organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cyclo­hexyl­methyl­ammonium N,N′-di­cyclo­hexyl-N,N′-di­methyl-N′′-(2,2,2-tri­fluoro­acet­yl)phospho­nic tri­amide)

aDepartment of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad 91779, Iran
*Correspondence e-mail: myazdam56@yahoo.de

(Received 18 November 2008; accepted 3 December 2008; online 10 December 2008)

In the salt, C7H16N+·C16H28F3N3O2P, the P atom shows tetra­hedral coordination. Two ion pairs are linked by N—H⋯O hydrogen bonds across a center of inversion. The phosphoryl and carbonyl groups are staggered [O—P—N—C = 64.8 (3)°].

Related literature

For alkali metal salts of dimethyl-N-trichlor­acetyl­amido­phosphate, see: Trush et al. (2005[Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007-1014.]). For a related structure, see: Yazdanbakhsh & Sabbaghi (2007[Yazdanbakhsh, M. & Sabbaghi, F. (2007). Acta Cryst. E63, o4318.]). For bond-length data, see: Corbridge (1995[Corbridge, D. E. C. (1995). Phosphorus, an Outline of its Chemistry, Biochemistry and Technology, 5th ed., p. 1179. New York: Elsevier Science.]). For synthetic details, see: Shokol et al. (1969[Shokol, V. A., Kisilenko, A. A. & Derkach, G. I. (1969). Zh. Obshch. Khim. 39, 1492-1497.]).

[Scheme 1]

Experimental

Crystal data
  • C7H16N+·C16H28F3N3O2P

  • Mr = 496.59

  • Monoclinic, P 21 /c

  • a = 9.183 (3) Å

  • b = 30.893 (7) Å

  • c = 9.241 (2) Å

  • β = 93.039 (7)°

  • V = 2617.9 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 120 (2) K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.947, Tmax = 0.969

  • 23153 measured reflections

  • 5148 independent reflections

  • 2673 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.113

  • S = 1.08

  • 5148 reflections

  • 304 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4NA⋯O1 0.95 1.84 2.771 (3) 167
N4—H4NB⋯O1i 0.95 1.87 2.804 (3) 168
Symmetry code: (i) -x+1, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Alkali onic-salts (Na+, Rb+) of dimethyl-N-trichloracetylamidophosphate [HL] were synthesized from aqueous-alcoholic solutions (Trush et al., 2005). Furthermore synthesis and investigation of onic-salts SbPh4+ allowed the determination of the preferable donor center of the deprotonated ligand (the oxygen atom of the phosphoryl group). Using non-coordinating ions PPh4+ permits to synthesize and characterize structurally of the "free" non-solvated [HL] anion. This information could be used for the molecular design of coordination systems based on carbacylamidophosphates. Here, we report on a new onic-salt (NH2CH3C6H11+) of [CF3CONPO(NCH3C6H11)2]- obtained from a reaction between LiOH and ligand. Single crystal of the product [NH2CH3C6H11][CF3CONPO(NCH3C6H11)2] was obtained from a solution of CH3OH—H2O (3:1) after a slow evaporation at room temperature. The proton transfer compound contains N-methyl cyclohexyl ammonium cation and deprotonated N'-2,2,2,-tri-flouroacetyl bis N"-methyl cyclohexyl phosphortriamide (Fig. 1). The structure of the title compound is composed of centrosymmetric dimmers (of two bridged cations between two anions) forming by intermolecular N+—H···OP hydrogen bonds (N···O = 2.771 (3) Å & 2.804 (3) Å), Fig. 2. The phosphoryl and the carbonyl groups in the structure are not in anti position (O(1)—P(1)—N(1)—C(1) = 64.8 (3)°) against the previous reported carbacylamidophosphates (Yazdanbakhsh & Sabbaghi, 2007). The phosphorus atom has slightly distorted tetrahedral configuration. The bond angles around P(1) atom is in the range of 100.79 (12)°-115.26 (13)° that the highest and the lowest values were obtained for the angles OPN(1)amide and N(2)aminePN(1)amide. The P(1)—N(1), P(1)—N(2) and P(1)—N(3) bond lengths are 1.629 (3) Å, 1.651 (2) Å and 1.643 (2) Å. They are significantly shorter than the typical P—N single bond length (1.77 Å) (Corbridge, 1995). Sum of the surrounding angles around N(2) and N(3) atoms are 353.5° and 356.0° that indicate some deviation from planarity. Furthermore the angle C(1)—N(1)—P(1) (123.4 (2)°) confirm the sp2 hybridization for the nitrogen atom. The PO bond length (1.511 (2) Å) is larger than the normal P?O bond length (1.45 Å). The CO group cooperates in weak C—H···O hydrogen bonds forming four hydrogen bonds with two neighboring cations (C(17)—H(17 C)···O(2)—C(1), C(17)···O(2) = 3.320 Å; C(18)—H(18 A)···O(2)—C(1), C(18)···O(2) = 3.214 Å; C(17)—H(17B)···O(2)—C(1), C(17)···O(2) = 3.365 Å; C(23)—H(23 A)···O(2)—C(1), C(23)···O(2) = 3.562 Å) (Fig. 3). Moreover, the C—H···F hydrogen bonds exist in the crystal network (C(5)—H(5 A)···F(3), C(5)···F(3) = 3.593 Å) (Fig. 4).

Related literature top

For Alkali onic-salts (Na+, Rb+) of dimethyl-N-trichloracetylamidophosphate, see: Trush et al. (2005). For related structures, see: Yazdanbakhsh & Sabbaghi (2007). For bond-length data, see: Corbridge (1995). For synthetic details, see: Shokol et al. (1969);

Experimental top

CF3C(O)N(H)P(O)Cl2 was prepared similar to the literature method (Shokol et al., 1969) from the reaction of phosphorus pentachloride and 2,2,2-triflouoroacetamide in CCl4 and then the treatment of formic acid. Synthesis of CF3C(O)N(H)P(O)[N(CH3)(C6H11)]2 To a solution of (1.15 g, 5 mmol) triflouroacetyl phosphoramidic dichloride in CCl4 (20 ml), a solution of N-methylcyclohexylamine (2.26 g, 20 mmol) in CCl4 (10 ml) was added dropwise at 0°C. After 24 h stirring, the solvent was removed in vacuum and the solid product was washed with distilled water. The residue recrystallized in CH3CN. Anal. Calc. for C16H29F3N3O2P: C, 50.10; H, 7.56; N, 10.95. Found: C, 49.72; H, 7.84; N, 10.74%. 31P NMR ([D6]DMSO): 12.22. 13C NMR ([D6]DMSO): 54.35 (d, 2J(P,C) = 4.2 Hz 2 C, CH3), 30.22 (d, 2J(P,C) = 2.7 Hz, 2 C, CH), 27.30 (d, 3J(P,C) = 4.4 Hz, 4 C, CH2), 25.60 (s), 25.00 (s). 1H NMR ([D6]DMSO): 1.02 (m, 2 H), 1.17 (m, 4 H), 1.48 (m, 8 H), 1.73 (m, 4 H), 2.49 (s, 6 H), 3.27 (m, 2 H), 10.23 (b, 1 H, NH). IR (KBr, cm-1): 3067, 2925, 2802, 1735 (C?O), 1498, 1271, 1236, 1202, 1158, 1005, 980, 893, 851. Raman (cm-1): 2929, 2858, 1736, 1446, 1341, 1259, 1188, 1151, 1025, 857, 808, 742, 533, 493, 442, 308. MS (70 ev) m/z (%): 383 (20, [M]+), 368 (2, [M—CH3]+), 340 (36, [M—C(O)NH]+), 271 (35, [P(O)(N(CH3)(C6H11))2]+), 112 (100, [N(CH3)(C6H11)]+), 97 (58, [CF3C(O)]+), 69 (98, [CF3]+). Synthesis of [NH2CH3C6H11][CF3CONPO(NCH3C6H11)2] Lithium hydroxide (0.04 g, 1.6 mmol) was added to a solution of CF3CONHPO(NCH3C6H11)2 (0.62 g, 1.6 mmol) in 10 ml of aqueous methanol (1:3). The solution was stirred at room temperature for 24 h. Colorless single-crystal was obtained after a week at room temperature. Yield: 0.48 g, 60%. Anal. Calc. for C23H44F3N4O2P: C, 55.59; H, 8.86; N, 11.28. Found: C, 55.47; H, 8.80; N, 11.52%. 31P NMR ([D6]DMSO): 18.61. 13C NMR ([D6]DMSO): 23.84 (s), 24.83 (s), 25.37 (s), 25.87 (s), 27.20 (d, J(P,C)=3.9 Hz), 28.69 (s), 29.70 (s), 30.38 (s), 53.48 (s), 56.72 (s), 137.58 (dq, CF3), 157.14 (q, C?O). IR (KBr, cm-1): 3338, 3058, 2936, 2849, 2690, 2624, 1689 (C?O), 1631, 1601, 1553, 1520, 1430, 1375, 1220, 1067, 987, 896, 769, 682.

Refinement top

The hydrogen atoms of NH2 group were found in difference Fourier synthesis. The H(C) atom positions were calculated. All hydrogen atoms were refined in isotropic approximation in riding model with with the Uiso(H) parameters equal to 1.2 Ueq(Ci), for methyl groups equal to 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. General view of [NH2CH3C6H11][CF3CONPO(NCH3C6H11)2] in representation of atoms via thermal ellipsoids at 50% probability level (all hydrogen atoms except H(4 N A) and H(4NB) are omitted for clarity).
[Figure 2] Fig. 2. The fragment of crystal packing of [NH2CH3C6H11][CF3CONPO(NCH3C6H11)2] along the crystallographic plane ab (all hydrogen atoms except H(4 N A)and H(4NB) are omitted for clarity).
[Figure 3] Fig. 3. A view of C—H···O hydrogen bonds in [NH2CH3C6H11][CF3CONPO(NCH3C6H11)2].
[Figure 4] Fig. 4. A view of C—H···F hydrogen bonds in [NH2CH3C6H11][CF3CONPO(NCH3C6H11)2].
Cyclohexylmethylammonium N,N'-dicyclohexyl-N,N'-dimethyl-N''- (2,2,2-trifluoroacetyl)phosphonic triamide) top
Crystal data top
C7H16N+·C16H28F3N3O2PF(000) = 1072
Mr = 496.59Dx = 1.260 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 365 reflections
a = 9.183 (3) Åθ = 2–25°
b = 30.893 (7) ŵ = 0.15 mm1
c = 9.241 (2) ÅT = 120 K
β = 93.039 (7)°Prism, colorless
V = 2617.9 (12) Å30.40 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5148 independent reflections
Radiation source: fine-focus sealed tube2673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.947, Tmax = 0.969k = 3837
23153 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0126P)2 + 2.4P]
where P = (Fo2 + 2Fc2)/3
5148 reflections(Δ/σ)max = 0.004
304 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C7H16N+·C16H28F3N3O2PV = 2617.9 (12) Å3
Mr = 496.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.183 (3) ŵ = 0.15 mm1
b = 30.893 (7) ÅT = 120 K
c = 9.241 (2) Å0.40 × 0.30 × 0.25 mm
β = 93.039 (7)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5148 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2673 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.969Rint = 0.064
23153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
5148 reflectionsΔρmin = 0.32 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.59626 (9)0.11209 (3)0.00482 (9)0.0277 (2)
F10.8519 (2)0.13212 (8)0.3599 (2)0.0674 (7)
F21.0171 (2)0.15024 (6)0.2005 (2)0.0605 (6)
F31.0165 (2)0.08688 (6)0.2932 (2)0.0498 (5)
O10.5406 (2)0.06625 (6)0.0163 (2)0.0306 (5)
O20.9035 (2)0.07648 (7)0.0331 (2)0.0381 (6)
N10.7111 (3)0.12011 (8)0.1208 (3)0.0285 (6)
N20.4692 (3)0.14801 (7)0.0417 (3)0.0250 (6)
N30.6583 (3)0.12719 (7)0.1670 (3)0.0280 (6)
N40.3080 (3)0.01010 (8)0.0416 (3)0.0300 (6)
H4NA0.38100.03190.04270.029 (9)*
H4NB0.35470.01720.03500.051 (11)*
C10.8390 (3)0.10240 (10)0.1197 (3)0.0302 (8)
C20.9298 (3)0.11769 (11)0.2449 (4)0.0330 (8)
C30.3392 (3)0.14748 (10)0.0448 (3)0.0348 (8)
H3A0.29590.17650.04550.052*
H3B0.36720.13870.14440.052*
H3C0.26790.12690.00230.052*
C40.4473 (3)0.16366 (9)0.1935 (3)0.0259 (7)
H4A0.54660.17000.22770.031*
C50.3796 (3)0.13003 (10)0.2974 (3)0.0317 (8)
H5A0.28080.12250.26740.038*
H5B0.43950.10340.29290.038*
C60.3694 (4)0.14714 (11)0.4532 (3)0.0411 (9)
H6A0.46890.15120.48730.049*
H6B0.31860.12560.51700.049*
C70.2875 (4)0.18992 (11)0.4631 (4)0.0443 (9)
H7A0.28890.20120.56330.053*
H7B0.18450.18510.44060.053*
C80.3553 (4)0.22305 (10)0.3587 (4)0.0411 (9)
H8A0.29650.24990.36380.049*
H8B0.45470.23020.38770.049*
C90.3634 (4)0.20606 (10)0.2029 (3)0.0340 (8)
H9A0.41250.22770.13810.041*
H9B0.26360.20150.17030.041*
C100.6862 (4)0.09517 (10)0.2826 (3)0.0391 (9)
H10A0.68660.10960.37700.059*
H10B0.78110.08150.27090.059*
H10C0.60950.07310.27690.059*
C110.7380 (3)0.16853 (9)0.1839 (3)0.0292 (8)
H11A0.72510.18400.08890.035*
C120.9025 (3)0.16295 (10)0.2143 (4)0.0357 (8)
H12A0.92040.14770.30790.043*
H12B0.94240.14490.13740.043*
C130.9808 (4)0.20648 (11)0.2202 (4)0.0472 (10)
H13A1.08590.20190.24480.057*
H13B0.97100.22050.12390.057*
C140.9170 (4)0.23579 (11)0.3327 (4)0.0504 (10)
H14A0.96580.26430.33140.060*
H14B0.93570.22300.43020.060*
C150.7527 (4)0.24187 (11)0.3035 (4)0.0482 (10)
H15A0.73420.25740.21060.058*
H15B0.71330.25970.38150.058*
C160.6749 (4)0.19793 (10)0.2965 (4)0.0403 (9)
H16A0.68490.18380.39270.048*
H16B0.56970.20240.27220.048*
C170.2070 (3)0.01882 (10)0.0858 (3)0.0367 (9)
H17A0.26350.02360.17150.055*
H17B0.14900.04470.06740.055*
H17C0.14200.00600.10260.055*
C180.2394 (3)0.00821 (10)0.1845 (3)0.0299 (8)
H18A0.15270.01140.17450.036*
C190.3478 (4)0.01118 (10)0.2964 (3)0.0364 (9)
H19A0.43630.00710.30500.044*
H19B0.37700.04040.26460.044*
C200.2801 (4)0.01433 (11)0.4438 (3)0.0430 (9)
H20A0.19850.03530.43750.052*
H20B0.35410.02520.51670.052*
C210.2246 (4)0.02903 (11)0.4918 (4)0.0454 (10)
H21A0.30800.04890.51070.054*
H21B0.17450.02540.58330.054*
C220.1197 (4)0.04878 (11)0.3780 (3)0.0437 (9)
H22A0.09020.07790.41020.052*
H22B0.03090.03060.36740.052*
C230.1878 (4)0.05249 (10)0.2320 (3)0.0357 (8)
H23A0.11510.06410.15900.043*
H23B0.27140.07280.23970.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0272 (5)0.0257 (5)0.0301 (5)0.0010 (4)0.0017 (4)0.0008 (4)
F10.0449 (13)0.112 (2)0.0460 (13)0.0198 (13)0.0116 (11)0.0314 (13)
F20.0560 (14)0.0487 (13)0.0793 (16)0.0186 (11)0.0286 (12)0.0111 (12)
F30.0466 (13)0.0509 (13)0.0535 (13)0.0069 (10)0.0170 (10)0.0057 (11)
O10.0307 (12)0.0241 (12)0.0372 (13)0.0017 (10)0.0042 (10)0.0018 (10)
O20.0367 (14)0.0360 (14)0.0416 (14)0.0078 (11)0.0014 (11)0.0029 (11)
N10.0212 (14)0.0337 (16)0.0304 (15)0.0044 (12)0.0008 (12)0.0002 (12)
N20.0265 (15)0.0242 (14)0.0249 (14)0.0005 (11)0.0056 (12)0.0033 (11)
N30.0345 (16)0.0223 (14)0.0268 (15)0.0040 (12)0.0019 (12)0.0018 (12)
N40.0331 (16)0.0260 (16)0.0308 (16)0.0019 (13)0.0009 (13)0.0012 (12)
C10.031 (2)0.0290 (19)0.0299 (19)0.0028 (16)0.0004 (16)0.0024 (15)
C20.0264 (19)0.032 (2)0.040 (2)0.0042 (16)0.0021 (16)0.0007 (16)
C30.036 (2)0.0320 (19)0.037 (2)0.0024 (16)0.0092 (17)0.0039 (16)
C40.0234 (17)0.0253 (17)0.0294 (18)0.0005 (14)0.0044 (14)0.0060 (14)
C50.0325 (19)0.0283 (18)0.0338 (19)0.0005 (15)0.0027 (15)0.0034 (15)
C60.050 (2)0.039 (2)0.034 (2)0.0105 (18)0.0064 (17)0.0030 (17)
C70.040 (2)0.048 (2)0.044 (2)0.0035 (18)0.0075 (18)0.0165 (19)
C80.044 (2)0.032 (2)0.047 (2)0.0049 (17)0.0007 (18)0.0093 (17)
C90.037 (2)0.0297 (19)0.036 (2)0.0004 (15)0.0036 (16)0.0043 (16)
C100.054 (2)0.0310 (19)0.031 (2)0.0043 (17)0.0053 (17)0.0073 (16)
C110.035 (2)0.0261 (18)0.0258 (18)0.0052 (15)0.0029 (15)0.0027 (14)
C120.036 (2)0.038 (2)0.033 (2)0.0044 (16)0.0010 (16)0.0048 (16)
C130.043 (2)0.053 (2)0.045 (2)0.0163 (19)0.0068 (19)0.0032 (19)
C140.060 (3)0.035 (2)0.054 (3)0.0102 (19)0.015 (2)0.0093 (19)
C150.053 (3)0.036 (2)0.055 (3)0.0040 (18)0.005 (2)0.0125 (19)
C160.040 (2)0.033 (2)0.047 (2)0.0020 (17)0.0012 (18)0.0059 (17)
C170.041 (2)0.041 (2)0.0278 (19)0.0017 (17)0.0061 (16)0.0043 (16)
C180.032 (2)0.0329 (19)0.0247 (18)0.0010 (15)0.0033 (15)0.0027 (15)
C190.041 (2)0.031 (2)0.036 (2)0.0006 (16)0.0051 (17)0.0008 (16)
C200.058 (3)0.038 (2)0.032 (2)0.0026 (18)0.0092 (18)0.0079 (17)
C210.062 (3)0.047 (2)0.027 (2)0.001 (2)0.0042 (18)0.0015 (17)
C220.051 (2)0.045 (2)0.036 (2)0.0031 (18)0.0105 (18)0.0010 (18)
C230.042 (2)0.034 (2)0.031 (2)0.0049 (16)0.0007 (16)0.0026 (15)
Geometric parameters (Å, º) top
P1—O11.511 (2)C10—H10B0.9800
P1—N11.629 (3)C10—H10C0.9800
P1—N31.643 (2)C11—C161.519 (4)
P1—N21.651 (2)C11—C121.531 (4)
F1—C21.326 (3)C11—H11A1.0000
F2—C21.337 (3)C12—C131.525 (4)
F3—C21.333 (3)C12—H12A0.9900
O2—C11.258 (3)C12—H12B0.9900
N1—C11.295 (4)C13—C141.520 (5)
N2—C31.472 (3)C13—H13A0.9900
N2—C41.487 (3)C13—H13B0.9900
N3—C101.468 (4)C14—C151.530 (5)
N3—C111.476 (3)C14—H14A0.9900
N4—C171.484 (4)C14—H14B0.9900
N4—C181.494 (4)C15—C161.534 (4)
N4—H4NA0.9502C15—H15A0.9900
N4—H4NB0.9499C15—H15B0.9900
C1—C21.536 (4)C16—H16A0.9900
C3—H3A0.9800C16—H16B0.9900
C3—H3B0.9800C17—H17A0.9800
C3—H3C0.9800C17—H17B0.9800
C4—C91.520 (4)C17—H17C0.9800
C4—C51.525 (4)C18—C231.520 (4)
C4—H4A1.0000C18—C191.520 (4)
C5—C61.531 (4)C18—H18A1.0000
C5—H5A0.9900C19—C201.530 (4)
C5—H5B0.9900C19—H19A0.9900
C6—C71.521 (4)C19—H19B0.9900
C6—H6A0.9900C20—C211.509 (4)
C6—H6B0.9900C20—H20A0.9900
C7—C81.517 (4)C20—H20B0.9900
C7—H7A0.9900C21—C221.516 (4)
C7—H7B0.9900C21—H21A0.9900
C8—C91.531 (4)C21—H21B0.9900
C8—H8A0.9900C22—C231.521 (4)
C8—H8B0.9900C22—H22A0.9900
C9—H9A0.9900C22—H22B0.9900
C9—H9B0.9900C23—H23A0.9900
C10—H10A0.9800C23—H23B0.9900
O1—P1—N1115.26 (13)N3—C11—C12113.6 (2)
O1—P1—N3107.72 (12)C16—C11—C12110.5 (3)
N1—P1—N3113.65 (13)N3—C11—H11A106.5
O1—P1—N2114.29 (12)C16—C11—H11A106.5
N1—P1—N2100.79 (12)C12—C11—H11A106.5
N3—P1—N2104.66 (12)C13—C12—C11111.5 (3)
C1—N1—P1123.4 (2)C13—C12—H12A109.3
C3—N2—C4116.3 (2)C11—C12—H12A109.3
C3—N2—P1115.67 (19)C13—C12—H12B109.3
C4—N2—P1121.53 (19)C11—C12—H12B109.3
C10—N3—C11116.1 (2)H12A—C12—H12B108.0
C10—N3—P1120.7 (2)C14—C13—C12110.6 (3)
C11—N3—P1119.19 (19)C14—C13—H13A109.5
C17—N4—C18115.7 (2)C12—C13—H13A109.5
C17—N4—H4NA106.9C14—C13—H13B109.5
C18—N4—H4NA110.4C12—C13—H13B109.5
C17—N4—H4NB112.1H13A—C13—H13B108.1
C18—N4—H4NB103.6C13—C14—C15111.4 (3)
H4NA—N4—H4NB108.1C13—C14—H14A109.3
O2—C1—N1132.1 (3)C15—C14—H14A109.3
O2—C1—C2114.8 (3)C13—C14—H14B109.3
N1—C1—C2113.1 (3)C15—C14—H14B109.3
F1—C2—F3106.1 (3)H14A—C14—H14B108.0
F1—C2—F2106.4 (3)C14—C15—C16110.6 (3)
F3—C2—F2106.3 (3)C14—C15—H15A109.5
F1—C2—C1114.6 (3)C16—C15—H15A109.5
F3—C2—C1113.0 (3)C14—C15—H15B109.5
F2—C2—C1109.9 (3)C16—C15—H15B109.5
N2—C3—H3A109.5H15A—C15—H15B108.1
N2—C3—H3B109.5C11—C16—C15111.4 (3)
H3A—C3—H3B109.5C11—C16—H16A109.4
N2—C3—H3C109.5C15—C16—H16A109.4
H3A—C3—H3C109.5C11—C16—H16B109.4
H3B—C3—H3C109.5C15—C16—H16B109.4
N2—C4—C9112.1 (2)H16A—C16—H16B108.0
N2—C4—C5113.8 (2)N4—C17—H17A109.5
C9—C4—C5111.3 (2)N4—C17—H17B109.5
N2—C4—H4A106.4H17A—C17—H17B109.5
C9—C4—H4A106.4N4—C17—H17C109.5
C5—C4—H4A106.4H17A—C17—H17C109.5
C4—C5—C6111.1 (2)H17B—C17—H17C109.5
C4—C5—H5A109.4N4—C18—C23111.9 (2)
C6—C5—H5A109.4N4—C18—C19108.9 (2)
C4—C5—H5B109.4C23—C18—C19111.2 (3)
C6—C5—H5B109.4N4—C18—H18A108.2
H5A—C5—H5B108.0C23—C18—H18A108.2
C7—C6—C5111.2 (3)C19—C18—H18A108.2
C7—C6—H6A109.4C18—C19—C20110.4 (3)
C5—C6—H6A109.4C18—C19—H19A109.6
C7—C6—H6B109.4C20—C19—H19A109.6
C5—C6—H6B109.4C18—C19—H19B109.6
H6A—C6—H6B108.0C20—C19—H19B109.6
C8—C7—C6111.3 (3)H19A—C19—H19B108.1
C8—C7—H7A109.4C21—C20—C19111.4 (3)
C6—C7—H7A109.4C21—C20—H20A109.3
C8—C7—H7B109.4C19—C20—H20A109.3
C6—C7—H7B109.4C21—C20—H20B109.3
H7A—C7—H7B108.0C19—C20—H20B109.3
C7—C8—C9111.4 (3)H20A—C20—H20B108.0
C7—C8—H8A109.3C20—C21—C22111.5 (3)
C9—C8—H8A109.3C20—C21—H21A109.3
C7—C8—H8B109.3C22—C21—H21A109.3
C9—C8—H8B109.3C20—C21—H21B109.3
H8A—C8—H8B108.0C22—C21—H21B109.3
C4—C9—C8110.4 (3)H21A—C21—H21B108.0
C4—C9—H9A109.6C21—C22—C23111.7 (3)
C8—C9—H9A109.6C21—C22—H22A109.3
C4—C9—H9B109.6C23—C22—H22A109.3
C8—C9—H9B109.6C21—C22—H22B109.3
H9A—C9—H9B108.1C23—C22—H22B109.3
N3—C10—H10A109.5H22A—C22—H22B107.9
N3—C10—H10B109.5C18—C23—C22109.7 (3)
H10A—C10—H10B109.5C18—C23—H23A109.7
N3—C10—H10C109.5C22—C23—H23A109.7
H10A—C10—H10C109.5C18—C23—H23B109.7
H10B—C10—H10C109.5C22—C23—H23B109.7
N3—C11—C16112.6 (3)H23A—C23—H23B108.2
O1—P1—N1—C164.8 (3)C4—C5—C6—C754.9 (4)
N3—P1—N1—C160.3 (3)C5—C6—C7—C855.0 (4)
N2—P1—N1—C1171.7 (2)C6—C7—C8—C955.9 (4)
O1—P1—N2—C351.3 (2)N2—C4—C9—C8174.9 (2)
N1—P1—N2—C3175.5 (2)C5—C4—C9—C856.4 (3)
N3—P1—N2—C366.3 (2)C7—C8—C9—C456.4 (4)
O1—P1—N2—C499.4 (2)C10—N3—C11—C1675.6 (3)
N1—P1—N2—C424.9 (2)P1—N3—C11—C16126.7 (2)
N3—P1—N2—C4143.0 (2)C10—N3—C11—C1251.0 (4)
O1—P1—N3—C1014.9 (3)P1—N3—C11—C12106.8 (3)
N1—P1—N3—C10114.1 (2)N3—C11—C12—C13176.0 (3)
N2—P1—N3—C10136.9 (2)C16—C11—C12—C1356.3 (4)
O1—P1—N3—C11171.6 (2)C11—C12—C13—C1456.4 (4)
N1—P1—N3—C1142.6 (3)C12—C13—C14—C1556.2 (4)
N2—P1—N3—C1166.4 (2)C13—C14—C15—C1655.9 (4)
P1—N1—C1—O21.1 (5)N3—C11—C16—C15175.8 (3)
P1—N1—C1—C2176.0 (2)C12—C11—C16—C1556.0 (4)
O2—C1—C2—F1157.9 (3)C14—C15—C16—C1155.9 (4)
N1—C1—C2—F124.4 (4)C17—N4—C18—C2369.9 (3)
O2—C1—C2—F336.2 (4)C17—N4—C18—C19166.7 (3)
N1—C1—C2—F3146.1 (3)N4—C18—C19—C20179.0 (3)
O2—C1—C2—F282.3 (3)C23—C18—C19—C2057.2 (3)
N1—C1—C2—F295.3 (3)C18—C19—C20—C2155.3 (4)
C3—N2—C4—C948.6 (3)C19—C20—C21—C2254.5 (4)
P1—N2—C4—C9161.0 (2)C20—C21—C22—C2355.5 (4)
C3—N2—C4—C578.8 (3)N4—C18—C23—C22179.7 (3)
P1—N2—C4—C571.7 (3)C19—C18—C23—C2257.7 (4)
N2—C4—C5—C6176.2 (2)C21—C22—C23—C1856.5 (4)
C9—C4—C5—C656.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4NA···O10.951.842.771 (3)167
N4—H4NB···O1i0.951.872.804 (3)168
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC7H16N+·C16H28F3N3O2P
Mr496.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.183 (3), 30.893 (7), 9.241 (2)
β (°) 93.039 (7)
V3)2617.9 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.947, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
23153, 5148, 2673
Rint0.064
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.113, 1.08
No. of reflections5148
No. of parameters304
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.32

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4NA···O10.951.842.771 (3)167
N4—H4NB···O1i0.951.872.804 (3)168
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

Support of this investigation by Ferdowsi University is gratefully acknowledged.

References

First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorbridge, D. E. C. (1995). Phosphorus, an Outline of its Chemistry, Biochemistry and Technology, 5th ed., p. 1179. New York: Elsevier Science.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShokol, V. A., Kisilenko, A. A. & Derkach, G. I. (1969). Zh. Obshch. Khim. 39, 1492–1497.  CAS Google Scholar
First citationTrush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007–1014.  Web of Science CSD CrossRef CAS Google Scholar
First citationYazdanbakhsh, M. & Sabbaghi, F. (2007). Acta Cryst. E63, o4318.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds