153
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H20Cl2N2O2
Mr379.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)31.6843 (8), 6.2236 (2), 37.9015 (10)
β (°) 99.779 (1)
V3)7365.2 (4)
Z16
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.35 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.882, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
38685, 8427, 5995
Rint0.071
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.116, 1.12
No. of reflections8426
No. of parameters467
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0306P)2 + 13.412P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.36, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···N1A0.92 (4)1.76 (4)2.594 (3)150 (4)
O2A—H2OA···N2A0.86 (4)1.82 (4)2.591 (3)148 (3)
O1B—H1OB···N1B0.84 (4)1.80 (4)2.579 (3)153 (3)
O2B—H2OB···N2B0.82 (4)1.85 (4)2.595 (3)151 (4)
C16A—H16A···O2Ai0.952.543.291 (3)136
C18A—H18C···Cg10.982.733.634 (3)153
Symmetry code: (i) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: hkargar@pnu.ac.ir.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund (grant No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for an award of a postdoctoral research fellowship. CSY thanks Universiti Sains Malaysia for an award of a student assistantship. HK thanks PNU for the financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationCasellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31–50.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1895–o1896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551–o3553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1–o4.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156–o4157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o68-o69
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds