organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(1,3-Benzo­thia­zol-2-yl)-N-(2-pyridylmeth­yl)aniline monohydrate

aMedical School, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China, and bSchool of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China
*Correspondence e-mail: zy0340907@yahoo.com.cn

(Received 30 November 2008; accepted 6 December 2008; online 10 December 2008)

In the title compound, C19H15N3S·H2O, the benzothia­zole ring system forms a dihedral angle of 7.22 (1)° with the benzene ring and the benzene ring forms a dihedral angle of 80.89 (1)° with the pyridine ring. An intra­molecular N—H⋯O inter­action is present. The crystal structure is stablized by inter­molecular O—H⋯N hydrogen bonds, ππ [centroid–centroid distances = 3.782 (1), 3.946 (1) and 3.913 (1) Å] and C—H⋯π inter­actions, forming a three dimensional-network.

Related literature

For background information, see: Krebs et al. (2005[Krebs, M. R. H., Bromley, E. H. C. & Donald, A. M. (2005). J. Struct. Biol. 149, 30-37.]); Kung et al. (2001[Kung, H. F., Lee, C.-W., Zhuang, Z.-P., Kung, M.-P., Hou, C. & Plssl, K. (2001). J. Am. Chem. Soc. 123, 12740-12741.]); Naiki et al. (1989[Naiki, H., Higuchi, K., Hosokawa, M. & Takeda, T. (1989). Anal. Biochem. 177, 244-249.]); Qu et al. (2007[Qu, W., Kung, M.-P., Hou, C., Oya, S. & Kung, H. F. (2007). J. Med. Chem. 50, 3380-3387.]). For the synthetic procedure, see: Stephenson et al. (2007[Stephenson, K. A., Chandra, R., Zhuang, Z.-P., Hou, C., Oya, S., Kung, M.-P. & Kung, H. F. (2007). Bioconjugate Chem. 18, 238-246.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15N3S·H2O

  • Mr = 335.42

  • Triclinic, [P \overline 1]

  • a = 6.5042 (3) Å

  • b = 11.5721 (5) Å

  • c = 11.9415 (5) Å

  • α = 99.597 (1)°

  • β = 103.599 (1)°

  • γ = 99.813 (1)°

  • V = 840.52 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.980

  • 5408 measured reflections

  • 3243 independent reflections

  • 2342 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.133

  • S = 0.98

  • 3243 reflections

  • 227 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.856 (10) 2.030 (11) 2.877 (2) 171 (2)
O1—H1B⋯N1i 0.836 (9) 2.102 (11) 2.929 (2) 170 (3)
O1—H1A⋯N3ii 0.830 (9) 2.069 (10) 2.889 (2) 169 (3)
C18—H18⋯Cgiii 0.93 2.82 3.689 (3) 156
Symmetry codes: (i) -x+1, -y, -z; (ii) x+1, y, z; (iii) x, y, z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thioflavin T (ThT) is a benzothiazole dye that exhibits enhanced fluorescence upon binding to amyloid fibrils and is commonly used to diagnose these fibrils (Naiki et al., 1989; Krebs et al., 2005). In an effort to develop in vivo beta-sheet imaging probes, many derivatives of thioflavin T have been synthesized and evaluated (Kung et al., 2001; Qu et al., 2007). As part of our research, the title compound, (I), was prepared and we report the crystal stucture here.

The molecular structure is illustrated in Fig. 1. In (I), the benzothiazole unit is not coplanar with the benzene ring, forming a dihedral angle of 7.22 (1)°. The dihedral angle between the benzene ring and the pyridine ring is 80.89 (1)°. As shown in Fig. 2, molecules are linked into a three-dimensional network by a combination of N—H···O, O—H···N hydrogen bonds, C—H···π (Table 1) and π-π interactions. For the π-π interactions, some related parameters are listed as below: Cg1···Cg1iv = 3.782 (1) Å, interplanar spacing: 3.680 (1) Å, dihedral angle: 0 °, symmetry code: iv) 1-x,1-y,-z; Cg2···Cg2v= 3.946 (1) Å, interplanar spacing: 3.678 (1) Å, dihedral angle: 0 °; symmetry code: v) –x,-y,1-z; Cg3···Cgiv = 3.913 (1) Å, interplanar spacing: 3.748 (1) Å, dihedral angle: 7.1 (1)°. Cg1 is the centroid defined by atoms S1/N1/C1/C6/C7 while Cg2 and Cg3 are the centroids defined by atoms N3/C16—C20 and C1—C6.

Related literature top

For background information, see: Krebs et al. (2005); Kung et al. (2001); Naiki et al. (1989); Qu et al. (2007). For the synthetic procedure, see: Stephenson et al. (2007). [Scheme should show the water molecule]

Experimental top

Compound (I) was synthesized according to the method described by Stephenson et al. (2007). Yellow single crystals suitable for an X-ray diffraction study were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms bonded to C atoms were placed in idealized positions [CH(methylene)=0.97 Å and C—H(aromatic) = 0.93 Å] and included in the refinement in the riding-motion approximation, with Uiso=1.2Ueq(C). H atoms bonded to N atoms and water O atoms were located in difference maps and then refined with the constraints of N-H = 0.86 (1)Å, O-H = 0.82 (1)Å and H-H = 1.35 (1)Å with Uiso=1.2Ueq(N) or 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Part of the crystal structure showing H-bonds as dashed lines.
4-(1,3-Benzothiazol-2-yl)-N-(2-pyridylmethyl)aniline monohydrate top
Crystal data top
C19H15N3S·H2OZ = 2
Mr = 335.42F(000) = 352
Triclinic, P1Dx = 1.325 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5042 (3) ÅCell parameters from 1809 reflections
b = 11.5721 (5) Åθ = 1.8–26.0°
c = 11.9415 (5) ŵ = 0.20 mm1
α = 99.597 (1)°T = 298 K
β = 103.599 (1)°Plate, yellow
γ = 99.813 (1)°0.20 × 0.10 × 0.10 mm
V = 840.52 (6) Å3
Data collection top
Bruker SMART CCD
diffractometer
3243 independent reflections
Radiation source: fine-focus sealed tube2342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 88
Tmin = 0.961, Tmax = 0.980k = 1114
5408 measured reflectionsl = 1410
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0653P)2]
where P = (Fo2 + 2Fc2)/3
3243 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.25 e Å3
4 restraintsΔρmin = 0.28 e Å3
Crystal data top
C19H15N3S·H2Oγ = 99.813 (1)°
Mr = 335.42V = 840.52 (6) Å3
Triclinic, P1Z = 2
a = 6.5042 (3) ÅMo Kα radiation
b = 11.5721 (5) ŵ = 0.20 mm1
c = 11.9415 (5) ÅT = 298 K
α = 99.597 (1)°0.20 × 0.10 × 0.10 mm
β = 103.599 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3243 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2342 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.980Rint = 0.074
5408 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0534 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.25 e Å3
3243 reflectionsΔρmin = 0.28 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4402 (3)0.43406 (18)0.20560 (17)0.0522 (5)
C20.5812 (4)0.4597 (2)0.2737 (2)0.0691 (7)
H20.69170.41860.27620.083*
C30.5534 (5)0.5473 (2)0.3374 (2)0.0801 (8)
H30.64790.56590.38260.096*
C40.3900 (5)0.6079 (2)0.3361 (2)0.0845 (8)
H40.37480.66590.38100.101*
C50.2492 (5)0.5842 (2)0.2699 (2)0.0785 (7)
H50.13820.62520.26920.094*
C60.2765 (4)0.49671 (19)0.20326 (18)0.0580 (6)
C70.2929 (3)0.34399 (17)0.08419 (16)0.0464 (5)
C80.2525 (3)0.26241 (17)0.00708 (16)0.0463 (5)
C90.3952 (3)0.18903 (19)0.02435 (17)0.0517 (5)
H90.51940.19460.00200.062*
C100.3564 (3)0.10838 (19)0.09370 (17)0.0532 (5)
H100.45410.06000.11280.064*
C110.1720 (3)0.09818 (18)0.13580 (17)0.0492 (5)
C120.0305 (3)0.17363 (18)0.10587 (18)0.0529 (5)
H120.09180.17010.13390.064*
C130.0701 (3)0.25266 (19)0.03563 (18)0.0528 (5)
H130.02750.30100.01600.063*
C150.0523 (3)0.00822 (19)0.24393 (18)0.0552 (5)
H15A0.06950.08900.25820.066*
H15B0.17680.00710.18110.066*
C160.0534 (3)0.07696 (18)0.35445 (16)0.0479 (5)
C170.1128 (4)0.1740 (2)0.41260 (19)0.0659 (6)
H170.23360.19120.38440.079*
C180.0975 (5)0.2455 (2)0.5135 (2)0.0775 (7)
H180.20850.31150.55420.093*
C190.0808 (5)0.2189 (2)0.5533 (2)0.0765 (7)
H190.09410.26570.62140.092*
C200.2392 (4)0.1217 (2)0.4904 (2)0.0727 (7)
H200.36090.10320.51760.087*
N10.4450 (3)0.34715 (15)0.13801 (15)0.0531 (4)
N20.1390 (3)0.01759 (17)0.20410 (16)0.0592 (5)
H2A0.228 (3)0.0288 (16)0.2148 (19)0.069 (7)*
N30.2300 (3)0.05079 (16)0.39105 (15)0.0590 (5)
O10.4135 (2)0.14685 (15)0.26027 (16)0.0699 (5)
H1A0.526 (3)0.0972 (19)0.299 (2)0.105*
H1B0.450 (4)0.2003 (18)0.218 (2)0.105*
S10.12798 (10)0.44713 (5)0.11189 (5)0.0648 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0604 (12)0.0473 (12)0.0409 (11)0.0022 (10)0.0057 (10)0.0090 (9)
C20.0644 (14)0.0747 (17)0.0662 (15)0.0035 (12)0.0152 (12)0.0250 (13)
C30.0883 (18)0.0772 (18)0.0708 (16)0.0063 (16)0.0207 (14)0.0314 (14)
C40.118 (2)0.0620 (16)0.0721 (17)0.0093 (16)0.0193 (17)0.0320 (14)
C50.111 (2)0.0603 (16)0.0683 (16)0.0275 (14)0.0192 (15)0.0222 (13)
C60.0778 (14)0.0480 (12)0.0430 (11)0.0124 (11)0.0102 (10)0.0059 (10)
C70.0538 (11)0.0440 (11)0.0377 (10)0.0095 (9)0.0104 (9)0.0024 (8)
C80.0536 (11)0.0447 (11)0.0393 (10)0.0115 (9)0.0126 (9)0.0049 (9)
C90.0516 (11)0.0609 (13)0.0463 (11)0.0149 (10)0.0177 (9)0.0129 (10)
C100.0599 (12)0.0596 (13)0.0478 (12)0.0242 (10)0.0183 (10)0.0154 (10)
C110.0603 (12)0.0486 (12)0.0399 (10)0.0139 (10)0.0165 (9)0.0069 (9)
C120.0582 (12)0.0539 (13)0.0538 (12)0.0182 (10)0.0253 (10)0.0106 (10)
C130.0606 (12)0.0497 (12)0.0528 (12)0.0207 (10)0.0192 (10)0.0098 (10)
C150.0672 (13)0.0500 (12)0.0495 (12)0.0096 (10)0.0204 (10)0.0104 (10)
C160.0602 (12)0.0452 (12)0.0395 (10)0.0091 (10)0.0133 (9)0.0149 (9)
C170.0731 (15)0.0648 (15)0.0502 (13)0.0061 (12)0.0172 (11)0.0067 (11)
C180.0994 (19)0.0625 (16)0.0526 (14)0.0088 (14)0.0143 (14)0.0003 (12)
C190.120 (2)0.0629 (16)0.0481 (14)0.0175 (16)0.0324 (15)0.0041 (12)
C200.0930 (18)0.0738 (17)0.0644 (15)0.0196 (14)0.0441 (14)0.0167 (13)
N10.0573 (10)0.0527 (10)0.0500 (10)0.0111 (8)0.0145 (8)0.0145 (8)
N20.0734 (12)0.0598 (12)0.0590 (11)0.0262 (10)0.0310 (10)0.0225 (10)
N30.0709 (12)0.0540 (11)0.0558 (11)0.0069 (9)0.0288 (9)0.0125 (9)
O10.0666 (10)0.0648 (11)0.0849 (12)0.0193 (8)0.0325 (9)0.0125 (9)
S10.0899 (5)0.0624 (4)0.0565 (4)0.0371 (3)0.0298 (3)0.0170 (3)
Geometric parameters (Å, º) top
C1—C21.389 (3)C11—C121.400 (3)
C1—C61.390 (3)C12—C131.372 (3)
C1—N11.390 (3)C12—H120.9300
C2—C31.376 (3)C13—H130.9300
C2—H20.9300C15—N21.436 (3)
C3—C41.371 (4)C15—C161.512 (3)
C3—H30.9300C15—H15A0.9700
C4—C51.366 (4)C15—H15B0.9700
C4—H40.9300C16—N31.328 (2)
C5—C61.398 (3)C16—C171.373 (3)
C5—H50.9300C17—C181.378 (3)
C6—S11.723 (2)C17—H170.9300
C7—N11.299 (3)C18—C191.361 (4)
C7—C81.458 (3)C18—H180.9300
C7—S11.757 (2)C19—C201.360 (3)
C8—C91.391 (3)C19—H190.9300
C8—C131.392 (3)C20—N31.345 (3)
C9—C101.377 (3)C20—H200.9300
C9—H90.9300N2—O12.877 (2)
C10—C111.400 (3)N2—H2A0.856 (10)
C10—H100.9300O1—H1A0.830 (9)
C11—N21.360 (3)O1—H1B0.836 (9)
C2—C1—C6119.7 (2)C12—C13—C8121.7 (2)
C2—C1—N1125.2 (2)C12—C13—H13119.1
C6—C1—N1115.02 (19)C8—C13—H13119.1
C3—C2—C1118.4 (2)N2—C15—C16115.24 (17)
C3—C2—H2120.8N2—C15—H15A108.5
C1—C2—H2120.8C16—C15—H15A108.5
C4—C3—C2121.8 (3)N2—C15—H15B108.5
C4—C3—H3119.1C16—C15—H15B108.5
C2—C3—H3119.1H15A—C15—H15B107.5
C5—C4—C3120.9 (3)N3—C16—C17122.3 (2)
C5—C4—H4119.5N3—C16—C15114.46 (18)
C3—C4—H4119.5C17—C16—C15123.3 (2)
C4—C5—C6118.2 (3)C16—C17—C18118.9 (2)
C4—C5—H5120.9C16—C17—H17120.6
C6—C5—H5120.9C18—C17—H17120.6
C1—C6—C5121.0 (2)C19—C18—C17119.6 (2)
C1—C6—S1109.75 (17)C19—C18—H18120.2
C5—C6—S1129.3 (2)C17—C18—H18120.2
N1—C7—C8124.97 (18)C20—C19—C18118.0 (2)
N1—C7—S1114.73 (15)C20—C19—H19121.0
C8—C7—S1120.30 (15)C18—C19—H19121.0
C9—C8—C13117.53 (19)N3—C20—C19123.8 (2)
C9—C8—C7120.40 (18)N3—C20—H20118.1
C13—C8—C7122.05 (19)C19—C20—H20118.1
C10—C9—C8121.39 (19)C7—N1—C1111.11 (18)
C10—C9—H9119.3C11—N2—C15124.34 (19)
C8—C9—H9119.3C11—N2—O1124.36 (14)
C9—C10—C11120.9 (2)C15—N2—O1110.78 (13)
C9—C10—H10119.5C11—N2—H2A117.8 (16)
C11—C10—H10119.5C15—N2—H2A117.1 (16)
N2—C11—C12123.07 (19)C16—N3—C20117.4 (2)
N2—C11—C10119.30 (19)N2—O1—H1A99 (2)
C12—C11—C10117.63 (19)N2—O1—H1B132 (2)
C13—C12—C11120.76 (19)H1A—O1—H1B107.1 (15)
C13—C12—H12119.6C6—S1—C789.37 (10)
C11—C12—H12119.6
C6—C1—C2—C30.0 (3)N2—C15—C16—N3179.05 (18)
N1—C1—C2—C3179.0 (2)N2—C15—C16—C171.3 (3)
C1—C2—C3—C40.8 (4)N3—C16—C17—C181.1 (4)
C2—C3—C4—C50.8 (4)C15—C16—C17—C18179.2 (2)
C3—C4—C5—C60.1 (4)C16—C17—C18—C190.1 (4)
C2—C1—C6—C50.9 (3)C17—C18—C19—C200.3 (4)
N1—C1—C6—C5178.17 (19)C18—C19—C20—N30.3 (4)
C2—C1—C6—S1179.81 (16)C8—C7—N1—C1179.53 (17)
N1—C1—C6—S11.1 (2)S1—C7—N1—C10.3 (2)
C4—C5—C6—C11.0 (3)C2—C1—N1—C7179.93 (18)
C4—C5—C6—S1179.93 (19)C6—C1—N1—C70.9 (2)
N1—C7—C8—C97.2 (3)C12—C11—N2—C156.3 (3)
S1—C7—C8—C9173.62 (15)C10—C11—N2—C15174.45 (18)
N1—C7—C8—C13171.42 (18)C12—C11—N2—O1177.22 (15)
S1—C7—C8—C137.8 (3)C10—C11—N2—O13.5 (3)
C13—C8—C9—C100.9 (3)C16—C15—N2—C1184.0 (3)
C7—C8—C9—C10177.73 (18)C16—C15—N2—O1104.04 (17)
C8—C9—C10—C110.5 (3)C17—C16—N3—C201.7 (3)
C9—C10—C11—N2179.97 (19)C15—C16—N3—C20178.7 (2)
C9—C10—C11—C120.7 (3)C19—C20—N3—C161.3 (4)
N2—C11—C12—C13179.35 (19)C1—C6—S1—C70.75 (15)
C10—C11—C12—C131.4 (3)C5—C6—S1—C7178.4 (2)
C11—C12—C13—C81.0 (3)N1—C7—S1—C60.28 (16)
C9—C8—C13—C120.2 (3)C8—C7—S1—C6179.01 (16)
C7—C8—C13—C12178.42 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.86 (1)2.03 (1)2.877 (2)171 (2)
O1—H1B···N1i0.84 (1)2.10 (1)2.929 (2)170 (3)
O1—H1A···N3ii0.83 (1)2.07 (1)2.889 (2)169 (3)
C18—H18···Cgiii0.932.823.689 (3)156
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H15N3S·H2O
Mr335.42
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.5042 (3), 11.5721 (5), 11.9415 (5)
α, β, γ (°)99.597 (1), 103.599 (1), 99.813 (1)
V3)840.52 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.961, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5408, 3243, 2342
Rint0.074
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.133, 0.98
No. of reflections3243
No. of parameters227
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.856 (10)2.030 (11)2.877 (2)171 (2)
O1—H1B···N1i0.836 (9)2.102 (11)2.929 (2)170 (3)
O1—H1A···N3ii0.830 (9)2.069 (10)2.889 (2)169 (3)
C18—H18···Cgiii0.932.823.689 (3)156
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x, y, z+1.
 

References

First citationBruker (2007). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrebs, M. R. H., Bromley, E. H. C. & Donald, A. M. (2005). J. Struct. Biol. 149, 30–37.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKung, H. F., Lee, C.-W., Zhuang, Z.-P., Kung, M.-P., Hou, C. & Plssl, K. (2001). J. Am. Chem. Soc. 123, 12740–12741.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNaiki, H., Higuchi, K., Hosokawa, M. & Takeda, T. (1989). Anal. Biochem. 177, 244–249.  CrossRef CAS PubMed Web of Science Google Scholar
First citationQu, W., Kung, M.-P., Hou, C., Oya, S. & Kung, H. F. (2007). J. Med. Chem. 50, 3380–3387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephenson, K. A., Chandra, R., Zhuang, Z.-P., Hou, C., Oya, S., Kung, M.-P. & Kung, H. F. (2007). Bioconjugate Chem. 18, 238–246.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds