organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-3-ammonio­pyridinium dichloride

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: jh_q128105@126.com

(Received 3 December 2008; accepted 10 December 2008; online 17 December 2008)

The anions and cations of the title compound, C5H9N32+·2Cl, are connected by two chloride-bridged three-centered N—H⋯Cl hydrogen bonds into a three-dimensional network. The aromatic rings are not involved in stacking inter­actions.

Related literature

For bond distances and angles in pyridine, derived from microwave spectra, see: Sørensen et al. (1974[Sørensen, G. O., Mahler, L. & Rastrup-Andersen, N. (1974). J. Mol. Struct. 20, 119-126.]). For details of the N—H⋯Cl hydrogen bond in 4,4′-bipyridine compounds, see: Iyere et al. (2003[Iyere, P. A., Boadi, W. Y., Atwood, D. & Parkin, S. (2003). Acta Cryst. B59, 664-669.]). For N—H⋯Cl and secondary inter­actions in pyridinium chlorides, see: Jones et al. (2002[Jones, P. G., Vancea, F. & Herbst-Irmer, R. (2002). Acta Cryst. C58, o665-o668.]); in 4-acetyl­pyridinium chloride, see: Kochel (2005[Kochel, A. (2005). Acta Cryst. E61, o926-o927.]). For N—H⋯Cl and O—H⋯Cl contacts in a triphenyl-pyridinium chloride (1/1) adduct, see: Sykora & Cioffi (2007[Sykora, R. E. & Cioffi, E. A. (2007). Acta Cryst. E63, o3148-o3149.]).

[Scheme 1]

Experimental

Crystal data
  • C5H9N32+·2Cl

  • Mr = 182.05

  • Monoclinic, P 21 /c

  • a = 8.362 (2) Å

  • b = 7.3218 (19) Å

  • c = 13.239 (3) Å

  • β = 92.065 (4)°

  • V = 810.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 296 (2) K

  • 0.41 × 0.31 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.734, Tmax = 0.948

  • 3949 measured reflections

  • 1494 independent reflections

  • 1345 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.068

  • S = 1.14

  • 1494 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2i 0.89 2.22 3.1142 (15) 178
N1—H1B⋯Cl2ii 0.89 2.37 3.1754 (16) 151
N1—H1C⋯Cl1iii 0.89 2.23 3.0790 (16) 160
N2—H2A⋯Cl1ii 0.86 2.39 3.2188 (17) 163
N2—H2B⋯Cl1iv 0.86 2.42 3.2672 (17) 168
N3—H3⋯Cl2 0.86 2.59 3.2499 (16) 135
N3—H3⋯Cl2v 0.86 2.70 3.3198 (16) 130
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z+1; (v) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is a salt containing a diprotonated 3,4-diaminopyridine cation and two Cl- anions (Fig. 1). The C1—N3—C5 bond angle is wider than that in pyridine (116.94 (3)°; Sørensen et al., 1974) which indicates that the pyridine ring N atom is protonated (Table 1). Also, the 4-amino N atom is protonated. The projection of the crystal packing along the b axis is shown in Fig. 2. The Cl- anions and the 3,4-diaminopyridinium cations in the title compound are bonded by two chlorine-bridged, three-centered N—H···Cl hydrogen bonds into a three-dimensional network (Fig. 2, Table 2). Example structures of related compounds with two- and three-centered N—H···Cl hydrogen bonds are discussed by Iyere et al. (2003); Jones et al. (2002); Kochel (2005) and Sykora & Cioffi (2007).

Related literature top

For bond distances and angles in pyridine, derived from microwave spectra, see: Sørensen et al. (1974). For details of the N—H···Cl hydrogen bond in 4,4'-bipyridine compounds, see: Iyere et al. (2003). For N—H···Cl and secondary interactions in pyridinium chlorides, see: Jones et al. (2002); in 4-acetylpyridinium chloride, see: Kochel (2005). For N—H···Cl and O—H···Cl contacts in a triphenyl-pyridinium chloride (1/1) adduct, see: Sykora & Cioffi (2007).

Experimental top

3,4-diaminopyridine (0.01 mmol) and HCl (0.02 mmol) in 10 ml ethanol. Suitable crystals for X-ray analysis, were grown by allowing the solution to slowly evaporate for 15 days, and were subsequently filtered off, washed with methanol and dried under air.

Refinement top

H atoms were constrained to idealized positions and refined using a riding model, with C—H distances of 0.93 Å [Uiso(H) = 1.2Ueq(C)], and NH distances of 0.86 Å for NH2 [Uiso(H) = 1.2Ueq(N)] and 0.89 Å for NH3 [Uiso(H) = 1.5Ueq(N)].

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the title compound packing down the b axis.
4-Amino-3-ammoniopyridinium dichloride top
Crystal data top
C5H9N32+·2ClF(000) = 376
Mr = 182.05Dx = 1.493 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2439 reflections
a = 8.362 (2) Åθ = 3.1–28.2°
b = 7.3218 (19) ŵ = 0.73 mm1
c = 13.239 (3) ÅT = 296 K
β = 92.065 (4)°Block, colorless
V = 810.0 (4) Å30.41 × 0.31 × 0.07 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1494 independent reflections
Radiation source: fine-focus sealed tube1345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 109
Tmin = 0.734, Tmax = 0.948k = 68
3949 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0285P)2 + 0.2927P]
where P = (Fo2 + 2Fc2)/3
1494 reflections(Δ/σ)max = 0.001
92 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C5H9N32+·2ClV = 810.0 (4) Å3
Mr = 182.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.362 (2) ŵ = 0.73 mm1
b = 7.3218 (19) ÅT = 296 K
c = 13.239 (3) Å0.41 × 0.31 × 0.07 mm
β = 92.065 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1494 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1345 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.948Rint = 0.014
3949 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.14Δρmax = 0.24 e Å3
1494 reflectionsΔρmin = 0.25 e Å3
92 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05806 (5)0.10977 (6)0.30663 (3)0.03884 (15)
Cl20.51526 (5)0.00029 (6)0.35359 (3)0.03603 (14)
N10.26647 (16)0.68257 (19)0.30328 (10)0.0320 (3)
H1A0.32910.62810.25940.048*
H1B0.30260.79490.31600.048*
H1C0.16700.68870.27720.048*
N20.11914 (19)0.8105 (2)0.48188 (12)0.0439 (4)
H2A0.11820.87730.42840.053*
H2B0.07370.84850.53520.053*
N30.33856 (18)0.3102 (2)0.48536 (11)0.0376 (4)
H30.38610.20610.48690.045*
C10.3383 (2)0.4103 (2)0.40010 (13)0.0329 (4)
H10.38660.36490.34310.039*
C20.26762 (18)0.5778 (2)0.39701 (12)0.0271 (3)
C30.19067 (19)0.6488 (2)0.48205 (12)0.0296 (4)
C40.1921 (2)0.5357 (2)0.56891 (13)0.0366 (4)
H40.14220.57510.62670.044*
C50.2655 (2)0.3703 (2)0.56862 (14)0.0391 (4)
H50.26560.29760.62620.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0414 (3)0.0428 (3)0.0324 (2)0.00951 (19)0.00267 (18)0.00166 (18)
Cl20.0410 (3)0.0298 (2)0.0379 (2)0.00388 (17)0.01080 (18)0.00231 (17)
N10.0335 (7)0.0344 (8)0.0283 (7)0.0006 (6)0.0044 (6)0.0002 (6)
N20.0617 (10)0.0360 (8)0.0348 (8)0.0202 (8)0.0147 (7)0.0032 (7)
N30.0403 (8)0.0265 (7)0.0462 (9)0.0089 (6)0.0023 (7)0.0007 (6)
C10.0319 (9)0.0323 (9)0.0346 (9)0.0018 (7)0.0031 (7)0.0054 (7)
C20.0260 (8)0.0283 (8)0.0270 (8)0.0013 (6)0.0012 (6)0.0008 (6)
C30.0309 (8)0.0274 (8)0.0306 (8)0.0029 (7)0.0017 (7)0.0016 (7)
C40.0434 (10)0.0377 (10)0.0291 (9)0.0069 (8)0.0069 (7)0.0021 (7)
C50.0459 (10)0.0366 (10)0.0349 (10)0.0038 (8)0.0013 (8)0.0077 (8)
Geometric parameters (Å, º) top
N1—C21.458 (2)N3—H30.8600
N1—H1A0.8900C1—C21.361 (2)
N1—H1B0.8900C1—H10.9300
N1—H1C0.8900C2—C31.416 (2)
N2—C31.326 (2)C3—C41.417 (2)
N2—H2A0.8600C4—C51.358 (3)
N2—H2B0.8600C4—H40.9300
N3—C11.346 (2)C5—H50.9300
N3—C51.353 (2)
C2—N1—H1A109.5C2—C1—H1119.9
C2—N1—H1B109.5C1—C2—C3121.06 (15)
H1A—N1—H1B109.5C1—C2—N1119.26 (14)
C2—N1—H1C109.5C3—C2—N1119.65 (14)
H1A—N1—H1C109.5N2—C3—C2122.95 (15)
H1B—N1—H1C109.5N2—C3—C4120.92 (15)
C3—N2—H2A120.0C2—C3—C4116.12 (15)
C3—N2—H2B120.0C5—C4—C3120.64 (16)
H2A—N2—H2B120.0C5—C4—H4119.7
C1—N3—C5121.29 (15)C3—C4—H4119.7
C1—N3—H3119.4N3—C5—C4120.64 (16)
C5—N3—H3119.4N3—C5—H5119.7
N3—C1—C2120.23 (16)C4—C5—H5119.7
N3—C1—H1119.9
C5—N3—C1—C21.9 (3)N1—C2—C3—C4177.72 (15)
N3—C1—C2—C31.2 (2)N2—C3—C4—C5179.99 (18)
N3—C1—C2—N1178.99 (14)C2—C3—C4—C50.7 (3)
C1—C2—C3—N2179.35 (16)C1—N3—C5—C41.2 (3)
N1—C2—C3—N21.6 (2)C3—C4—C5—N30.1 (3)
C1—C2—C3—C40.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.892.223.1142 (15)178
N1—H1B···Cl2ii0.892.373.1754 (16)151
N1—H1C···Cl1iii0.892.233.0790 (16)160
N2—H2A···Cl1ii0.862.393.2188 (17)163
N2—H2B···Cl1iv0.862.423.2672 (17)168
N3—H3···Cl20.862.593.2499 (16)135
N3—H3···Cl2v0.862.703.3198 (16)130
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z+1; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H9N32+·2Cl
Mr182.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.362 (2), 7.3218 (19), 13.239 (3)
β (°) 92.065 (4)
V3)810.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.41 × 0.31 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.734, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
3949, 1494, 1345
Rint0.014
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.14
No. of reflections1494
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.892.223.1142 (15)178.0
N1—H1B···Cl2ii0.892.373.1754 (16)150.9
N1—H1C···Cl1iii0.892.233.0790 (16)160.3
N2—H2A···Cl1ii0.862.393.2188 (17)163.2
N2—H2B···Cl1iv0.862.423.2672 (17)168.3
N3—H3···Cl20.862.593.2499 (16)134.7
N3—H3···Cl2v0.862.703.3198 (16)130.0
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z+1; (v) x+1, y, z+1.
 

Acknowledgements

The authors thank Luo Yang Normal University for supporting this work.

References

First citationIyere, P. A., Boadi, W. Y., Atwood, D. & Parkin, S. (2003). Acta Cryst. B59, 664–669.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationJones, P. G., Vancea, F. & Herbst-Irmer, R. (2002). Acta Cryst. C58, o665–o668.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKochel, A. (2005). Acta Cryst. E61, o926–o927.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSørensen, G. O., Mahler, L. & Rastrup-Andersen, N. (1974). J. Mol. Struct. 20, 119–126.  Google Scholar
First citationSykora, R. E. & Cioffi, E. A. (2007). Acta Cryst. E63, o3148–o3149.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds