metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m84-m85

A novel zinc(II) complex with the ligand 2,2′,2′′-(1,4,7-tri­azanonane-1,4,7-triyl)tri­acetate (NOTA)

aDepartamento de Química Inorgánica, Facultade de Química, Avd. das Ciencias s/n, Universidade de Santiago de Compostela, 15706-Santiago de Compostela, A Coruña, Galicia, Spain
*Correspondence e-mail: alejandroalberto.macias@usc.es

(Received 20 October 2008; accepted 9 December 2008; online 17 December 2008)

The zinc(II) complex with NOTA [2,2′,2′′-(1,4,7-triazanonane-1,4,7-triyl)triacetate] has previously been synthesized and studied in solution, but was not isolated. The corresponding title ZnII complex penta­sodium(I) bis­{[2,2′,2′′-(1,4,7-triazanonane-1,4,7-triyl)triacetato]zinc(II)} tris­(perchlorate) methanol solvate, Na5[Zn(C12H18N3O6)]2(ClO4)3·CH3OH, was crystallized as a sodium perchlorate double salt in methano­l solution. The asymmetric unit contains two independent [Zn(NOTA)] complex anion entities, five sodium cations, three perchlorate anions and a methanol solvent mol­ecule. The two ZnII cations exhibit a distorted trigonal-prismatic N3O3 coordination with a bifacial arrangement of the donor atoms. Neither the methanol solvent mol­ecule nor the perchlorate anions appear to be coordinated to the Zn centres. The crystal structure shows a layer arrangement parallel to (001) generated by inter­actions between the [Zn(NOTA)] units, the Na+ cations, two ClO4 units and the methanole mol­ecule, leading to an overall layer composition of [Na5[Zn(C12H18N3O6)]2(ClO4)2.CH3OH]+. The third ClO4 anion is isolated and situated between the layers without any significant inter­actions.

Related literature

Details on the synthesis of NOTA are given by Desreux (1980[Desreux, J. F. (1980). Inorg. Chem. 19, 1319-1324.]). For NOTA complexes of Al, Cr, Fe, Co, Ni, Cu, Ga and In characterized by X-ray diffraction studies, see: Boeyens & Van der Merwe (1997[Boeyens, J. C. A. & Van der Merwe, M. J. (1997). Inorg. Chem. 36, 3779-3780.]); Bossek et al. (1995[Bossek, U., Hanke, D., Wieghardt, K. & Nuber, B. (1995). Polyhedron, 12, 1-5.]); Clarke & Martell (1991[Clarke, E. T. & Martell, A. E. (1991). Inorg. Chim. Acta, 181, 273-280.]); Craig et al. (1989[Craig, A. S., Helps, I. M., Parker, D., Ferguson, G., Bailey, N. A., Smith, J. A. S., Adams, H. & Williams, M. (1989). Polyhedron, 8, 2481-2484.]); Jyo et al. (1990[Jyo, A., Kohno, Y., Terazono, Y. & Kawano, S. (1990). Anal. Sci. 6, 629-631.]); Van der Merwe et al. (1983[Van der Merwe, M. J., Boeyens, J. C. A. & Hancock, R. D. (1983). Inorg. Chem. 22, 3490-3491.], 1985[Van der Merwe, M. J., Boeyens, J. C. A. & Hancock, R. D. (1985). Inorg. Chem. 24, 1208-1213.]); Moore et al. (1990[Moore, D. A., Fanwick, P. E. & Welch, M. J. (1990). Inorg. Chem. 29, 672-676.]); Wieghardt et al. (1982[Wieghardt, K., Bossek, U., Chaudhuri, P., Herrmann, W., Menke, B. C. & Weiss, J. (1982). Inorg. Chem. 21, 4308-4314.]). For general background, see: Geraldes et al. (1985[Geraldes, C. F. G. C., Alpoim, M. C., Marques, M. P. M., Sherry, A. D. & Singh, M. (1985). Inorg. Chem. 24, 3876-3881.]).

[Scheme 1]

Experimental

Crystal data
  • Na5[Zn(C12H18N3O6)]2(ClO4)3·CH4O

  • Mr = 1176.67

  • Orthorhombic, P n a 21

  • a = 16.8879 (5) Å

  • b = 9.4723 (3) Å

  • c = 26.4552 (9) Å

  • V = 4232.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 100 (2) K

  • 0.22 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.738, Tmax = 0.867

  • 31309 measured reflections

  • 9954 independent reflections

  • 8605 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.084

  • S = 1.07

  • 9954 reflections

  • 601 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.58 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4585 Friedel pairs

  • Flack parameter: 0.383 (7)

Table 1
Selected bond lengths (Å)

Zn1—O5 2.027 (3)
Zn1—O1 2.062 (2)
Zn1—O3 2.066 (2)
Zn1—N2 2.160 (3)
Zn1—N3 2.172 (3)
Zn1—N1 2.189 (3)
Zn2—O23 2.047 (3)
Zn2—O21 2.057 (3)
Zn2—O25 2.072 (3)
Zn2—N22 2.198 (3)
Zn2—N21 2.201 (3)
Zn2—N23 2.201 (3)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

NOTA (1,4,7-triazacyclononane-N, N', N''-triacetate) has a well-known preference for small metal ions, and many metal NOTA complexes (M = Al, Cr, Fe, Co, Ni, Cu, Ga and In) have been structurally characterized: (Boeyens & Van der Merwe, 1997; Bossek et al., 1995; Clarke & Martell, 1991; Craig et al., 1989; Jyo et al., 1990; Van der Merwe et al., 1983, 1985; Moore et al., 1990; Wieghardt et al., 1982).

Our starting objective was the synthesis of NOTA (1,4,7-triazacyclononane-N,N',N''-triacetate) complexes in aqueous solutions and its isolation as salts of the type [X][M(NOTA)], where X+ is a monovalent cation and M is ZnII or Cd(II). We also developed a species distribution diagram for NOTA complexes in aqueous solution based on the experimental data obtained by Geraldes et al. (1985). From these experiments we concluded that the anionic salts [Zn(NOTA)]- and [Cd(NOTA)]-, due to their extreme solubility in aqueous solution, do not precipitate as neither sodium nor the alkylammonium salts. These difficulties for isolating the complexes led us to synthesize the ZnII and Cd(II) NOTA complexes in methanol, a solvent in which the sodium salts are less soluble than in aqueous solution. A ZnII complex with a 1:1 composition was prepared by reaction of the NOTA ligand L with hydrous ZnII perchlorate in a 1:1 molar ratio of metal:ligand. This complex was synthesized by a single-step procedure as described and the reaction revealed a pure product that was also characterized by ESI-MS and 1H-NMR spectroscopy.

The molecular structure of the complex entity [Zn(NOTA)]- and selected bond lengths (Å) and angles (°) of the coordination environment of ZnII are given in Fig. 1 and Table 1, respectively. The asymmetric unit contains two independent mononuclear complex [Zn(NOTA)]- entities, five sodium cations, three perchlorate anions and a methanol solvent molecule. The coordination environment, distances and angles of both independent [Zn(NOTA)]- molecules are similar. When the metal centre coordination requirements do not favour an octahedral environment, the metal core geometry in NOTA complexes is trigonal-prismatic (Wieghardt et al., 1982). Thus, the ZnII centres present a six-coordinated N3O3 core in a distorted trigonal-prismatic arrangement. Each Zn atom is bound to three N atoms from the macrocyclic backbone and three O atoms from the pendant-arms. Like in all the other known structures of NOTA complexes, in the [Zn(NOTA)]- entities the donor atoms are disposed in a bifacial arrangement. Three N atoms occupy one facial plane of the prism, and three O atoms belong to the other plane. The average Zn—N and Zn—O bond lengths are 2.187 Å and 2.055 Å, respectively. These bond lengths are in the range found for M–N and M–O bonds in other NOTA complexes with divalent transition metals.

The crystal structure shows a layer arrangement parallel (001) generated by interactions between the [Zn(NOTA)]- units, the Na+ cations, two ClO4- units and the methanol molecule, leading to an overall layer composition of [Na5[Zn(C12H18N3O6)]2(ClO4)2.CH3OH]+. The third ClO4 anion is isolated and situated between the layers without any significant interactions (Fig. 2).

Related literature top

Details on the synthesis of NOTA are given by Desreux (1980). For NOTA complexes of Al, Cr, Fe, Co, Ni, Cu, Ga and In characterized by X-ray diffraction studies, see: Boeyens & Van der Merwe (1997); Bossek et al. (1995); Clarke & Martell (1991); Craig et al. (1989); Jyo et al. (1990); Van der Merwe et al. (1983, 1985); Moore et al. (1990); Wieghardt et al. (1982). For general background, see: Geraldes et al. (1985).

For related literature, see: Boeyens & Van der Merwe (1997); Van der Merwe, Boeyens & Hancock (1983, 1985).

Experimental top

Synthesis of the macrocycle NOTAH3: The ligand NOTA was prepared from its triazamacrocycle precursor TACN by alkylation with bromoacetic acid using a modification of a previously reported method (Desreux, 1980). TACN and NaOH were dissolved in water, and to the solution was added a bromoacetic acid/ NaOH aqueous solution at 273 K. The reaction mixture temperature was raised to 323 K, and a NaOH aqueous solution was added. The mixture was maintained at 323 K under stirring for 5 d. Then, concentrated hydrobromic acid was added until a pH of ~ 7 was reached. NOTAH3 does not precipitate from aqueous solutions in a well-defined state, thus a purification stage was needed. After a liquid-liquid extraction with n-butanol, a white powder characterized as a salt of the expected ligand was finally obtained. C12H21N3O6.(CH2BrCOOH)3:MS (ESI, m/z) 304 [H(LH3)]+, 326 {Na(LH3)]}+, 348 [Na2(LH2)]+; 1H NMR data: (250 MHz, D2O, SiMe4): d 3.5 (s, 12 H from –CH2– in the ring), d 3.9 (s, 6 H from CH2BrCOOH), d 4.3 (s, 6 H from –CH2– in pendants).

Synthesis of the metal complexes: Hydrated zinc perchlorate was added to a solution of the purified ligand NOTAH3 in methanol. The reaction mixture was heated and then cooled. A concentrated NaOH methanolic solution was added until a pH of 7 was reached. Single crystals were obtained by the diffusion vapour-phase crystallization method in a MeOH/Et2O solvent system. The ZnII complex was characterized by ESI-MS, 1HNMR, COSY NMR and X-ray diffraction. Na[ZnL]1.5(NaClO4).0.5MeOH: MS(ESI, m/z) 366 [Zn(LH2)]+, 388 {Na[Zn(LH)]}+. Colour: colourless.

The correspondent Cd(II) complex was also obtained in methanolic solution, but it has not been isolated in crystalline form.

Refinement top

The absolute structure parameter was refined (Flack, 1983) and points to racemic twinning, with a ratio of the twin fractions of approximately 3:2. The hydrogen atoms attached to the carbon atoms were located in their calculated positions and refined using a riding model with U(H) equal to 1.2× Ueq (1.5 for methyl groups) of the parent atom and C—H= 0.97 Å. The hydrogen atom attached to the oxygen atom in the methanol molecule was localized in a Fourier map and refined with Uiso constrained to be 1.5 × Ueq of the O atom.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of one [Zn(NOTA)]- complex with atom labelling and displacement ellipsoids drawn at the 50% probability level. The structure of the second [Zn(NOTA)]- entity is very similar.
[Figure 2] Fig. 2. The crystal structure of the title compound in a projection along [010], emphasizing the layer arrangement parallel (001) as generated by interactions between the [Zn(NOTA)]- units, the Na+ cations, two ClO4- units and the methanol molecule. The third ClO4 anion is isolated and situated between the layers without any significant interactions.
pentasodium(I) bis[(1,4,7-triazacyclononane-N,N',N''-triacetato)zinc(II)] tris(perchlorate) methanol solvate top
Crystal data top
Na5[Zn(C12H18N3O6)]2(ClO4)3·CH4OF(000) = 2392
Mr = 1176.67Dx = 1.847 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 9827 reflections
a = 16.8879 (5) Åθ = 2.4–27.7°
b = 9.4723 (3) ŵ = 1.47 mm1
c = 26.4552 (9) ÅT = 100 K
V = 4232.0 (2) Å3Prism, colourless
Z = 40.22 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
9954 independent reflections
Radiation source: fine-focus sealed tube8605 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and ϕ scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2122
Tmin = 0.738, Tmax = 0.867k = 1212
31309 measured reflectionsl = 3532
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0392P)2 + 1.4688P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.56 e Å3
9954 reflectionsΔρmin = 0.58 e Å3
601 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00024 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 4585 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.383 (7)
Crystal data top
Na5[Zn(C12H18N3O6)]2(ClO4)3·CH4OV = 4232.0 (2) Å3
Mr = 1176.67Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 16.8879 (5) ŵ = 1.47 mm1
b = 9.4723 (3) ÅT = 100 K
c = 26.4552 (9) Å0.22 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
9954 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
8605 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.867Rint = 0.036
31309 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084Δρmax = 0.56 e Å3
S = 1.07Δρmin = 0.58 e Å3
9954 reflectionsAbsolute structure: Flack (1983), 4585 Friedel pairs
601 parametersAbsolute structure parameter: 0.383 (7)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.07460 (2)0.01616 (4)0.917626 (16)0.00860 (9)
N11.12568 (18)0.1518 (3)0.96418 (12)0.0120 (7)
N21.12185 (18)0.1482 (3)0.97696 (12)0.0118 (7)
N30.97800 (19)0.0083 (3)0.97112 (12)0.0129 (7)
O11.16120 (14)0.0640 (3)0.87080 (10)0.0118 (5)
O21.21023 (15)0.2696 (3)0.84582 (10)0.0149 (6)
O31.08723 (14)0.2045 (3)0.87911 (10)0.0109 (5)
O41.14849 (15)0.4106 (3)0.88043 (10)0.0138 (6)
O50.98658 (14)0.0531 (3)0.87180 (10)0.0127 (6)
O60.85724 (14)0.0775 (3)0.86305 (10)0.0134 (6)
C11.1941 (2)0.0791 (4)0.98715 (16)0.0161 (8)
H1A1.23410.05960.96070.019*
H1B1.21870.14171.01270.019*
C21.1699 (2)0.0601 (4)1.01240 (15)0.0174 (8)
H2A1.13860.03981.04320.021*
H2B1.21790.11281.02260.021*
C31.0484 (2)0.2058 (4)1.00086 (15)0.0134 (8)
H3A1.02330.27390.97740.016*
H3B1.06290.25731.03210.016*
C40.9891 (2)0.0898 (4)1.01387 (15)0.0169 (9)
H4A1.00820.03671.04370.020*
H4B0.93760.13321.02270.020*
C50.9838 (2)0.1590 (4)0.98620 (15)0.0157 (8)
H5A0.96630.21880.95760.019*
H5B0.94740.17641.01490.019*
C61.0663 (2)0.2020 (4)1.00137 (14)0.0156 (8)
H6A1.07870.16211.03500.019*
H6B1.06920.30611.00390.019*
C71.1508 (2)0.2609 (4)0.92774 (14)0.0152 (8)
H7A1.10640.32720.92170.018*
H7B1.19550.31510.94210.018*
C81.1760 (2)0.1946 (4)0.87764 (14)0.0095 (7)
C91.1674 (2)0.2606 (4)0.95153 (14)0.0140 (8)
H9A1.22280.22920.94700.017*
H9B1.16780.34600.97310.017*
C101.1323 (2)0.2972 (4)0.90042 (14)0.0107 (8)
C110.9056 (2)0.0144 (4)0.94157 (15)0.0128 (8)
H11A0.89360.11660.93990.015*
H11B0.86050.03360.95820.015*
C120.9163 (2)0.0434 (4)0.88855 (15)0.0120 (8)
Zn20.60272 (2)0.05820 (4)0.708125 (16)0.00988 (9)
N210.53471 (18)0.0972 (3)0.66409 (11)0.0111 (7)
N220.68311 (18)0.0323 (3)0.64345 (12)0.0137 (7)
N230.54514 (19)0.2003 (3)0.65352 (12)0.0141 (7)
O210.52931 (15)0.0254 (3)0.76249 (10)0.0134 (6)
O220.45361 (15)0.2103 (3)0.78197 (10)0.0168 (6)
O230.70301 (16)0.0144 (3)0.74292 (10)0.0160 (6)
O240.83384 (17)0.0339 (3)0.73661 (12)0.0267 (7)
O250.60456 (15)0.2484 (3)0.74679 (10)0.0142 (6)
O260.55583 (15)0.4664 (3)0.74935 (10)0.0145 (6)
C210.5825 (2)0.1491 (4)0.62115 (14)0.0129 (8)
H21A0.56360.10440.58950.015*
H21B0.57540.25240.61780.015*
C220.6700 (2)0.1160 (4)0.62845 (16)0.0162 (8)
H22A0.69200.17910.65480.019*
H22B0.69860.13500.59650.019*
C230.6640 (2)0.1362 (4)0.60296 (15)0.0161 (8)
H23A0.63540.08820.57520.019*
H23B0.71360.17610.58910.019*
C240.6130 (2)0.2540 (4)0.62434 (16)0.0160 (8)
H24A0.64600.31450.64650.019*
H24B0.59330.31320.59620.019*
C250.4863 (2)0.1230 (4)0.62259 (15)0.0151 (8)
H25A0.50900.10280.58880.018*
H25B0.43860.18230.61790.018*
C260.4633 (2)0.0149 (4)0.64821 (15)0.0132 (8)
H26A0.43030.00580.67830.016*
H26B0.43120.07250.62460.016*
C270.5128 (2)0.2061 (4)0.70054 (15)0.0145 (8)
H27A0.55630.27570.70340.017*
H27B0.46500.25640.68840.017*
C280.4961 (2)0.1420 (4)0.75278 (14)0.0121 (8)
C290.7628 (2)0.0498 (4)0.66439 (15)0.0175 (9)
H29A0.77740.15100.66370.021*
H29B0.80130.00230.64320.021*
C300.7672 (2)0.0043 (4)0.71825 (16)0.0165 (9)
C310.5101 (2)0.3140 (4)0.68376 (14)0.0140 (8)
H31A0.45650.28560.69500.017*
H31B0.50480.39980.66270.017*
C320.5604 (2)0.3469 (4)0.72938 (15)0.0140 (8)
Cl1P0.90733 (6)0.49270 (10)0.94241 (4)0.0164 (2)
Cl2P0.76010 (6)0.50986 (10)0.57365 (4)0.0207 (2)
Cl3P0.85405 (6)0.29914 (10)0.79612 (4)0.0198 (2)
O1P0.87409 (16)0.4307 (3)0.81979 (11)0.0225 (7)
O2P0.78137 (15)0.2457 (3)0.81750 (11)0.0215 (7)
O3P0.91798 (15)0.2025 (3)0.80605 (11)0.0199 (6)
O4P0.84347 (19)0.3166 (3)0.74240 (12)0.0322 (8)
O5P0.98116 (16)0.4732 (3)0.91612 (13)0.0264 (7)
O6P0.92441 (19)0.5250 (3)0.99436 (12)0.0300 (8)
O7P0.86528 (16)0.6093 (3)0.91977 (11)0.0196 (6)
O8P0.86005 (19)0.3672 (3)0.93927 (13)0.0326 (8)
O9P0.81100 (17)0.6321 (3)0.57245 (13)0.0307 (7)
O10P0.7577 (3)0.4429 (4)0.52517 (14)0.0578 (12)
O11P0.68191 (19)0.5555 (3)0.58564 (16)0.0445 (10)
O12P0.78848 (18)0.4105 (3)0.61010 (12)0.0303 (8)
C1S0.7491 (3)0.6009 (5)0.71492 (18)0.0350 (12)
H1S10.77190.51330.70160.053*
H1S20.78370.68040.70640.053*
H1S30.69670.61600.69990.053*
O1S0.74181 (18)0.5907 (3)0.76745 (11)0.0238 (7)
H1S0.708 (3)0.650 (5)0.7779 (19)0.036*
Na10.94165 (8)0.95334 (15)0.78618 (6)0.0129 (3)
Na20.84425 (8)0.67402 (15)0.83292 (6)0.0180 (3)
Na30.52011 (8)0.11140 (16)0.83393 (6)0.0175 (3)
Na40.66600 (9)0.40410 (15)0.80596 (6)0.0146 (3)
Na50.74113 (8)0.00225 (14)0.82877 (6)0.0121 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.00958 (19)0.00826 (19)0.0080 (2)0.00044 (15)0.00002 (19)0.00020 (19)
N10.0161 (16)0.0096 (15)0.0102 (16)0.0003 (12)0.0014 (13)0.0001 (13)
N20.0135 (16)0.0102 (16)0.0117 (16)0.0013 (12)0.0008 (13)0.0011 (13)
N30.0172 (18)0.0110 (16)0.0106 (16)0.0007 (12)0.0024 (14)0.0027 (13)
O10.0138 (13)0.0109 (13)0.0106 (13)0.0039 (10)0.0041 (11)0.0003 (11)
O20.0156 (14)0.0128 (14)0.0164 (14)0.0043 (10)0.0033 (12)0.0003 (11)
O30.0119 (13)0.0117 (13)0.0092 (13)0.0018 (10)0.0016 (11)0.0001 (11)
O40.0160 (14)0.0092 (13)0.0162 (14)0.0019 (10)0.0031 (11)0.0019 (11)
O50.0076 (13)0.0175 (14)0.0129 (14)0.0008 (10)0.0012 (11)0.0014 (11)
O60.0137 (13)0.0096 (13)0.0169 (14)0.0006 (10)0.0021 (12)0.0009 (11)
C10.011 (2)0.021 (2)0.016 (2)0.0011 (15)0.0043 (16)0.0070 (17)
C20.023 (2)0.019 (2)0.010 (2)0.0010 (17)0.0045 (17)0.0019 (17)
C30.0168 (19)0.0116 (18)0.012 (2)0.0009 (15)0.0002 (17)0.0036 (15)
C40.018 (2)0.021 (2)0.012 (2)0.0015 (16)0.0039 (17)0.0072 (17)
C50.019 (2)0.019 (2)0.0092 (19)0.0068 (16)0.0041 (16)0.0022 (16)
C60.023 (2)0.014 (2)0.010 (2)0.0046 (16)0.0002 (17)0.0041 (15)
C70.020 (2)0.0091 (18)0.016 (2)0.0005 (14)0.0023 (17)0.0012 (15)
C80.0067 (17)0.0114 (18)0.0104 (19)0.0003 (13)0.0034 (15)0.0009 (15)
C90.016 (2)0.0124 (19)0.014 (2)0.0023 (15)0.0031 (16)0.0035 (16)
C100.0114 (18)0.0064 (17)0.0142 (19)0.0013 (13)0.0013 (15)0.0013 (14)
C110.0127 (19)0.0101 (18)0.016 (2)0.0017 (14)0.0032 (16)0.0029 (16)
C120.014 (2)0.0089 (18)0.013 (2)0.0000 (14)0.0019 (16)0.0032 (15)
Zn20.0111 (2)0.0108 (2)0.0077 (2)0.00016 (16)0.00000 (19)0.00050 (18)
N210.0112 (16)0.0143 (17)0.0078 (16)0.0000 (12)0.0030 (13)0.0013 (13)
N220.0101 (16)0.0163 (16)0.0148 (17)0.0048 (12)0.0013 (14)0.0020 (14)
N230.0176 (17)0.0144 (16)0.0103 (16)0.0007 (13)0.0013 (14)0.0003 (14)
O210.0161 (14)0.0144 (14)0.0095 (14)0.0014 (11)0.0025 (11)0.0012 (11)
O220.0164 (14)0.0139 (14)0.0202 (15)0.0009 (11)0.0064 (12)0.0014 (12)
O230.0185 (15)0.0166 (14)0.0130 (15)0.0031 (11)0.0027 (12)0.0022 (12)
O240.0146 (15)0.0318 (18)0.034 (2)0.0028 (12)0.0097 (14)0.0080 (15)
O250.0163 (14)0.0130 (14)0.0133 (14)0.0019 (11)0.0037 (12)0.0006 (11)
O260.0136 (14)0.0102 (13)0.0197 (15)0.0007 (10)0.0038 (12)0.0048 (11)
C210.016 (2)0.0158 (19)0.0072 (18)0.0027 (15)0.0010 (15)0.0052 (15)
C220.017 (2)0.018 (2)0.014 (2)0.0015 (16)0.0035 (17)0.0061 (17)
C230.018 (2)0.020 (2)0.0105 (19)0.0059 (16)0.0012 (17)0.0003 (17)
C240.017 (2)0.016 (2)0.014 (2)0.0064 (15)0.0006 (17)0.0004 (17)
C250.016 (2)0.014 (2)0.015 (2)0.0009 (15)0.0052 (17)0.0031 (16)
C260.014 (2)0.0134 (19)0.0118 (19)0.0017 (14)0.0033 (16)0.0011 (16)
C270.0155 (19)0.0154 (19)0.013 (2)0.0046 (14)0.0017 (16)0.0016 (16)
C280.0121 (19)0.0119 (19)0.0122 (19)0.0024 (15)0.0004 (16)0.0007 (15)
C290.010 (2)0.028 (2)0.015 (2)0.0014 (16)0.0020 (16)0.0045 (17)
C300.018 (2)0.0094 (18)0.022 (2)0.0006 (14)0.0025 (18)0.0039 (16)
C310.016 (2)0.0107 (19)0.015 (2)0.0041 (14)0.0009 (17)0.0030 (16)
C320.0125 (19)0.0163 (19)0.0131 (19)0.0000 (15)0.0081 (16)0.0014 (16)
Cl1P0.0172 (5)0.0118 (4)0.0201 (5)0.0008 (4)0.0043 (4)0.0007 (4)
Cl2P0.0179 (5)0.0190 (5)0.0250 (6)0.0022 (4)0.0024 (4)0.0056 (4)
Cl3P0.0173 (5)0.0157 (5)0.0264 (6)0.0003 (4)0.0004 (4)0.0019 (4)
O1P0.0213 (15)0.0160 (15)0.0302 (18)0.0028 (12)0.0018 (13)0.0033 (13)
O2P0.0113 (15)0.0157 (14)0.0376 (19)0.0009 (11)0.0024 (13)0.0032 (13)
O3P0.0133 (14)0.0142 (15)0.0322 (17)0.0006 (11)0.0025 (13)0.0011 (13)
O4P0.041 (2)0.0296 (18)0.0256 (17)0.0040 (15)0.0028 (15)0.0033 (15)
O5P0.0209 (15)0.0348 (16)0.0236 (16)0.0103 (12)0.0060 (15)0.0010 (15)
O6P0.040 (2)0.0317 (18)0.0178 (16)0.0064 (14)0.0047 (15)0.0021 (14)
O7P0.0225 (15)0.0153 (13)0.0211 (15)0.0024 (11)0.0027 (14)0.0028 (13)
O8P0.0323 (19)0.0170 (16)0.048 (2)0.0055 (13)0.0015 (16)0.0053 (15)
O9P0.0257 (17)0.0278 (17)0.0384 (19)0.0113 (13)0.0034 (15)0.0137 (15)
O10P0.093 (3)0.054 (3)0.026 (2)0.006 (2)0.011 (2)0.0121 (19)
O11P0.0185 (17)0.0303 (19)0.085 (3)0.0005 (14)0.0062 (18)0.022 (2)
O12P0.0276 (18)0.0225 (17)0.041 (2)0.0039 (13)0.0087 (15)0.0138 (14)
C1S0.041 (3)0.032 (3)0.032 (3)0.005 (2)0.002 (2)0.001 (2)
O1S0.0243 (17)0.0277 (17)0.0193 (16)0.0010 (13)0.0058 (14)0.0048 (13)
Na10.0106 (7)0.0141 (8)0.0140 (8)0.0015 (6)0.0006 (6)0.0006 (6)
Na20.0176 (8)0.0149 (8)0.0216 (8)0.0011 (6)0.0059 (7)0.0020 (7)
Na30.0161 (8)0.0166 (8)0.0198 (9)0.0007 (6)0.0018 (7)0.0064 (7)
Na40.0157 (8)0.0149 (8)0.0130 (8)0.0000 (6)0.0011 (6)0.0036 (6)
Na50.0136 (8)0.0104 (7)0.0124 (8)0.0001 (5)0.0012 (6)0.0002 (6)
Geometric parameters (Å, º) top
Zn1—O52.027 (3)O24—Na52.913 (3)
Zn1—O12.062 (2)O25—C321.280 (4)
Zn1—O32.066 (2)O25—Na42.388 (3)
Zn1—N22.160 (3)O25—Na33.005 (3)
Zn1—N32.172 (3)O26—C321.251 (4)
Zn1—N12.189 (3)O26—Na1v2.291 (3)
N1—C71.475 (5)O26—Na42.460 (3)
N1—C11.477 (5)C21—C221.524 (5)
N1—C61.483 (5)C21—H21A0.9900
N2—C91.475 (5)C21—H21B0.9900
N2—C31.495 (5)C22—H22A0.9900
N2—C21.495 (5)C22—H22B0.9900
N3—C111.467 (5)C23—C241.519 (5)
N3—C41.476 (5)C23—H23A0.9900
N3—C51.485 (5)C23—H23B0.9900
O1—C81.276 (4)C24—H24A0.9900
O1—Na4i2.289 (3)C24—H24B0.9900
O2—C81.244 (4)C25—C261.523 (5)
O2—Na5ii2.268 (3)C25—H25A0.9900
O2—Na2i2.461 (3)C25—H25B0.9900
O3—C101.291 (4)C26—H26A0.9900
O3—Na3i2.399 (3)C26—H26B0.9900
O3—Na4i2.564 (3)C27—C281.536 (5)
O4—C101.228 (4)C27—H27A0.9900
O4—Na5i2.252 (3)C27—H27B0.9900
O4—Na3i2.501 (3)C29—C301.516 (6)
O5—C121.271 (4)C29—H29A0.9900
O5—Na1iii2.390 (3)C29—H29B0.9900
O6—C121.246 (4)C30—Na52.957 (4)
O6—Na52.275 (3)C31—C321.508 (5)
O6—Na2iii2.495 (3)C31—H31A0.9900
O6—Na1iii2.501 (3)C31—H31B0.9900
C1—C21.533 (6)C32—Na42.753 (4)
C1—H1A0.9900Cl1P—O8P1.435 (3)
C1—H1B0.9900Cl1P—O6P1.437 (3)
C2—H2A0.9900Cl1P—O5P1.440 (3)
C2—H2B0.9900Cl1P—O7P1.444 (3)
C3—C41.527 (5)Cl2P—O11P1.425 (3)
C3—H3A0.9900Cl2P—O12P1.430 (3)
C3—H3B0.9900Cl2P—O10P1.431 (4)
C4—H4A0.9900Cl2P—O9P1.442 (3)
C4—H4B0.9900Cl3P—O1P1.435 (3)
C5—C61.507 (5)Cl3P—O3P1.440 (3)
C5—H5A0.9900Cl3P—O4P1.442 (3)
C5—H5B0.9900Cl3P—O2P1.443 (3)
C6—H6A0.9900Cl3P—Na3i3.0957 (17)
C6—H6B0.9900Cl3P—Na43.3378 (18)
C7—C81.527 (5)O1P—Na22.385 (3)
C7—H7A0.9900O1P—Na3i2.526 (3)
C7—H7B0.9900O2P—Na52.463 (3)
C8—Na2i3.083 (4)O2P—Na42.478 (3)
C9—C101.516 (5)O3P—Na1iii2.451 (3)
C9—H9A0.9900O3P—Na3i2.574 (3)
C9—H9B0.9900O5P—Na3i2.409 (4)
C10—Na3i2.727 (4)O7P—Na22.404 (3)
C11—C121.516 (5)C1S—O1S1.398 (6)
C11—H11A0.9900C1S—H1S10.9800
C11—H11B0.9900C1S—H1S20.9800
C12—Na1iii2.742 (4)C1S—H1S30.9800
Zn2—O232.047 (3)O1S—Na42.409 (3)
Zn2—O212.057 (3)O1S—Na22.572 (3)
Zn2—O252.072 (3)O1S—H1S0.85 (5)
Zn2—N222.198 (3)Na1—O24vi2.247 (3)
Zn2—N212.201 (3)Na1—O26vii2.291 (3)
Zn2—N232.201 (3)Na1—O22i2.313 (3)
Zn2—Na33.6439 (16)Na1—O5vi2.390 (3)
N21—C271.460 (5)Na1—O3Pvi2.451 (3)
N21—C211.477 (5)Na1—O6vi2.501 (3)
N21—C261.496 (5)Na1—C12vi2.742 (4)
N22—C291.465 (5)Na2—O22i2.312 (3)
N22—C221.476 (5)Na2—O2iv2.461 (3)
N22—C231.490 (5)Na2—O6vi2.495 (3)
N23—C311.467 (5)Na2—C8iv3.083 (4)
N23—C241.473 (5)Na3—O3iv2.399 (3)
N23—C251.480 (5)Na3—O5Piv2.409 (4)
O21—C281.265 (4)Na3—O4iv2.501 (3)
O21—Na32.297 (3)Na3—O1Piv2.526 (3)
O22—C281.237 (4)Na3—O3Piv2.574 (3)
O22—Na2iv2.312 (3)Na3—C10iv2.727 (4)
O22—Na1iv2.313 (3)Na3—Cl3Piv3.0957 (17)
O23—C301.269 (5)Na4—O1iv2.289 (3)
O23—Na52.364 (3)Na4—O3iv2.564 (3)
O24—C301.257 (5)Na5—O4iv2.252 (3)
O24—Na1iii2.247 (3)Na5—O2viii2.268 (3)
O5—Zn1—O192.38 (10)N23—C24—H24A109.1
O5—Zn1—O393.47 (10)C23—C24—H24A109.1
O1—Zn1—O387.04 (10)N23—C24—H24B109.1
O5—Zn1—N2153.25 (11)C23—C24—H24B109.1
O1—Zn1—N2112.82 (11)H24A—C24—H24B107.8
O3—Zn1—N279.63 (11)N23—C25—C26110.5 (3)
O5—Zn1—N378.72 (11)N23—C25—H25A109.6
O1—Zn1—N3152.26 (11)C26—C25—H25A109.6
O3—Zn1—N3119.42 (11)N23—C25—H25B109.6
N2—Zn1—N382.29 (12)C26—C25—H25B109.6
O5—Zn1—N1112.96 (11)H25A—C25—H25B108.1
O1—Zn1—N177.94 (11)N21—C26—C25111.5 (3)
O3—Zn1—N1149.83 (11)N21—C26—H26A109.3
N2—Zn1—N182.32 (12)C25—C26—H26A109.3
N3—Zn1—N181.47 (12)N21—C26—H26B109.3
O5—Zn1—Na4i83.44 (8)C25—C26—H26B109.3
O1—Zn1—Na4i40.66 (8)H26A—C26—H26B108.0
O3—Zn1—Na4i48.41 (7)N21—C27—C28111.2 (3)
N2—Zn1—Na4i109.47 (9)N21—C27—H27A109.4
N3—Zn1—Na4i157.82 (9)C28—C27—H27A109.4
N1—Zn1—Na4i117.97 (9)N21—C27—H27B109.4
C7—N1—C1111.8 (3)C28—C27—H27B109.4
C7—N1—C6113.8 (3)H27A—C27—H27B108.0
C1—N1—C6113.9 (3)O22—C28—O21126.0 (4)
C7—N1—Zn1104.7 (2)O22—C28—C27117.5 (3)
C1—N1—Zn1101.6 (2)O21—C28—C27116.5 (3)
C6—N1—Zn1109.9 (2)N22—C29—C30111.2 (3)
C9—N2—C3111.2 (3)N22—C29—H29A109.4
C9—N2—C2114.0 (3)C30—C29—H29A109.4
C3—N2—C2112.9 (3)N22—C29—H29B109.4
C9—N2—Zn1106.2 (2)C30—C29—H29B109.4
C3—N2—Zn1102.3 (2)H29A—C29—H29B108.0
C2—N2—Zn1109.4 (2)O24—C30—O23123.3 (4)
C11—N3—C4114.9 (3)O24—C30—C29118.8 (4)
C11—N3—C5109.8 (3)O23—C30—C29117.8 (3)
C4—N3—C5113.0 (3)O24—C30—Na575.7 (2)
C11—N3—Zn1105.3 (2)O23—C30—Na550.56 (19)
C4—N3—Zn1109.7 (2)C29—C30—Na5156.9 (3)
C5—N3—Zn1103.2 (2)N23—C31—C32111.2 (3)
C8—O1—Zn1114.3 (2)N23—C31—H31A109.4
C8—O1—Na4i137.8 (2)C32—C31—H31A109.4
Zn1—O1—Na4i103.41 (11)N23—C31—H31B109.4
C8—O2—Na5ii141.8 (2)C32—C31—H31B109.4
C8—O2—Na2i108.1 (2)H31A—C31—H31B108.0
Na5ii—O2—Na2i96.39 (10)O26—C32—O25122.9 (4)
C10—O3—Zn1115.6 (2)O26—C32—C31119.3 (3)
C10—O3—Na3i90.2 (2)O25—C32—C31117.7 (3)
Zn1—O3—Na3i145.57 (12)O26—C32—Na463.3 (2)
C10—O3—Na4i107.2 (2)O25—C32—Na460.11 (19)
Zn1—O3—Na4i94.54 (9)C31—C32—Na4173.9 (3)
Na3i—O3—Na4i99.25 (10)O8P—Cl1P—O6P110.1 (2)
C10—O4—Na5i138.8 (2)O8P—Cl1P—O5P110.33 (19)
C10—O4—Na3i86.9 (2)O6P—Cl1P—O5P108.4 (2)
Na5i—O4—Na3i109.63 (12)O8P—Cl1P—O7P109.66 (18)
C12—O5—Zn1116.9 (2)O6P—Cl1P—O7P109.42 (18)
C12—O5—Na1iii91.8 (2)O5P—Cl1P—O7P108.90 (18)
Zn1—O5—Na1iii142.31 (13)O11P—Cl2P—O12P111.1 (2)
C12—O6—Na5145.5 (2)O11P—Cl2P—O10P107.9 (3)
C12—O6—Na2iii119.2 (2)O12P—Cl2P—O10P108.8 (2)
Na5—O6—Na2iii95.30 (10)O11P—Cl2P—O9P108.29 (19)
C12—O6—Na1iii87.4 (2)O12P—Cl2P—O9P110.07 (19)
Na5—O6—Na1iii97.50 (11)O10P—Cl2P—O9P110.7 (2)
Na2iii—O6—Na1iii84.29 (9)O1P—Cl3P—O3P107.20 (16)
N1—C1—C2111.8 (3)O1P—Cl3P—O4P111.07 (19)
N1—C1—H1A109.3O3P—Cl3P—O4P110.22 (18)
C2—C1—H1A109.3O1P—Cl3P—O2P109.51 (18)
N1—C1—H1B109.3O3P—Cl3P—O2P110.08 (17)
C2—C1—H1B109.3O4P—Cl3P—O2P108.74 (18)
H1A—C1—H1B107.9O1P—Cl3P—Na3i53.68 (12)
N2—C2—C1110.6 (3)O3P—Cl3P—Na3i55.65 (11)
N2—C2—H2A109.5O4P—Cl3P—Na3i113.53 (14)
C1—C2—H2A109.5O2P—Cl3P—Na3i137.71 (13)
N2—C2—H2B109.5O1P—Cl3P—Na486.08 (12)
C1—C2—H2B109.5O3P—Cl3P—Na4152.71 (13)
H2A—C2—H2B108.1O4P—Cl3P—Na485.68 (13)
N2—C3—C4112.2 (3)O2P—Cl3P—Na442.67 (11)
N2—C3—H3A109.2Na3i—Cl3P—Na4139.04 (5)
C4—C3—H3A109.2Cl3P—O1P—Na2148.54 (18)
N2—C3—H3B109.2Cl3P—O1P—Na3i99.08 (15)
C4—C3—H3B109.2Na2—O1P—Na3i109.71 (11)
H3A—C3—H3B107.9Cl3P—O2P—Na5128.06 (16)
N3—C4—C3111.3 (3)Cl3P—O2P—Na4114.08 (15)
N3—C4—H4A109.4Na5—O2P—Na4112.04 (11)
C3—C4—H4A109.4Cl3P—O3P—Na1iii134.07 (16)
N3—C4—H4B109.4Cl3P—O3P—Na3i96.85 (13)
C3—C4—H4B109.4Na1iii—O3P—Na3i127.71 (11)
H4A—C4—H4B108.0Cl1P—O5P—Na3i135.67 (19)
N3—C5—C6113.1 (3)Cl1P—O7P—Na2131.63 (17)
N3—C5—H5A109.0O1S—C1S—H1S1109.5
C6—C5—H5A109.0O1S—C1S—H1S2109.5
N3—C5—H5B109.0H1S1—C1S—H1S2109.5
C6—C5—H5B109.0O1S—C1S—H1S3109.5
H5A—C5—H5B107.8H1S1—C1S—H1S3109.5
N1—C6—C5111.2 (3)H1S2—C1S—H1S3109.5
N1—C6—H6A109.4C1S—O1S—Na4121.1 (3)
C5—C6—H6A109.4C1S—O1S—Na2126.1 (3)
N1—C6—H6B109.4Na4—O1S—Na2107.33 (12)
C5—C6—H6B109.4C1S—O1S—H1S110 (3)
H6A—C6—H6B108.0Na4—O1S—H1S90 (3)
N1—C7—C8111.1 (3)Na2—O1S—H1S91 (3)
N1—C7—H7A109.4O24vi—Na1—O26vii114.58 (12)
C8—C7—H7A109.4O24vi—Na1—O22i95.52 (12)
N1—C7—H7B109.4O26vii—Na1—O22i103.68 (11)
C8—C7—H7B109.4O24vi—Na1—O5vi144.28 (12)
H7A—C7—H7B108.0O26vii—Na1—O5vi98.30 (10)
O2—C8—O1123.3 (3)O22i—Na1—O5vi89.56 (11)
O2—C8—C7118.9 (3)O24vi—Na1—O3Pvi86.63 (11)
O1—C8—C7117.8 (3)O26vii—Na1—O3Pvi84.76 (10)
O2—C8—Na2i49.36 (18)O22i—Na1—O3Pvi169.35 (12)
O1—C8—Na2i93.7 (2)O5vi—Na1—O3Pvi82.72 (10)
C7—C8—Na2i128.1 (2)O24vi—Na1—O6vi91.09 (11)
N2—C9—C10111.6 (3)O26vii—Na1—O6vi149.84 (11)
N2—C9—H9A109.3O22i—Na1—O6vi88.43 (10)
C10—C9—H9A109.3O5vi—Na1—O6vi53.64 (9)
N2—C9—H9B109.3O3Pvi—Na1—O6vi81.09 (10)
C10—C9—H9B109.3O22i—Na2—O1P83.69 (11)
H9A—C9—H9B108.0O22i—Na2—O7P118.49 (11)
O4—C10—O3122.5 (3)O1P—Na2—O7P82.05 (11)
O4—C10—C9119.8 (3)O22i—Na2—O2iv139.51 (11)
O3—C10—C9117.7 (3)O1P—Na2—O2iv124.75 (11)
O4—C10—Na3i66.3 (2)O7P—Na2—O2iv95.57 (10)
O3—C10—Na3i61.58 (18)O22i—Na2—O6vi88.60 (10)
C9—C10—Na3i156.8 (3)O1P—Na2—O6vi160.03 (11)
N3—C11—C12109.9 (3)O7P—Na2—O6vi85.54 (10)
N3—C11—H11A109.7O2iv—Na2—O6vi71.91 (9)
C12—C11—H11A109.7O22i—Na2—O1S100.97 (11)
N3—C11—H11B109.7O1P—Na2—O1S75.38 (11)
C12—C11—H11B109.7O7P—Na2—O1S131.66 (11)
H11A—C11—H11B108.2O2iv—Na2—O1S65.65 (10)
O6—C12—O5122.7 (4)O6vi—Na2—O1S124.31 (11)
O6—C12—C11119.9 (3)O21—Na3—O5Piv125.00 (12)
O5—C12—C11117.4 (3)O3iv—Na3—O5Piv85.47 (10)
O6—C12—Na1iii65.6 (2)O21—Na3—O4iv107.40 (10)
O5—C12—Na1iii60.57 (19)O3iv—Na3—O4iv53.55 (8)
C11—C12—Na1iii159.4 (2)O5Piv—Na3—O4iv76.41 (10)
O23—Zn2—O2193.15 (11)O21—Na3—O1Piv81.67 (11)
O23—Zn2—O2593.30 (10)O3iv—Na3—O1Piv130.54 (10)
O21—Zn2—O2589.92 (10)O5Piv—Na3—O1Piv79.32 (11)
O23—Zn2—N2278.54 (11)O4iv—Na3—O1Piv154.94 (12)
O21—Zn2—N22150.85 (11)O21—Na3—O3Piv101.30 (11)
O25—Zn2—N22118.18 (11)O3iv—Na3—O3Piv87.80 (9)
O23—Zn2—N21116.44 (11)O5Piv—Na3—O3Piv107.67 (11)
O21—Zn2—N2178.35 (11)O4iv—Na3—O3Piv141.14 (10)
O25—Zn2—N21148.30 (11)O1Piv—Na3—O3Piv53.95 (9)
N22—Zn2—N2180.53 (11)O21—Na3—C10iv131.52 (12)
O23—Zn2—N23150.03 (12)O3iv—Na3—C10iv28.26 (9)
O21—Zn2—N23115.34 (11)O5Piv—Na3—C10iv73.33 (11)
O25—Zn2—N2378.41 (11)O4iv—Na3—C10iv26.73 (9)
N22—Zn2—N2380.23 (12)O1Piv—Na3—C10iv145.51 (12)
N21—Zn2—N2380.27 (12)O3Piv—Na3—C10iv115.66 (11)
O23—Zn2—Na387.28 (8)O21—Na3—O2565.18 (9)
O21—Zn2—Na335.31 (8)O3iv—Na3—O2581.04 (9)
O25—Zn2—Na355.57 (8)O5Piv—Na3—O25164.93 (10)
N22—Zn2—Na3164.36 (9)O4iv—Na3—O2590.11 (9)
N21—Zn2—Na3112.10 (8)O1Piv—Na3—O25114.70 (10)
N23—Zn2—Na3110.23 (9)O3Piv—Na3—O2578.61 (9)
C27—N21—C21114.3 (3)C10iv—Na3—O2591.59 (10)
C27—N21—C26110.4 (3)O21—Na3—Cl3Piv87.13 (8)
C21—N21—C26113.4 (3)O3iv—Na3—Cl3Piv112.97 (8)
C27—N21—Zn2104.8 (2)O5Piv—Na3—Cl3Piv97.78 (9)
C21—N21—Zn2110.2 (2)O4iv—Na3—Cl3Piv165.21 (9)
C26—N21—Zn2102.8 (2)O1Piv—Na3—Cl3Piv27.24 (7)
C29—N22—C22110.3 (3)O3Piv—Na3—Cl3Piv27.50 (6)
C29—N22—C23113.3 (3)C10iv—Na3—Cl3Piv138.69 (9)
C22—N22—C23113.7 (3)O25—Na3—Cl3Piv93.66 (7)
C29—N22—Zn2105.1 (2)O1iv—Na4—O25152.16 (11)
C22—N22—Zn2102.9 (2)O1iv—Na4—O1S81.39 (10)
C23—N22—Zn2110.6 (2)O25—Na4—O1S114.02 (11)
C31—N23—C24110.2 (3)O1iv—Na4—O26105.71 (10)
C31—N23—C25113.2 (3)O25—Na4—O2654.58 (9)
C24—N23—C25113.8 (3)O1S—Na4—O2688.20 (11)
C31—N23—Zn2105.6 (2)O1iv—Na4—O2P109.63 (11)
C24—N23—Zn2102.2 (2)O25—Na4—O2P92.77 (10)
C25—N23—Zn2110.9 (2)O1S—Na4—O2P94.51 (11)
C28—O21—Zn2117.5 (2)O26—Na4—O2P144.57 (11)
C28—O21—Na3129.0 (2)O1iv—Na4—O3iv71.43 (9)
Zn2—O21—Na3113.50 (12)O25—Na4—O3iv91.22 (10)
C28—O22—Na2iv138.5 (2)O1S—Na4—O3iv152.81 (11)
C28—O22—Na1iv127.0 (2)O26—Na4—O3iv99.40 (10)
Na2iv—O22—Na1iv92.88 (11)O2P—Na4—O3iv94.12 (10)
C30—O23—Zn2116.8 (2)O1iv—Na4—C32131.19 (12)
C30—O23—Na5104.9 (2)O25—Na4—C3227.70 (10)
Zn2—O23—Na5129.88 (13)O1S—Na4—C32100.22 (12)
C30—O24—Na1iii164.3 (3)O26—Na4—C3227.03 (10)
C30—O24—Na579.6 (2)O2P—Na4—C32118.75 (12)
Na1iii—O24—Na587.28 (11)O3iv—Na4—C3298.08 (11)
C32—O25—Zn2116.6 (2)O1iv—Na4—Cl3P106.80 (8)
C32—O25—Na492.2 (2)O25—Na4—Cl3P100.27 (8)
Zn2—O25—Na4150.14 (13)O1S—Na4—Cl3P71.34 (8)
C32—O25—Na3108.3 (2)O26—Na4—Cl3P138.03 (9)
Zn2—O25—Na389.79 (9)O2P—Na4—Cl3P23.25 (7)
Na4—O25—Na388.28 (9)O3iv—Na4—Cl3P115.65 (7)
C32—O26—Na1v122.2 (2)C32—Na4—Cl3P120.02 (9)
C32—O26—Na489.6 (2)O4iv—Na5—O2viii94.98 (11)
Na1v—O26—Na4117.22 (12)O4iv—Na5—O6118.54 (12)
N21—C21—C22111.3 (3)O2viii—Na5—O679.66 (10)
N21—C21—H21A109.4O4iv—Na5—O23114.38 (11)
C22—C21—H21A109.4O2viii—Na5—O2394.71 (11)
N21—C21—H21B109.4O6—Na5—O23127.05 (11)
C22—C21—H21B109.4O4iv—Na5—O2P84.12 (10)
H21A—C21—H21B108.0O2viii—Na5—O2P174.83 (12)
N22—C22—C21112.1 (3)O6—Na5—O2P96.27 (10)
N22—C22—H22A109.2O23—Na5—O2P90.30 (11)
C21—C22—H22A109.2O4iv—Na5—O24157.10 (11)
N22—C22—H22B109.2O2viii—Na5—O24101.07 (10)
C21—C22—H22B109.2O6—Na5—O2480.68 (10)
H22A—C22—H22B107.9O23—Na5—O2448.48 (9)
N22—C23—C24109.9 (3)O2P—Na5—O2481.29 (10)
N22—C23—H23A109.7O4iv—Na5—C30134.93 (12)
C24—C23—H23A109.7O2viii—Na5—C30102.99 (11)
N22—C23—H23B109.7O6—Na5—C30105.29 (11)
C24—C23—H23B109.7O23—Na5—C3024.50 (10)
H23A—C23—H23B108.2O2P—Na5—C3081.10 (11)
N23—C24—C23112.5 (3)O24—Na5—C3024.72 (9)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x, y1, z; (iv) x1/2, y+1/2, z; (v) x1/2, y+3/2, z; (vi) x, y+1, z; (vii) x+1/2, y+3/2, z; (viii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaNa5[Zn(C12H18N3O6)]2(ClO4)3·CH4O
Mr1176.67
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)16.8879 (5), 9.4723 (3), 26.4552 (9)
V3)4232.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.22 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.738, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
31309, 9954, 8605
Rint0.036
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.084, 1.07
No. of reflections9954
No. of parameters601
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.58
Absolute structureFlack (1983), 4585 Friedel pairs
Absolute structure parameter0.383 (7)

Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 2008), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Zn1—O52.027 (3)Zn2—O232.047 (3)
Zn1—O12.062 (2)Zn2—O212.057 (3)
Zn1—O32.066 (2)Zn2—O252.072 (3)
Zn1—N22.160 (3)Zn2—N222.198 (3)
Zn1—N32.172 (3)Zn2—N212.201 (3)
Zn1—N12.189 (3)Zn2—N232.201 (3)
 

Acknowledgements

We thank the Xunta de Galicia (Spain; Project PGIDIT07PXIB209039PR) for financial support. The X-ray data were collected at the Unidade de Raios X, RIAIDT, University of Santiago de Compostela, Spain.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBoeyens, J. C. A. & Van der Merwe, M. J. (1997). Inorg. Chem. 36, 3779–3780.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBossek, U., Hanke, D., Wieghardt, K. & Nuber, B. (1995). Polyhedron, 12, 1–5.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClarke, E. T. & Martell, A. E. (1991). Inorg. Chim. Acta, 181, 273–280.  CrossRef CAS Web of Science Google Scholar
First citationCraig, A. S., Helps, I. M., Parker, D., Ferguson, G., Bailey, N. A., Smith, J. A. S., Adams, H. & Williams, M. (1989). Polyhedron, 8, 2481–2484.  CSD CrossRef CAS Web of Science Google Scholar
First citationDesreux, J. F. (1980). Inorg. Chem. 19, 1319–1324.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGeraldes, C. F. G. C., Alpoim, M. C., Marques, M. P. M., Sherry, A. D. & Singh, M. (1985). Inorg. Chem. 24, 3876–3881.  CrossRef CAS Web of Science Google Scholar
First citationJyo, A., Kohno, Y., Terazono, Y. & Kawano, S. (1990). Anal. Sci. 6, 629–631.  CrossRef CAS Web of Science Google Scholar
First citationMoore, D. A., Fanwick, P. E. & Welch, M. J. (1990). Inorg. Chem. 29, 672–676.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan der Merwe, M. J., Boeyens, J. C. A. & Hancock, R. D. (1983). Inorg. Chem. 22, 3490–3491.  Google Scholar
First citationVan der Merwe, M. J., Boeyens, J. C. A. & Hancock, R. D. (1985). Inorg. Chem. 24, 1208–1213.  CSD CrossRef CAS Web of Science Google Scholar
First citationWieghardt, K., Bossek, U., Chaudhuri, P., Herrmann, W., Menke, B. C. & Weiss, J. (1982). Inorg. Chem. 21, 4308–4314.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m84-m85
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds