organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N2,N2′-Bis(2-hy­droxy­benzyl­­idene)-2,2′-bi­pyridyl-3,3′-dicarbohydrazide

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: lyhxxjbm@126.com

(Received 3 November 2008; accepted 16 November 2008; online 10 December 2008)

In the title compound, C26H20N6O4, the two aroylhydrazone side groups exist as diastereomeres, both in the keto form in the crystal structure. The aroylhydrazone units support the mol­ecular conformation through an intra­molecular N—H⋯O hydrogen bond. Two mol­ecules are connected into a centrosymmetric dimer by inter­molecular N—H⋯N hydrogen bonds. These dimers are connected into chains along the a axis by inter­molecular O—H⋯O hydrogen bonds. The combination of these hydrogen bonds results in layers in the bc plane. The layers are further linked by weak C—H⋯π contacts to form a three-dimensional network structure.

Related literature

For syntheses, structures and ligand conformations of AgI complexes with flexible N,N′-di(2-pyrid­yl)adipoamide ligands, see: Chen et al. (2007[Chen, H. C., Hu, H. L., Chan, Z. K., Yeh, C. W., Jia, H. W., Wu, C. P., Chen, J. D. & Wang, J. C. (2007). Cryst. Growth Des. 7, 698-704.]). For palladium-catalysed allylic alkyl­ation using chiral hydrazones as ligands, see: Mino et al. (2001[Mino, T., Shiotsuki, M., Yamamoto, N., Suenaga, T., Sakamoto, M., Fujita, T. & Yamashita, M. (2001). J. Org. Chem. 66, 1795-1797.]). For the biological activity of hydrazones and their metal complexes, see: Rodriguez-Argüelles et al. (2004[Rodriguez-Argüelles, M. C., Ferrari, M. B., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem. 98, 313-321.]); Wiley & Clevenger (1962[Wiley, R. H. & Clevenger, R. L. (1962). J. Med. Chem. 5, 1367-1371.]). For coordinated hydrazone ligands as nucleophiles, see: Wood et al. (2004[Wood, A., Aris, W. & Brook, D. J. R. (2004). Inorg. Chem. 43, 8355-8360.]). For a new fluorescent rhodamine hydrazone chemosensor for CuII, see: Xiang et al. (2006[Xiang, Y., Tong, A. J., Jin, P. Y. & Ju, Y. (2006). Org. Lett. 8, 2863-2866.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20N6O4

  • Mr = 480.48

  • Triclinic, [P \overline 1]

  • a = 9.4251 (13) Å

  • b = 11.7642 (16) Å

  • c = 12.0384 (16) Å

  • α = 98.842 (2)°

  • β = 108.895 (2)°

  • γ = 104.591 (2)°

  • V = 1181.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.37 × 0.25 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.956, Tmax = 0.991

  • 8593 measured reflections

  • 4281 independent reflections

  • 3119 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.02

  • 4281 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the benzene rings C1–C6 and C21–C26, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5D⋯O2 0.86 2.15 2.962 (2) 157
N2—H2D⋯N4i 0.86 2.17 2.985 (2) 159
O4—H4⋯O3ii 0.82 1.92 2.736 (2) 172
O1—H1⋯N1 0.82 1.95 2.663 (2) 145
C10—H10⋯Cg3iii 0.93 2.76 3.458 (2) 133
C11—H11⋯Cg4iv 0.93 2.73 3.588 (2) 154
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1, y, z; (iii) -x+2, -y+2, -z+1; (iv) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Hydrazones and their metal complexes have gained a special attraction due to their biological activity (Rodriguez-Argüelles et al., 2004; Wiley & Clevenger, 1962). These compounds have also been proposed as chemosensors (Xiang et al., 2006), catalysts (Mino et al., 2001) and nucleophiles (Wood et al., 2004). Hydrazone ligands can coordinate with metal ions to produce stable metal complexes owing to their facile keto–enol tautomerism.

As shown in Fig. 1, two aroylhydrazone units are situated on both sides of the 2,2'-dipyridyl linking group which can decrease the steric hindrance among the pyridyl rings. The two aroylhydrazone side groups exist as diastereomeres, both in the keto form in the crystal structure. The aroylhydrazone units support the molecular conformation through an intramolecular N—H···O hydrogen bond (Table 1).

The dihedral angle between two pyridine rings of the 2,2'-dipyridyl group is 105.26 (2)°. The bond distances and angles are all in normal ranges. The distances of the C8—O2, C19—O3, N1—C7 and N6—C20 are 1.226 (2), 1.229 (2), 1.279 (2) and 1.280 (2) Å, respectively, which have the features of typical CO and CN double bonds (Chen et al., 2007). This confirms that the compound exists in the keto form.

A pair of intermolecular N—H···N hydrogen bonds connect two adjacent molecules into dimers via inversion centres (Fig. 2). These dimers are connected into chains along a axis by intermolecular O4—H4···O3 hydrogen bonds. The combination of both hydrogen bonds generate layers which extend along the b+c direction (Fig. 3). The layers are linked by weak C—H···π contacts (Table 1) to form a three-dimensional network structure. Cg3 and Cg4 are the centroids of the benzene rings C1–C6 and C21–C26, respectively. There is another intramolecular hydrogen bond, O1—H1···N1, which results from the planar geometry in the H1–O1–C1–C6–C7–N1 ring system (Table 1).

Related literature top

For syntheses, structures and ligand conformations of AgI complexes with flexible N,N'-di(2-pyridyl)adipoamide, see: Chen et al. (2007). For palladium-catalysed allylic alkylation using chiral hydrazones as ligands, see: Mino et al. (2001). For the biological activity of hydrazones and their metal complexes, see: Rodriguez-Argüelles et al. (2004); Wiley & Clevenger (1962). For coordinated hydrazone ligands as nucleophiles, see: Wood et al. (2004). For a new fluorescent rhodamine hydrazone chemosensor for CuII, see: Xiang et al. (2006).

Experimental top

A mixture of 2,2'-bipyridyl-3,3'-diformylhydrazide (0.272 g, 1 mmol), salicylaldehyde (2.5 mmol, 0.26 ml) and a drop of glacial acetic acid in ethanol (20 ml) was stirred at reflux temperature for 3 h. The solution was filtered and the filtrate was set aside to be crystallized. Yellow crystals suitable for the X-ray diffraction study were obtained after 5 d.

Refinement top

All of the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were assigned with common isotropic displacement factors Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O), respectively, and included in the final refinement by using geometrical restraints, with C—H, N—H and O—H distances of 0.93, 0.86 and 0.82 Å.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP drawing (30% probability displacement ellipsoids) of a single molecule of the title compound.
[Figure 2] Fig. 2. Unit cell packing diagram for the title compound. Hydrogen bonds are shown with dashed lines.
[Figure 3] Fig. 3. A section of the layered structure viewed down the a axis.
N2,N2'-Bis(2-hydroxybenzylidene)-2,2'-bipyridyl-3,3'-dicarbohydrazide top
Crystal data top
C26H20N6O4Z = 2
Mr = 480.48F(000) = 500
Triclinic, P1Dx = 1.351 Mg m3
a = 9.4251 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7642 (16) ÅCell parameters from 2245 reflections
c = 12.0384 (16) Åθ = 2.4–23.8°
α = 98.842 (2)°µ = 0.10 mm1
β = 108.895 (2)°T = 293 K
γ = 104.591 (2)°Block, yellow
V = 1181.1 (3) Å30.37 × 0.25 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4281 independent reflections
Radiation source: fine-focus sealed tube3119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.956, Tmax = 0.991k = 1414
8593 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.2276P]
where P = (Fo2 + 2Fc2)/3
4281 reflections(Δ/σ)max < 0.001
327 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C26H20N6O4γ = 104.591 (2)°
Mr = 480.48V = 1181.1 (3) Å3
Triclinic, P1Z = 2
a = 9.4251 (13) ÅMo Kα radiation
b = 11.7642 (16) ŵ = 0.10 mm1
c = 12.0384 (16) ÅT = 293 K
α = 98.842 (2)°0.37 × 0.25 × 0.10 mm
β = 108.895 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4281 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3119 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.991Rint = 0.021
8593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 0.46 e Å3
4281 reflectionsΔρmin = 0.19 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.91934 (18)0.72851 (13)0.61871 (15)0.0628 (4)
H10.86140.75510.57020.094*
O20.54744 (16)0.76483 (12)0.33652 (13)0.0531 (4)
O30.03313 (14)0.63641 (12)0.00365 (11)0.0452 (3)
O40.76743 (15)0.68107 (15)0.01770 (12)0.0586 (4)
H40.85190.67490.01700.088*
N10.81685 (17)0.90089 (14)0.53315 (14)0.0400 (4)
N20.70967 (17)0.94879 (14)0.46351 (13)0.0399 (4)
H2D0.72801.02610.47950.048*
N30.20060 (19)0.93570 (15)0.21026 (14)0.0458 (4)
N40.23711 (19)0.79268 (14)0.42134 (13)0.0413 (4)
N50.29163 (16)0.65006 (13)0.09343 (13)0.0370 (4)
H5D0.36930.66300.16090.044*
N60.31480 (17)0.62971 (13)0.01446 (13)0.0355 (4)
C11.0361 (2)0.82252 (18)0.70788 (18)0.0448 (5)
C21.1409 (3)0.7965 (2)0.8036 (2)0.0579 (6)
H21.13100.71600.80460.070*
C31.2592 (3)0.8884 (2)0.8969 (2)0.0645 (7)
H31.32740.86940.96120.077*
C41.2783 (3)1.0079 (2)0.8970 (2)0.0607 (6)
H4A1.36011.06950.95980.073*
C51.1754 (2)1.03568 (19)0.80321 (18)0.0488 (5)
H51.18731.11670.80380.059*
C61.0531 (2)0.94455 (17)0.70696 (16)0.0383 (4)
C70.9401 (2)0.97971 (17)0.61685 (16)0.0385 (4)
H70.95751.06170.61990.046*
C80.5773 (2)0.87486 (17)0.37108 (16)0.0375 (4)
C90.4686 (2)0.93978 (16)0.31156 (15)0.0348 (4)
C100.5244 (2)1.05037 (17)0.28697 (17)0.0423 (5)
H100.63281.08890.31180.051*
C110.4186 (3)1.10226 (19)0.22581 (19)0.0509 (5)
H110.45411.17730.21070.061*
C120.2594 (3)1.04164 (19)0.18726 (19)0.0518 (5)
H120.18851.07590.14280.062*
C130.3044 (2)0.88770 (16)0.27334 (15)0.0340 (4)
C140.22940 (19)0.77607 (16)0.30632 (15)0.0332 (4)
C150.1631 (2)0.69644 (19)0.45134 (18)0.0488 (5)
H150.17020.70590.53130.059*
C160.0775 (2)0.58480 (19)0.37127 (18)0.0514 (5)
H160.02740.52080.39640.062*
C170.0671 (2)0.56921 (18)0.25305 (18)0.0459 (5)
H170.00750.49500.19630.055*
C180.14672 (19)0.66555 (16)0.21967 (15)0.0334 (4)
C190.1497 (2)0.65002 (15)0.09467 (16)0.0333 (4)
C200.4561 (2)0.63447 (16)0.00311 (16)0.0359 (4)
H200.53420.65310.07400.043*
C210.4959 (2)0.61090 (16)0.11018 (16)0.0358 (4)
C220.3798 (2)0.5622 (2)0.22627 (19)0.0532 (5)
H220.27380.54410.23630.064*
C230.4176 (3)0.5402 (2)0.3266 (2)0.0697 (7)
H230.33810.50680.40360.084*
C240.5753 (3)0.5682 (2)0.3121 (2)0.0662 (7)
H240.60170.55460.37980.079*
C250.6928 (2)0.6157 (2)0.1985 (2)0.0522 (5)
H250.79850.63450.18970.063*
C260.6548 (2)0.63589 (16)0.09660 (17)0.0385 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0565 (10)0.0435 (9)0.0758 (11)0.0107 (7)0.0136 (8)0.0147 (8)
O20.0472 (8)0.0374 (8)0.0581 (9)0.0142 (6)0.0026 (7)0.0033 (7)
O30.0298 (7)0.0663 (9)0.0356 (7)0.0159 (6)0.0098 (6)0.0071 (6)
O40.0326 (7)0.0918 (12)0.0490 (9)0.0242 (8)0.0154 (7)0.0044 (8)
N10.0359 (9)0.0441 (9)0.0378 (9)0.0142 (7)0.0103 (7)0.0102 (7)
N20.0383 (9)0.0361 (8)0.0381 (9)0.0111 (7)0.0074 (7)0.0068 (7)
N30.0452 (9)0.0520 (10)0.0467 (10)0.0221 (8)0.0181 (8)0.0186 (8)
N40.0500 (10)0.0399 (9)0.0317 (8)0.0123 (7)0.0153 (7)0.0064 (7)
N50.0292 (8)0.0504 (9)0.0291 (8)0.0124 (7)0.0101 (6)0.0065 (7)
N60.0335 (8)0.0437 (9)0.0326 (8)0.0135 (7)0.0161 (7)0.0095 (7)
C10.0385 (11)0.0479 (12)0.0504 (12)0.0120 (9)0.0201 (10)0.0154 (10)
C20.0535 (13)0.0611 (14)0.0708 (15)0.0250 (12)0.0247 (12)0.0357 (13)
C30.0524 (14)0.0918 (19)0.0571 (15)0.0310 (14)0.0166 (12)0.0371 (14)
C40.0484 (13)0.0759 (17)0.0448 (13)0.0172 (12)0.0056 (10)0.0110 (12)
C50.0435 (11)0.0510 (12)0.0456 (12)0.0153 (10)0.0109 (10)0.0081 (10)
C60.0333 (10)0.0468 (11)0.0373 (10)0.0147 (8)0.0151 (8)0.0114 (9)
C70.0376 (10)0.0400 (10)0.0377 (10)0.0116 (9)0.0152 (9)0.0086 (9)
C80.0348 (10)0.0388 (11)0.0364 (10)0.0099 (8)0.0130 (8)0.0066 (9)
C90.0375 (10)0.0352 (10)0.0293 (9)0.0102 (8)0.0122 (8)0.0055 (8)
C100.0417 (11)0.0403 (11)0.0392 (11)0.0068 (9)0.0136 (9)0.0091 (9)
C110.0616 (14)0.0428 (11)0.0529 (13)0.0168 (10)0.0239 (11)0.0208 (10)
C120.0580 (14)0.0552 (13)0.0560 (13)0.0299 (11)0.0241 (11)0.0279 (11)
C130.0376 (10)0.0346 (9)0.0303 (9)0.0135 (8)0.0137 (8)0.0049 (8)
C140.0284 (9)0.0380 (10)0.0325 (10)0.0119 (8)0.0105 (8)0.0075 (8)
C150.0593 (13)0.0515 (12)0.0343 (11)0.0107 (10)0.0214 (10)0.0114 (10)
C160.0588 (13)0.0451 (12)0.0437 (12)0.0009 (10)0.0259 (10)0.0083 (10)
C170.0441 (11)0.0420 (11)0.0416 (11)0.0001 (9)0.0187 (9)0.0008 (9)
C180.0278 (9)0.0383 (10)0.0328 (10)0.0097 (8)0.0125 (8)0.0050 (8)
C190.0290 (9)0.0350 (9)0.0329 (10)0.0078 (7)0.0118 (8)0.0042 (8)
C200.0317 (10)0.0380 (10)0.0393 (10)0.0133 (8)0.0133 (8)0.0103 (8)
C210.0352 (10)0.0385 (10)0.0405 (10)0.0172 (8)0.0180 (8)0.0121 (8)
C220.0364 (11)0.0719 (15)0.0470 (12)0.0183 (10)0.0143 (10)0.0058 (11)
C230.0567 (14)0.107 (2)0.0413 (13)0.0328 (14)0.0159 (11)0.0042 (13)
C240.0662 (16)0.102 (2)0.0461 (13)0.0416 (14)0.0315 (12)0.0171 (13)
C250.0450 (12)0.0731 (15)0.0542 (13)0.0296 (11)0.0289 (11)0.0208 (11)
C260.0369 (10)0.0415 (10)0.0422 (11)0.0184 (8)0.0170 (9)0.0108 (9)
Geometric parameters (Å, º) top
O1—C11.358 (2)C8—C91.494 (2)
O1—H10.8200C9—C101.390 (2)
O2—C81.226 (2)C9—C131.398 (2)
O3—C191.229 (2)C10—C111.371 (3)
O4—C261.359 (2)C10—H100.9300
O4—H40.8200C11—C121.372 (3)
N1—C71.279 (2)C11—H110.9300
N1—N21.387 (2)C12—H120.9300
N2—C81.345 (2)C13—C141.502 (2)
N2—H2D0.8600C14—C181.390 (2)
N3—C131.335 (2)C15—C161.371 (3)
N3—C121.340 (2)C15—H150.9300
N4—C151.338 (2)C16—C171.374 (3)
N4—C141.344 (2)C16—H160.9300
N5—C191.343 (2)C17—C181.384 (2)
N5—N61.3807 (19)C17—H170.9300
N5—H5D0.8600C18—C191.498 (2)
N6—C201.280 (2)C20—C211.461 (2)
C1—C21.386 (3)C20—H200.9300
C1—C61.406 (3)C21—C221.388 (3)
C2—C31.372 (3)C21—C261.401 (2)
C2—H20.9300C22—C231.372 (3)
C3—C41.371 (3)C22—H220.9300
C3—H30.9300C23—C241.383 (3)
C4—C51.373 (3)C23—H230.9300
C4—H4A0.9300C24—C251.372 (3)
C5—C61.397 (3)C24—H240.9300
C5—H50.9300C25—C261.388 (3)
C6—C71.447 (2)C25—H250.9300
C7—H70.9300
C1—O1—H1109.5N3—C12—C11123.45 (19)
C26—O4—H4109.5N3—C12—H12118.3
C7—N1—N2114.91 (16)C11—C12—H12118.3
C8—N2—N1120.29 (15)N3—C13—C9123.44 (16)
C8—N2—H2D119.9N3—C13—C14113.82 (15)
N1—N2—H2D119.9C9—C13—C14122.65 (15)
C13—N3—C12117.24 (17)N4—C14—C18122.77 (16)
C15—N4—C14117.06 (16)N4—C14—C13115.72 (15)
C19—N5—N6121.03 (14)C18—C14—C13121.31 (15)
C19—N5—H5D119.5N4—C15—C16123.90 (18)
N6—N5—H5D119.5N4—C15—H15118.1
C20—N6—N5114.90 (14)C16—C15—H15118.1
O1—C1—C2118.42 (19)C15—C16—C17118.71 (18)
O1—C1—C6122.38 (17)C15—C16—H16120.6
C2—C1—C6119.20 (19)C17—C16—H16120.6
C3—C2—C1120.6 (2)C16—C17—C18119.02 (18)
C3—C2—H2119.7C16—C17—H17120.5
C1—C2—H2119.7C18—C17—H17120.5
C4—C3—C2121.0 (2)C17—C18—C14118.48 (16)
C4—C3—H3119.5C17—C18—C19120.92 (16)
C2—C3—H3119.5C14—C18—C19120.56 (15)
C3—C4—C5119.4 (2)O3—C19—N5124.31 (16)
C3—C4—H4A120.3O3—C19—C18123.07 (15)
C5—C4—H4A120.3N5—C19—C18112.61 (15)
C4—C5—C6121.3 (2)N6—C20—C21120.59 (16)
C4—C5—H5119.4N6—C20—H20119.7
C6—C5—H5119.4C21—C20—H20119.7
C5—C6—C1118.61 (17)C22—C21—C26118.43 (17)
C5—C6—C7118.48 (18)C22—C21—C20121.77 (16)
C1—C6—C7122.62 (17)C26—C21—C20119.79 (16)
N1—C7—C6121.70 (18)C23—C22—C21121.58 (19)
N1—C7—H7119.2C23—C22—H22119.2
C6—C7—H7119.2C21—C22—H22119.2
O2—C8—N2124.11 (17)C22—C23—C24119.3 (2)
O2—C8—C9122.32 (16)C22—C23—H23120.3
N2—C8—C9113.56 (16)C24—C23—H23120.3
C10—C9—C13117.33 (16)C25—C24—C23120.5 (2)
C10—C9—C8122.09 (17)C25—C24—H24119.7
C13—C9—C8120.52 (16)C23—C24—H24119.7
C11—C10—C9119.50 (18)C24—C25—C26120.28 (19)
C11—C10—H10120.3C24—C25—H25119.9
C9—C10—H10120.3C26—C25—H25119.9
C10—C11—C12118.93 (18)O4—C26—C25122.21 (17)
C10—C11—H11120.5O4—C26—C21117.96 (16)
C12—C11—H11120.5C25—C26—C21119.82 (18)
C7—N1—N2—C8178.55 (16)C15—N4—C14—C13176.13 (16)
C19—N5—N6—C20178.69 (16)N3—C13—C14—N4101.74 (18)
O1—C1—C2—C3178.8 (2)C9—C13—C14—N474.8 (2)
C6—C1—C2—C30.5 (3)N3—C13—C14—C1873.3 (2)
C1—C2—C3—C41.1 (4)C9—C13—C14—C18110.1 (2)
C2—C3—C4—C51.3 (4)C14—N4—C15—C162.0 (3)
C3—C4—C5—C61.0 (3)N4—C15—C16—C170.6 (3)
C4—C5—C6—C10.4 (3)C15—C16—C17—C181.7 (3)
C4—C5—C6—C7174.46 (19)C16—C17—C18—C142.4 (3)
O1—C1—C6—C5179.16 (18)C16—C17—C18—C19175.03 (17)
C2—C1—C6—C50.1 (3)N4—C14—C18—C171.0 (3)
O1—C1—C6—C75.3 (3)C13—C14—C18—C17173.68 (16)
C2—C1—C6—C7173.96 (18)N4—C14—C18—C19176.47 (16)
N2—N1—C7—C6171.98 (15)C13—C14—C18—C198.9 (2)
C5—C6—C7—N1173.13 (17)N6—N5—C19—O32.5 (3)
C1—C6—C7—N10.7 (3)N6—N5—C19—C18176.19 (14)
N1—N2—C8—O25.5 (3)C17—C18—C19—O371.2 (2)
N1—N2—C8—C9175.49 (14)C14—C18—C19—O3111.4 (2)
O2—C8—C9—C10137.05 (19)C17—C18—C19—N5107.46 (19)
N2—C8—C9—C1042.0 (2)C14—C18—C19—N569.9 (2)
O2—C8—C9—C1340.0 (3)N5—N6—C20—C21178.09 (14)
N2—C8—C9—C13140.91 (17)N6—C20—C21—C2211.5 (3)
C13—C9—C10—C111.0 (3)N6—C20—C21—C26169.45 (17)
C8—C9—C10—C11176.21 (17)C26—C21—C22—C231.0 (3)
C9—C10—C11—C121.8 (3)C20—C21—C22—C23180.0 (2)
C13—N3—C12—C110.5 (3)C21—C22—C23—C240.6 (4)
C10—C11—C12—N32.7 (3)C22—C23—C24—C251.0 (4)
C12—N3—C13—C92.6 (3)C23—C24—C25—C260.3 (4)
C12—N3—C13—C14173.98 (16)C24—C25—C26—O4179.0 (2)
C10—C9—C13—N33.3 (3)C24—C25—C26—C211.9 (3)
C8—C9—C13—N3173.91 (16)C22—C21—C26—O4178.60 (18)
C10—C9—C13—C14172.94 (16)C20—C21—C26—O40.4 (3)
C8—C9—C13—C149.8 (3)C22—C21—C26—C252.2 (3)
C15—N4—C14—C181.2 (3)C20—C21—C26—C25178.76 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5D···O20.862.152.962 (2)157
N2—H2D···N4i0.862.172.985 (2)159
O4—H4···O3ii0.821.922.736 (2)172
O1—H1···N10.821.952.663 (2)145
C10—H10···Cg3iii0.932.763.458 (2)133
C11—H11···Cg4iv0.932.733.588 (2)154
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x+2, y+2, z+1; (iv) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC26H20N6O4
Mr480.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.4251 (13), 11.7642 (16), 12.0384 (16)
α, β, γ (°)98.842 (2), 108.895 (2), 104.591 (2)
V3)1181.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.37 × 0.25 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.956, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
8593, 4281, 3119
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.02
No. of reflections4281
No. of parameters327
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.19

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5D···O20.862.152.962 (2)156.8
N2—H2D···N4i0.862.172.985 (2)159.2
O4—H4···O3ii0.821.922.736 (2)171.8
O1—H1···N10.821.952.663 (2)145.2
C10—H10···Cg3iii0.932.763.458 (2)133
C11—H11···Cg4iv0.932.733.588 (2)154
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x+2, y+2, z+1; (iv) x+1, y+2, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Henan (grant No. 082300420040).

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. C., Hu, H. L., Chan, Z. K., Yeh, C. W., Jia, H. W., Wu, C. P., Chen, J. D. & Wang, J. C. (2007). Cryst. Growth Des. 7, 698–704.  Web of Science CSD CrossRef CAS Google Scholar
First citationMino, T., Shiotsuki, M., Yamamoto, N., Suenaga, T., Sakamoto, M., Fujita, T. & Yamashita, M. (2001). J. Org. Chem. 66, 1795–1797.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRodriguez-Argüelles, M. C., Ferrari, M. B., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem. 98, 313–321.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiley, R. H. & Clevenger, R. L. (1962). J. Med. Chem. 5, 1367–1371.  CrossRef CAS Web of Science Google Scholar
First citationWood, A., Aris, W. & Brook, D. J. R. (2004). Inorg. Chem. 43, 8355–8360.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiang, Y., Tong, A. J., Jin, P. Y. & Ju, Y. (2006). Org. Lett. 8, 2863–2866.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds