metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4,4′-Di-tert-butyl-2,2′-bi­pyridine-κ2N,N′)bis­­(nitrato-κ2O,O′)copper(II)

aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China, and bInstitute of Applied Chemistry, Guizhou University, Guiyang 550025, People's Republic of China
*Correspondence e-mail: gyhxxiaoxin@163.com

(Received 11 January 2009; accepted 12 January 2009; online 17 January 2009)

In the crystal of the title compound, [Cu(NO3)2(C18H24N2)], the CuII ion is coordinated by two N atoms of the bipyridine ligand and four O atoms from the two nitrate anions in a distorted octahedral fashion. The dihedral angle between the planes of the two pyridine rings is 11.52 (10)°. In the crystal structure, weak C—H⋯O inter­actions may help to establish the packing.

Related literature

For general background, see: Noro et al. (2000[Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081-2084.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]); Huertas et al. (2001[Huertas, S., Hissler, M., McGarrah, J. E., Lachicotte, R. J. & Eisenberg, R. (2001). Inorg. Chem. 40, 1183-1188.]); Qin et al. (2002[Qin, Z. Q., Jennings, M. C. & Puddephatt, R. J. (2002). Inorg. Chem. 41, 3967-3974.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C18H24N2)]

  • Mr = 455.96

  • Orthorhombic, P 21 21 21

  • a = 9.8265 (16) Å

  • b = 13.247 (2) Å

  • c = 16.138 (3) Å

  • V = 2100.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 173 (2) K

  • 0.27 × 0.25 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.759, Tmax = 0.837

  • 11065 measured reflections

  • 3642 independent reflections

  • 3450 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.074

  • S = 1.05

  • 3642 reflections

  • 258 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.81 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1522 Friedel pairs

  • Flack parameter: 0.012 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4i 0.93 2.46 3.124 (3) 129
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro et al., 2000; Yaghi et al., 1998). And 4,4'-di-tert-butyl-2,2'-bipyridine has been used as a ligand in coordination chemistry (Huertas et al., 2001; Qin et al., 2002). We report here the crystal structure of the title copper(II)complex, (I), containing a bipyridine ligand.

In the crystal of (I), the CuII ion is coordinated by two N atoms of the 4,4'-di-tert-butyl-2,2'-bipyridine ligand and four O atoms from the two nitrate anions. The dihedral angle between the planes of two pyridine rings is 11.52 (10)°. The title compound forms intermolecular H bond whereas the protonated C1 atom act as hydrogen-bond donor and O4 atom act as hydrogen-bond acceptor, the distance of the C1—H1···O4 hydrogen bonds is 3.124 (3) Å (Table 1). Weak C—H···O interactions may help to establish the packing.

Related literature top

For general background, see: Noro et al. (2000); Yaghi et al. (1998); Huertas et al. (2001); Qin et al. (2002).

Experimental top

A solution of 4,4'-di-tert-butyl-2,2'-bipyridine (0.15 g, 0.56 mmol) in ethanol (50 ml) was added to a solution of Cu(N03)2, (0.09 g, 0.56 mmol) in H2O (20 ml), and the resulting blue solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, blue crystals of (I) were isolated.

Refinement top

H atoms were placed in calculated positions and refined as riding, with C—H = 0.93- and 0.96 Å, and Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
(4,4'-Di-tert-butyl-2,2'-bipyridine-κ2N,N')bis(nitrato- κ2O,O')copper(II) top
Crystal data top
[Cu(NO3)2(C18H24N2)]F(000) = 948
Mr = 455.96Dx = 1.442 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2120 reflections
a = 9.8265 (16) Åθ = 2.0–25.0°
b = 13.247 (2) ŵ = 1.08 mm1
c = 16.138 (3) ÅT = 173 K
V = 2100.7 (6) Å3Block, blue
Z = 40.27 × 0.25 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3642 independent reflections
Radiation source: fine-focus sealed tube3450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.759, Tmax = 0.837k = 1515
11065 measured reflectionsl = 1917
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.8717P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3642 reflectionsΔρmax = 0.64 e Å3
258 parametersΔρmin = 0.81 e Å3
1 restraintAbsolute structure: Flack (1983), 1522 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (13)
Crystal data top
[Cu(NO3)2(C18H24N2)]V = 2100.7 (6) Å3
Mr = 455.96Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.8265 (16) ŵ = 1.08 mm1
b = 13.247 (2) ÅT = 173 K
c = 16.138 (3) Å0.27 × 0.25 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3642 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3450 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.837Rint = 0.022
11065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.64 e Å3
S = 1.05Δρmin = 0.81 e Å3
3642 reflectionsAbsolute structure: Flack (1983), 1522 Freidel pairs
258 parametersAbsolute structure parameter: 0.012 (13)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.58577 (3)0.98172 (2)0.72968 (2)0.02515 (10)
O20.3672 (2)1.0193 (2)0.66313 (14)0.0434 (6)
O10.4195 (2)0.89792 (15)0.74670 (14)0.0387 (5)
O40.5221 (2)1.08313 (16)0.81065 (13)0.0328 (5)
N20.7365 (2)1.06673 (17)0.68765 (15)0.0243 (5)
N40.5626 (2)1.05068 (18)0.88143 (15)0.0300 (6)
O50.6358 (2)0.97414 (17)0.88213 (13)0.035
N10.6896 (2)0.87411 (17)0.67467 (15)0.0242 (5)
N30.3281 (3)0.9442 (2)0.70369 (17)0.0381 (6)
O60.5273 (3)1.0950 (2)0.94430 (15)0.0558 (7)
C151.0722 (3)1.2220 (2)0.56813 (19)0.0308 (7)
C60.8337 (3)1.0146 (2)0.64671 (16)0.0225 (6)
C110.9809 (3)0.6535 (2)0.58589 (19)0.0279 (6)
O30.2114 (2)0.9132 (2)0.7046 (2)0.0649 (9)
C20.7514 (3)0.7040 (2)0.64459 (18)0.0275 (6)
H20.72650.63630.64360.033*
C30.8801 (3)0.7323 (2)0.61767 (18)0.0233 (6)
C80.9527 (3)1.1675 (2)0.61021 (18)0.0253 (6)
C70.9411 (3)1.0624 (2)0.60741 (17)0.0252 (6)
H71.00571.02450.57910.030*
C50.8133 (3)0.9040 (2)0.64572 (17)0.0225 (6)
C40.9100 (3)0.83539 (19)0.61865 (16)0.0223 (5)
H40.99480.85800.60110.027*
C10.6602 (3)0.7753 (2)0.67289 (19)0.0281 (6)
H10.57520.75410.69140.034*
C100.7481 (3)1.1682 (2)0.69174 (19)0.0290 (6)
H100.68211.20470.72020.035*
C171.1679 (4)1.2577 (3)0.6369 (2)0.0507 (10)
H17A1.24451.29190.61280.076*
H17B1.19931.20060.66810.076*
H17C1.12021.30320.67300.076*
C90.8536 (3)1.2190 (2)0.65550 (19)0.0302 (7)
H90.85941.28880.66110.036*
C141.1222 (3)0.6979 (3)0.5698 (2)0.0400 (8)
H14A1.18170.64590.54980.060*
H14B1.15800.72510.62050.060*
H14C1.11550.75070.52920.060*
C130.9948 (3)0.5689 (2)0.6509 (2)0.0397 (8)
H13A1.05770.51890.63120.060*
H13B0.90760.53810.66000.060*
H13C1.02760.59690.70200.060*
C161.1495 (3)1.1522 (3)0.5092 (2)0.0410 (8)
H16A1.22351.18850.48440.062*
H16B1.08901.12870.46670.062*
H16C1.18451.09550.53960.062*
C120.9251 (4)0.6105 (3)0.5041 (2)0.0440 (8)
H12A0.98710.56070.48290.066*
H12B0.91540.66410.46450.066*
H12C0.83800.57980.51390.066*
C181.0207 (4)1.3135 (3)0.5182 (3)0.0512 (10)
H18A1.09651.34670.49230.077*
H18B0.97551.35980.55470.077*
H18C0.95811.29100.47640.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02290 (16)0.02379 (17)0.02875 (18)0.00229 (14)0.00540 (15)0.00019 (15)
O20.0210.0581 (15)0.0509 (13)0.0047 (11)0.0042 (9)0.0038 (14)
O10.0287 (10)0.0327 (11)0.0548 (15)0.0013 (9)0.0091 (10)0.0042 (9)
O40.0379 (11)0.0321 (12)0.0285 (11)0.0100 (9)0.0039 (10)0.0011 (10)
N20.0264 (12)0.0209 (12)0.0256 (12)0.0016 (10)0.0028 (10)0.0006 (10)
N40.0287 (13)0.0328 (14)0.0283 (13)0.0002 (11)0.0005 (11)0.0032 (11)
O50.0330.0340.0380.0127 (10)0.0048 (9)0.0036 (10)
N10.0248 (11)0.0220 (13)0.0260 (13)0.0020 (10)0.0038 (10)0.0000 (10)
N30.0263 (13)0.0424 (16)0.0455 (17)0.0029 (11)0.0057 (10)0.0132 (13)
O60.0737 (18)0.0623 (17)0.0313 (14)0.0154 (14)0.0022 (13)0.0100 (12)
C150.0309 (16)0.0254 (15)0.0361 (17)0.0065 (14)0.0001 (15)0.0046 (12)
C60.0253 (13)0.0220 (14)0.0201 (13)0.0005 (12)0.0013 (11)0.0000 (12)
C110.0330 (15)0.0207 (15)0.0299 (16)0.0024 (13)0.0008 (13)0.0045 (12)
O30.0275 (13)0.0736 (19)0.094 (2)0.0068 (12)0.0036 (13)0.0171 (17)
C20.0291 (14)0.0201 (14)0.0332 (17)0.0039 (12)0.0012 (13)0.0010 (12)
C30.0286 (16)0.0214 (14)0.0200 (14)0.0008 (11)0.0055 (12)0.0007 (11)
C80.0287 (15)0.0230 (15)0.0242 (16)0.0037 (11)0.0047 (12)0.0036 (12)
C70.0239 (15)0.0255 (14)0.0262 (15)0.0011 (11)0.0027 (12)0.0024 (12)
C50.0246 (13)0.0227 (15)0.0202 (14)0.0013 (11)0.0003 (12)0.0016 (12)
C40.0206 (12)0.0243 (14)0.0218 (13)0.0023 (12)0.0018 (13)0.0016 (11)
C10.0258 (15)0.0240 (15)0.0344 (17)0.0039 (12)0.0010 (13)0.0002 (13)
C100.0345 (15)0.0232 (15)0.0295 (16)0.0059 (13)0.0041 (13)0.0012 (12)
C170.045 (2)0.056 (2)0.051 (2)0.0223 (18)0.0037 (18)0.0033 (19)
C90.0381 (16)0.0187 (15)0.0339 (17)0.0004 (12)0.0017 (14)0.0016 (13)
C140.0333 (18)0.0337 (18)0.053 (2)0.0072 (14)0.0107 (15)0.0022 (16)
C130.0459 (19)0.0285 (17)0.045 (2)0.0100 (15)0.0019 (16)0.0064 (15)
C160.0365 (17)0.0393 (19)0.047 (2)0.0091 (15)0.0115 (16)0.0047 (16)
C120.051 (2)0.043 (2)0.0384 (18)0.0096 (18)0.0011 (17)0.0151 (14)
C180.047 (2)0.040 (2)0.067 (3)0.0033 (17)0.0112 (19)0.0231 (19)
Geometric parameters (Å, º) top
Cu1—N11.965 (2)C8—C91.396 (4)
Cu1—O41.976 (2)C8—C71.398 (4)
Cu1—N21.980 (2)C7—H70.9300
Cu1—O11.994 (2)C5—C41.385 (4)
O2—N31.251 (4)C4—H40.9300
O1—N31.290 (3)C1—H10.9300
O4—N41.284 (3)C10—C91.368 (4)
N2—C61.351 (3)C10—H100.9300
N2—C101.350 (4)C17—H17A0.9600
N4—O61.223 (3)C17—H17B0.9600
N4—O51.243 (3)C17—H17C0.9600
N1—C11.340 (4)C9—H90.9300
N1—C51.360 (4)C14—H14A0.9600
N3—O31.218 (3)C14—H14B0.9600
C15—C161.528 (4)C14—H14C0.9600
C15—C171.531 (5)C13—H13A0.9600
C15—C81.536 (4)C13—H13B0.9600
C15—C181.541 (4)C13—H13C0.9600
C6—C71.385 (4)C16—H16A0.9600
C6—C51.479 (4)C16—H16B0.9600
C11—C31.528 (4)C16—H16C0.9600
C11—C141.530 (4)C12—H12A0.9600
C11—C121.539 (4)C12—H12B0.9600
C11—C131.541 (4)C12—H12C0.9600
C2—C11.380 (4)C18—H18A0.9600
C2—C31.389 (4)C18—H18B0.9600
C2—H20.9300C18—H18C0.9600
C3—C41.396 (4)
N1—Cu1—O4163.03 (9)C4—C5—C6124.1 (2)
N1—Cu1—N282.49 (9)C5—C4—C3120.0 (3)
O4—Cu1—N294.41 (9)C5—C4—H4120.0
N1—Cu1—O194.82 (9)C3—C4—H4120.0
O4—Cu1—O191.59 (9)N1—C1—C2122.4 (3)
N2—Cu1—O1167.53 (10)N1—C1—H1118.8
N3—O1—Cu1103.37 (17)C2—C1—H1118.8
N4—O4—Cu1105.23 (16)N2—C10—C9122.2 (3)
C6—N2—C10118.2 (2)N2—C10—H10118.9
C6—N2—Cu1113.90 (18)C9—C10—H10118.9
C10—N2—Cu1127.8 (2)C15—C17—H17A109.5
O6—N4—O5123.3 (3)C15—C17—H17B109.5
O6—N4—O4119.3 (2)H17A—C17—H17B109.5
O5—N4—O4117.4 (2)C15—C17—H17C109.5
C1—N1—C5118.0 (2)H17A—C17—H17C109.5
C1—N1—Cu1127.3 (2)H17B—C17—H17C109.5
C5—N1—Cu1114.09 (18)C10—C9—C8120.8 (3)
O3—N3—O2124.3 (3)C10—C9—H9119.6
O3—N3—O1119.2 (3)C8—C9—H9119.6
O2—N3—O1116.5 (2)C11—C14—H14A109.5
C16—C15—C17109.4 (3)C11—C14—H14B109.5
C16—C15—C8111.8 (2)H14A—C14—H14B109.5
C17—C15—C8107.1 (3)C11—C14—H14C109.5
C16—C15—C18108.3 (3)H14A—C14—H14C109.5
C17—C15—C18109.7 (3)H14B—C14—H14C109.5
C8—C15—C18110.5 (3)C11—C13—H13A109.5
N2—C6—C7121.9 (3)C11—C13—H13B109.5
N2—C6—C5114.6 (2)H13A—C13—H13B109.5
C7—C6—C5123.5 (3)C11—C13—H13C109.5
C3—C11—C14112.4 (2)H13A—C13—H13C109.5
C3—C11—C12108.1 (3)H13B—C13—H13C109.5
C14—C11—C12108.7 (3)C15—C16—H16A109.5
C3—C11—C13109.0 (2)C15—C16—H16B109.5
C14—C11—C13108.4 (3)H16A—C16—H16B109.5
C12—C11—C13110.3 (3)C15—C16—H16C109.5
C1—C2—C3120.6 (3)H16A—C16—H16C109.5
C1—C2—H2119.7H16B—C16—H16C109.5
C3—C2—H2119.7C11—C12—H12A109.5
C2—C3—C4116.9 (3)C11—C12—H12B109.5
C2—C3—C11120.7 (2)H12A—C12—H12B109.5
C4—C3—C11122.4 (3)C11—C12—H12C109.5
C9—C8—C7116.5 (3)H12A—C12—H12C109.5
C9—C8—C15122.4 (3)H12B—C12—H12C109.5
C7—C8—C15121.0 (3)C15—C18—H18A109.5
C6—C7—C8120.2 (3)C15—C18—H18B109.5
C6—C7—H7119.9H18A—C18—H18B109.5
C8—C7—H7119.9C15—C18—H18C109.5
N1—C5—C4122.0 (3)H18A—C18—H18C109.5
N1—C5—C6113.9 (2)H18B—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.932.463.124 (3)129
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C18H24N2)]
Mr455.96
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)9.8265 (16), 13.247 (2), 16.138 (3)
V3)2100.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.27 × 0.25 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.759, 0.837
No. of measured, independent and
observed [I > 2σ(I)] reflections
11065, 3642, 3450
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.074, 1.05
No. of reflections3642
No. of parameters258
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.81
Absolute structureFlack (1983), 1522 Freidel pairs
Absolute structure parameter0.012 (13)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.932.463.124 (3)128.6
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors gratefully acknowledge the Natural Science Foundation of China (No. 20767001), the International Collaborative Project of Guizhou Province, the Governor Foundation of Guizhou Province and the Natural Science Youth Foundation of Guizhou University (No. 2007–005) for financial support.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuertas, S., Hissler, M., McGarrah, J. E., Lachicotte, R. J. & Eisenberg, R. (2001). Inorg. Chem. 40, 1183–1188.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNoro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081–2084.  CrossRef Google Scholar
First citationQin, Z. Q., Jennings, M. C. & Puddephatt, R. J. (2002). Inorg. Chem. 41, 3967–3974.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds