organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N,N′,N′-Tetra­kis(2-hy­droxy­ethyl)terephthalamide

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and bChemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
*Correspondence e-mail: wzq197811@sohu.com

(Received 1 November 2008; accepted 8 December 2008; online 20 December 2008)

The mol­ecule of the title compound, C16H24N2O6, which lies on a crystallographic inversion centre in the centre of the benzene ring, adopts an anti conformation in terms of the relative orientation of two amide carbonyl groups. One pair of the 2-hydroxy­ethyl groups is partially disordered with site occupancy factors of 0.811 (2) and 0.189 (2). The dihedral angle between the amide group and central benzene ring is 67.0 (2)°. Two O—H⋯O and one bifurcated O—H⋯(O,O) hydrogen bonds are present, resulting in a three-dimensional network.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, Q., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For general background, see: Katoono et al. (2006[Katoono, R., Kawai, H., Fujiwara, K. & Suzuki, T. (2006). Tetrahedron Lett. 47, 1513-1518.]); Tosin et al. (2005[Tosin, M., Gouin, S. G. & Murphy, P. V. (2005). Org. Lett. 7, 211-214.]); Yin et al. (2005[Yin, H., Lee, G., Sedey, K. A., Rodriguez, J. M., Wang, H. G., Sebti, S. M. & Hamilton, A. D. (2005). J. Am. Chem. Soc. 127, 5463-5468.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24N2O6

  • Mr = 340.37

  • Orthorhombic, P b c a

  • a = 10.3244 (12) Å

  • b = 12.5378 (14) Å

  • c = 12.8384 (15) Å

  • V = 1661.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.29 × 0.24 × 0.23 mm

Data collection
  • Bruker SMART APEXII detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.976

  • 11505 measured reflections

  • 1550 independent reflections

  • 1273 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.126

  • S = 1.06

  • 1550 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 1.91 2.723 (9) 169
O2—H2A⋯O3′i 0.82 1.90 2.675 (10) 157
O3′—H3′⋯O2ii 0.82 2.31 2.675 (3) 108
O3—H3D⋯O1iii 0.82 2.00 2.810 (2) 170
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Terephthalamide derivatives are important compounds in molecular recognition and supramolecular chemistry (Yin et al., 2005; Tosin et al.,2005; Katoono et al.,2006). Although numerous tetrasubstituted terephthalamides have been investigated, only a few tetrakis(alkyl)terephthalamides are known. In order to further the study of such compounds, we report the crystal structure of the title compound.

A view of the molecular structure of the title compound is given in Fig.1. Molecules of the title compound lie across crystallographic inversion centres and adopt the anti-conformation. The bond distances and angles are normal (Allen et al., 1987). One set of the 2-hydroxyethyl groups is disordered with site occupancy factors of ca 0.811 (2) and 0.189 (2). The dihedral angle between the amide plane (C4,O1,N1) and phenyl planes (C1—C3,C1A—C3A) is 67.0 (2)°. The structural study shows the presence of four different intermolecular O—H···O hydrogen bonds (Table 1), resulting in a three-dimensional supramolecular architecture (Fig. 2).

Related literature top

For bond-length data, see: Allen et al. (1987). For general background, see: Katoono et al. (2006); Tosin et al. (2005); Yin et al. (2005).

Experimental top

To a solution of diethanolamine (2 mmol) in dry chloroform (5 ml), at 273 K, was added dropwise a solution of terephthalyl chloride (2 mmol) in dry chloroform (25 ml). Then, the mixture stirred at room temperature for 24hr, removal of solvent resulted in a yellow powder that was recrystallized from methanol-DMF solution at room temperature to give the desired product as colourless crystals suitable for single-crystal X-ray diffraction.

Refinement top

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93–0.97 Å, with Uĩso~(H) = 1.2 or 1.5 times U~eq~(C). H atoms bonded to O atoms were located in a difference map and refined independently with isotropic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 30% probability level (suffix A denotes the symmetry code: -x + 2, -y, -z + 1).
[Figure 2] Fig. 2. Partial view of the crystal packing showing the intermolecular O—H···O hydrogen bonds.
N,N,N',N'-Tetrakis(2-hydroxyethyl)terephthalamide top
Crystal data top
C16H24N2O6Dx = 1.360 Mg m3
Mr = 340.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3593 reflections
a = 10.3244 (12) Åθ = 3.0–23.6°
b = 12.5378 (14) ŵ = 0.10 mm1
c = 12.8384 (15) ÅT = 296 K
V = 1661.9 (3) Å3Block, colourless
Z = 40.29 × 0.24 × 0.23 mm
F(000) = 728
Data collection top
Bruker SMART APEXII detector
diffractometer
1550 independent reflections
Radiation source: fine-focus sealed tube1273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.961, Tmax = 0.976k = 1515
11505 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.061P)2 + 0.6392P]
where P = (Fo2 + 2Fc2)/3
1550 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H24N2O6V = 1661.9 (3) Å3
Mr = 340.37Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 10.3244 (12) ŵ = 0.10 mm1
b = 12.5378 (14) ÅT = 296 K
c = 12.8384 (15) Å0.29 × 0.24 × 0.23 mm
Data collection top
Bruker SMART APEXII detector
diffractometer
1550 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1273 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.976Rint = 0.022
11505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.06Δρmax = 0.35 e Å3
1550 reflectionsΔρmin = 0.21 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C70.78238 (19)0.31459 (17)0.30476 (16)0.0460 (6)0.811 (2)
H7A0.81620.38570.31680.055*0.811 (2)
H7B0.81300.29060.23730.055*0.811 (2)
C80.63782 (13)0.31829 (14)0.30437 (14)0.0498 (6)0.811 (2)
H8A0.60330.24810.28870.060*0.811 (2)
H8B0.60640.33960.37250.060*0.811 (2)
O30.59529 (19)0.39348 (12)0.22709 (12)0.0569 (6)0.811 (2)
H3D0.62030.45340.24290.085*0.811 (2)
C7'0.70527 (19)0.28471 (18)0.34485 (17)0.0460 (6)0.189 (2)
H7'10.65610.32160.39820.055*0.189 (2)
H7'20.65230.22880.31470.055*0.189 (2)
C8'0.75511 (17)0.36199 (17)0.26151 (16)0.0498 (6)0.189 (2)
H8'10.80700.41700.29440.060*0.189 (2)
H8'20.81020.32360.21310.060*0.189 (2)
O3'0.6539 (2)0.40926 (16)0.20721 (15)0.0569 (6)0.189 (2)
H3'0.59520.36590.19960.085*0.189 (2)
C10.93464 (15)0.07120 (12)0.43518 (12)0.0362 (4)
C21.06224 (16)0.04283 (12)0.41398 (13)0.0392 (4)
H21.10410.07140.35620.047*
C31.12701 (16)0.02751 (13)0.47837 (14)0.0405 (4)
H31.21240.04580.46380.049*
C40.86624 (17)0.14222 (13)0.35884 (14)0.0436 (4)
C50.84524 (17)0.28318 (13)0.49384 (14)0.0440 (4)
H5A0.87150.22570.53980.053*
H5B0.76150.30870.51750.053*
C60.94175 (18)0.37226 (15)0.50233 (16)0.0492 (5)
H6A0.91640.42960.45590.059*
H6B0.94100.39990.57290.059*
N10.83155 (14)0.24090 (12)0.38745 (12)0.0496 (4)
O10.84678 (17)0.10814 (11)0.26939 (11)0.0669 (5)
O21.06824 (13)0.33898 (13)0.47707 (12)0.0645 (5)
H2A1.08080.34740.41450.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C70.0484 (13)0.0439 (12)0.0455 (12)0.0069 (9)0.0011 (9)0.0099 (9)
C80.0524 (13)0.0459 (12)0.0510 (13)0.0052 (10)0.0096 (10)0.0017 (10)
O30.0677 (14)0.0500 (9)0.0530 (11)0.0135 (9)0.0240 (9)0.0022 (7)
C7'0.0484 (13)0.0439 (12)0.0455 (12)0.0069 (9)0.0011 (9)0.0099 (9)
C8'0.0524 (13)0.0459 (12)0.0510 (13)0.0052 (10)0.0096 (10)0.0017 (10)
O3'0.0677 (14)0.0500 (9)0.0530 (11)0.0135 (9)0.0240 (9)0.0022 (7)
C10.0407 (9)0.0283 (8)0.0397 (9)0.0003 (6)0.0054 (7)0.0037 (7)
C20.0428 (9)0.0343 (8)0.0405 (9)0.0014 (7)0.0026 (7)0.0014 (7)
C30.0340 (8)0.0362 (8)0.0514 (10)0.0022 (7)0.0006 (7)0.0013 (7)
C40.0482 (10)0.0382 (9)0.0445 (9)0.0042 (7)0.0087 (8)0.0018 (7)
C50.0449 (9)0.0377 (9)0.0494 (10)0.0065 (7)0.0000 (7)0.0032 (8)
C60.0548 (11)0.0423 (10)0.0505 (10)0.0013 (8)0.0010 (9)0.0028 (8)
N10.0605 (10)0.0382 (8)0.0500 (9)0.0135 (7)0.0178 (7)0.0031 (7)
O10.1004 (12)0.0534 (8)0.0468 (8)0.0175 (7)0.0234 (8)0.0089 (6)
O20.0476 (8)0.0816 (11)0.0641 (9)0.0001 (7)0.0030 (7)0.0111 (8)
Geometric parameters (Å, º) top
C7—C81.4933 (14)C1—C3i1.392 (2)
C7—N11.496 (2)C1—C41.501 (2)
C7—H7A0.9700C2—C31.382 (2)
C7—H7B0.9700C2—H20.9300
C8—O31.4372 (14)C3—C1i1.392 (2)
C8—H8A0.9700C3—H30.9300
C8—H8B0.9700C4—O11.242 (2)
O3—H3D0.8200C4—N11.339 (2)
C7'—N11.517 (2)C5—N11.472 (2)
C7'—C8'1.5324 (15)C5—C61.501 (3)
C7'—H7'10.9700C5—H5A0.9700
C7'—H7'20.9700C5—H5B0.9700
C8'—O3'1.3890 (13)C6—O21.409 (2)
C8'—H8'10.9700C6—H6A0.9700
C8'—H8'20.9700C6—H6B0.9700
O3'—H3'0.8200O2—H2A0.8200
C1—C21.391 (2)
C8—C7—N1111.14 (14)C3—C2—C1120.30 (16)
C8—C7—H7A109.4C3—C2—H2119.8
N1—C7—H7A109.4C1—C2—H2119.8
C8—C7—H7B109.4C2—C3—C1i120.47 (15)
N1—C7—H7B109.4C2—C3—H3119.8
H7A—C7—H7B108.0C1i—C3—H3119.8
O3—C8—C7109.1O1—C4—N1121.89 (16)
O3—C8—H8A109.9O1—C4—C1118.42 (15)
C7—C8—H8A109.9N1—C4—C1119.66 (15)
O3—C8—H8B109.9N1—C5—C6113.53 (15)
C7—C8—H8B109.9N1—C5—H5A108.9
H8A—C8—H8B108.3C6—C5—H5A108.9
N1—C7'—C8'101.08 (14)N1—C5—H5B108.9
N1—C7'—H7'1111.6C6—C5—H5B108.9
C8'—C7'—H7'1111.6H5A—C5—H5B107.7
N1—C7'—H7'2111.6O2—C6—C5112.23 (15)
C8'—C7'—H7'2111.6O2—C6—H6A109.2
H7'1—C7'—H7'2109.4C5—C6—H6A109.2
O3'—C8'—C7'111.6O2—C6—H6B109.2
O3'—C8'—H8'1109.3C5—C6—H6B109.2
C7'—C8'—H8'1109.3H6A—C6—H6B107.9
O3'—C8'—H8'2109.3C4—N1—C5124.16 (14)
C7'—C8'—H8'2109.3C4—N1—C7117.81 (15)
H8'1—C8'—H8'2108.0C5—N1—C7117.94 (14)
C8'—O3'—H3'109.5C4—N1—C7'117.74 (16)
C2—C1—C3i119.23 (15)C5—N1—C7'106.66 (15)
C2—C1—C4118.00 (15)C7—N1—C7'39.54 (8)
C3i—C1—C4122.62 (15)C6—O2—H2A109.5
N1—C7—C8—O3177.43 (15)C1—C4—N1—C7170.75 (15)
N1—C7'—C8'—O3'177.19 (14)O1—C4—N1—C7'37.8 (3)
C3i—C1—C2—C30.3 (3)C1—C4—N1—C7'144.29 (16)
C4—C1—C2—C3176.06 (15)C6—C5—N1—C4113.8 (2)
C1—C2—C3—C1i0.3 (3)C6—C5—N1—C762.8 (2)
C2—C1—C4—O164.1 (2)C6—C5—N1—C7'104.03 (17)
C3i—C1—C4—O1111.5 (2)C8—C7—N1—C498.8 (2)
C2—C1—C4—N1113.88 (19)C8—C7—N1—C584.3 (2)
C3i—C1—C4—N170.5 (2)C8—C7—N1—C7'1.98 (10)
N1—C5—C6—O263.2 (2)C8'—C7'—N1—C4104.2 (2)
O1—C4—N1—C5176.24 (18)C8'—C7'—N1—C5110.73 (19)
C1—C4—N1—C55.8 (3)C8'—C7'—N1—C73.21 (8)
O1—C4—N1—C77.2 (3)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3ii0.821.912.723 (9)169
O2—H2A···O3ii0.821.902.675 (10)157
O3—H3···O2iii0.822.312.675 (3)108
O3—H3D···O1iv0.822.002.810 (2)170
Symmetry codes: (ii) x+1/2, y, z+1/2; (iii) x1/2, y, z+1/2; (iv) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H24N2O6
Mr340.37
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)10.3244 (12), 12.5378 (14), 12.8384 (15)
V3)1661.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.29 × 0.24 × 0.23
Data collection
DiffractometerBruker SMART APEXII detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
11505, 1550, 1273
Rint0.022
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.126, 1.06
No. of reflections1550
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.821.912.723 (9)169.0
O2—H2A···O3'i0.821.902.675 (10)157.0
O3'—H3'···O2ii0.822.312.675 (3)107.7
O3—H3D···O1iii0.822.002.810 (2)170.0
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y, z+1/2; (iii) x+3/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Doctoral Foundation of Luoyang Normal University.

References

First citationAllen, F. H., Kennard, Q., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKatoono, R., Kawai, H., Fujiwara, K. & Suzuki, T. (2006). Tetrahedron Lett. 47, 1513–1518.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTosin, M., Gouin, S. G. & Murphy, P. V. (2005). Org. Lett. 7, 211–214.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYin, H., Lee, G., Sedey, K. A., Rodriguez, J. M., Wang, H. G., Sebti, S. M. & Hamilton, A. D. (2005). J. Am. Chem. Soc. 127, 5463–5468.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds