organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(E)-(5-Methyl­thio­phen-2-yl)methyl­­idene]-1H-1,2,4-triazol-3-amine

aDepartment of Chemistry, Bahauddin Zakariya University, Multan-60800, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 4 December 2008; accepted 8 December 2008; online 13 December 2008)

In the title Schiff base, C8H8N4S, a condensation product of 5-methyl­thio­phene-2-carboxaldehyde and 3-amino-1,2,4-triazole, the dihedral angle between the triazolyl and thienyl rings is 6.44 (14)°. The compound exists as a polymeric chain arising from inter­molecular N—H⋯N bonding.

Related literature

For a related comound, see: Chohan et al. (2009[Chohan, Z. H., Hanif, M. & Tahir, M. N. (2009). Acta Cryst. E65, o58.]). For the biological properties of such compounds, see: Foroumadi et al. (2003[Foroumadi, A., Mansouri, S., Kaini, Z. & Rahmani, A. (2003). Eur. J. Med. Chem. 38, 851-854.]); Manfredini et al. (2000[Manfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. 8, 2343-2346.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N4S

  • Mr = 192.24

  • Orthorhombic, P 21 21 21

  • a = 7.2570 (7) Å

  • b = 8.9522 (8) Å

  • c = 14.2930 (15) Å

  • V = 928.56 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 (2) K

  • 0.24 × 0.16 × 0.14 mm

Data collection
  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.956

  • 5793 measured reflections

  • 2206 independent reflections

  • 1859 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.05

  • 2206 reflections

  • 134 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 854 Friedel pairs

  • Flack parameter: −0.02 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3n⋯N1i 0.85 (3) 2.12 (3) 2.963 (2) 172 (2)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Compounds derived from triazole possess antimicrobial, analgesic, anti-inflammatory, local anesthetic, antineoplastic and antimalarial properties (Foroumadi et al., 2003). Some triazole Schiff bases also exhibited antiproliferative and anticancer activity (Manfredini et al., 2000). Due to their significant biological applications they have gained much attention in bioinorganic and metal-based drug discovery. In view of its structural and biological importance, we have synthesized (Chohan et al., 2009), series of triazole derived Schiff bases along with the title compound (I). We report herein, its preperation and crystal structure.

In the molecule of title compound, (Fig 1), the bond lengths and angles are within normal ranges. In this molecule 5-methylthiophen ring is attached to 5-membered ring of triazole moiety through the Schiff bond C=N. The dihedral angle between ring A(S1/C1—C4) and B(C7/N2/N3/C8/N4) is 6.44 (14)°. There exist intramolecular as well as an intermolecular H-bonds as given in Table 1. The molecules are connected to each other through intermolecular H-bonds of N–H···N type in a helical way (Fig 2).

Related literature top

For a similar comound, see: Chohan et al. (2009). For the biological properties of such compounds, see: Foroumadi et al. (2003); Manfredini et al. (2000).

Experimental top

A mixture of 5-methylthiophene-2-carboxaldehyde (1.09 ml, 0.01 M) and 3-amino-1,2,4-triazole (0.84 g, 0.01 M) in 1:1 molar proportions in methanol (40 ml) was boiled under reflux for 5 h by monitoring through TLC. The reaction mixture was cooled at room temperature and filtered; within an hour a light brown solid product separated from the clear solution. It was filtered, washed with methanol, dried and recrystallized from a mixture of ethanol:methanol (1:1).

Refinement top

H-atoms were positioned geometrically, with C—H = 0.96 Å for methyl carbon of thiophene ring and constrained to ride on the parent atom. The coordinates of all other H-atoms were refined. The Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2003)..

Figures top
[Figure 1] Fig. 1. ORTEP-3 for Windows (Farrugia, 1997) drawing of the title compound, C8H8N4S, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular H-bonding is shown by dashed lines.
[Figure 2] Fig. 2. The partial unit cell packing of (I) (Spek, 2003) showing the interamolecular and intermolecular hydrogen bonding showing that polymeric sheets are formed.
(I) top
Crystal data top
C8H8N4SF(000) = 400
Mr = 192.24Dx = 1.375 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2206 reflections
a = 7.2570 (7) Åθ = 2.7–28.3°
b = 8.9522 (8) ŵ = 0.31 mm1
c = 14.2930 (15) ÅT = 296 K
V = 928.56 (16) Å3Prismatic, light brown
Z = 40.24 × 0.16 × 0.14 mm
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
2206 independent reflections
Radiation source: fine-focus sealed tube1859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 7.4 pixels mm-1θmax = 28.3°, θmin = 2.7°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1111
Tmin = 0.928, Tmax = 0.956l = 1719
5793 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.0383P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2206 reflectionsΔρmax = 0.20 e Å3
134 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 854 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (10)
Crystal data top
C8H8N4SV = 928.56 (16) Å3
Mr = 192.24Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2570 (7) ŵ = 0.31 mm1
b = 8.9522 (8) ÅT = 296 K
c = 14.2930 (15) Å0.24 × 0.16 × 0.14 mm
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
2206 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1859 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.956Rint = 0.034
5793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097Δρmax = 0.20 e Å3
S = 1.05Δρmin = 0.23 e Å3
2206 reflectionsAbsolute structure: Flack (1983), 854 Friedel pairs
134 parametersAbsolute structure parameter: 0.02 (10)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48892 (7)0.18020 (5)0.00175 (3)0.0512 (2)
N10.5269 (2)0.13362 (16)0.09627 (10)0.0456 (4)
N20.4898 (2)0.29617 (16)0.22417 (10)0.0498 (5)
N30.5397 (2)0.43946 (17)0.23930 (11)0.0502 (5)
N40.6332 (3)0.39225 (19)0.09806 (13)0.0659 (7)
C10.5665 (3)0.0136 (2)0.04286 (12)0.0460 (5)
C20.6222 (3)0.0303 (3)0.13344 (14)0.0565 (7)
C30.6008 (3)0.1767 (3)0.16735 (14)0.0562 (7)
C40.5306 (3)0.2720 (2)0.10199 (12)0.0497 (5)
C50.4937 (4)0.4350 (3)0.11161 (16)0.0737 (9)
C60.5724 (3)0.1226 (2)0.00957 (13)0.0473 (5)
C70.5491 (3)0.27297 (19)0.13780 (12)0.0432 (5)
C80.6228 (3)0.4940 (3)0.16478 (17)0.0654 (8)
H20.663 (3)0.048 (2)0.1784 (19)0.0678*
H30.629 (3)0.210 (3)0.2327 (18)0.0675*
H3N0.515 (3)0.488 (3)0.2891 (17)0.0602*
H5A0.520670.484270.053540.1103*
H5B0.570230.475600.160150.1103*
H5C0.366480.450260.127340.1103*
H60.621 (3)0.209 (2)0.0237 (15)0.0567*
H80.671 (4)0.595 (2)0.1599 (17)0.0785*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0642 (3)0.0540 (3)0.0354 (2)0.0070 (2)0.0078 (2)0.0047 (2)
N10.0516 (8)0.0465 (7)0.0386 (7)0.0015 (7)0.0023 (7)0.0011 (6)
N20.0668 (10)0.0434 (7)0.0392 (7)0.0024 (7)0.0000 (8)0.0002 (5)
N30.0644 (10)0.0439 (8)0.0422 (8)0.0024 (7)0.0020 (8)0.0053 (6)
N40.0895 (14)0.0554 (10)0.0529 (10)0.0181 (9)0.0184 (10)0.0072 (8)
C10.0475 (9)0.0518 (10)0.0388 (8)0.0018 (7)0.0027 (8)0.0017 (7)
C20.0641 (13)0.0637 (13)0.0418 (10)0.0064 (9)0.0110 (9)0.0012 (9)
C30.0605 (12)0.0706 (13)0.0376 (9)0.0014 (10)0.0098 (9)0.0096 (9)
C40.0515 (10)0.0573 (10)0.0404 (8)0.0008 (8)0.0011 (8)0.0092 (7)
C50.100 (2)0.0629 (12)0.0582 (12)0.0099 (13)0.0055 (13)0.0160 (10)
C60.0521 (9)0.0499 (9)0.0398 (8)0.0004 (8)0.0003 (8)0.0008 (7)
C70.0475 (9)0.0431 (8)0.0391 (8)0.0031 (7)0.0022 (8)0.0003 (7)
C80.0827 (16)0.0504 (11)0.0630 (13)0.0152 (11)0.0126 (12)0.0079 (10)
Geometric parameters (Å, º) top
S1—C11.7169 (19)C1—C61.432 (3)
S1—C41.7220 (18)C2—C31.406 (4)
N1—C61.286 (2)C3—C41.364 (3)
N1—C71.391 (2)C4—C51.490 (3)
N2—N31.350 (2)C2—H21.00 (2)
N2—C71.324 (2)C3—H31.00 (3)
N3—C81.318 (3)C5—H5A0.9600
N4—C71.355 (3)C5—H5B0.9600
N4—C81.321 (3)C5—H5C0.9600
N3—H3N0.85 (3)C6—H60.974 (19)
C1—C21.365 (3)C8—H80.97 (2)
S1···N13.1295 (15)N4···H5Avii2.5700
S1···C4i3.647 (2)N4···H62.39 (2)
N1···S13.1295 (15)C1···N4v3.419 (3)
N1···N3ii2.963 (2)C4···S1viii3.647 (2)
N2···N42.252 (2)C8···N2iii3.241 (3)
N2···C8ii3.241 (3)C7···H3vi3.03 (2)
N2···N3ii3.243 (2)C7···H3Nii2.80 (3)
N3···N1iii2.963 (2)H2···N2iv2.83 (2)
N3···N42.171 (2)H2···N3iv2.87 (2)
N3···N2iii3.243 (2)H3···N2ix2.94 (2)
N4···C1iv3.419 (3)H3···C7ix3.03 (2)
N4···N32.171 (2)H3N···N1iii2.12 (3)
N1···H3Nii2.12 (3)H3N···N2iii2.77 (3)
N2···H8ii2.71 (2)H3N···C7iii2.80 (3)
N2···H2v2.83 (2)H5A···N4x2.5700
N2···H3vi2.94 (2)H6···N42.39 (2)
N2···H3Nii2.77 (3)H8···N2iii2.71 (2)
N3···H2v2.87 (2)
C1—S1—C492.13 (9)N1—C7—N4125.46 (16)
C6—N1—C7116.76 (15)N2—C7—N4114.44 (16)
N3—N2—C7102.19 (14)N3—C8—N4110.7 (2)
N2—N3—C8110.20 (17)C1—C2—H2128.6 (14)
C7—N4—C8102.42 (18)C3—C2—H2117.8 (14)
C8—N3—H3N125.6 (17)C2—C3—H3125.2 (15)
N2—N3—H3N124.1 (17)C4—C3—H3121.9 (15)
S1—C1—C6123.72 (14)C4—C5—H5A109.00
C2—C1—C6125.52 (19)C4—C5—H5B109.00
S1—C1—C2110.75 (16)C4—C5—H5C110.00
C1—C2—C3113.4 (2)H5A—C5—H5B109.00
C2—C3—C4112.85 (18)H5A—C5—H5C109.00
S1—C4—C3110.91 (15)H5B—C5—H5C109.00
C3—C4—C5128.07 (19)N1—C6—H6120.2 (12)
S1—C4—C5121.02 (15)C1—C6—H6115.6 (12)
N1—C6—C1124.19 (17)N3—C8—H8124.6 (15)
N1—C7—N2120.07 (16)N4—C8—H8124.7 (15)
C1—S1—C4—C30.12 (18)C8—N4—C7—N20.4 (3)
C4—S1—C1—C20.28 (18)C7—N4—C8—N30.4 (2)
C4—S1—C1—C6179.69 (19)C8—N4—C7—N1178.6 (2)
C1—S1—C4—C5178.8 (2)C2—C1—C6—N1176.6 (2)
C6—N1—C7—N47.9 (3)S1—C1—C2—C30.6 (2)
C7—N1—C6—C1177.03 (19)C6—C1—C2—C3180.0 (2)
C6—N1—C7—N2173.91 (18)S1—C1—C6—N12.7 (3)
C7—N2—N3—C80.1 (2)C1—C2—C3—C40.7 (3)
N3—N2—C7—N1178.54 (17)C2—C3—C4—S10.5 (2)
N3—N2—C7—N40.2 (2)C2—C3—C4—C5178.4 (2)
N2—N3—C8—N40.3 (2)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z; (v) x1/2, y+1/2, z; (vi) x+3/2, y, z+1/2; (vii) x, y+1, z; (viii) x+1/2, y1/2, z; (ix) x+3/2, y, z1/2; (x) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···N1iii0.85 (3)2.12 (3)2.963 (2)172 (2)
C6—H6···N40.974 (19)2.39 (2)2.761 (3)101.7 (15)
Symmetry code: (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H8N4S
Mr192.24
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.2570 (7), 8.9522 (8), 14.2930 (15)
V3)928.56 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.24 × 0.16 × 0.14
Data collection
DiffractometerBruker KAPPA APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.928, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
5793, 2206, 1859
Rint0.034
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.05
No. of reflections2206
No. of parameters134
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.23
Absolute structureFlack (1983), 854 Friedel pairs
Absolute structure parameter0.02 (10)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2003)..

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···N1i0.85 (3)2.12 (3)2.963 (2)172 (2)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.

References

First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Hanif, M. & Tahir, M. N. (2009). Acta Cryst. E65, o58.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationForoumadi, A., Mansouri, S., Kaini, Z. & Rahmani, A. (2003). Eur. J. Med. Chem. 38, 851–854.  Web of Science CrossRef PubMed CAS Google Scholar
First citationManfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. 8, 2343–2346.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds