organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Phenyl­isoquinolin-1(2H)-one

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: nawaz_f@yahoo.co.in

(Received 15 December 2008; accepted 5 January 2009; online 8 January 2009)

The title compound, C15H11NO, consists of a planar isoquinolinone group to which a phenyl ring is attached in a twisted fashion [dihedral angle = 39.44 (4)°]. The crystal packing is dominated by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds which define centrosymmetric dimeric entitities.

Related literature

For general background and related crystal structures, see: Cho et al. (2002[Cho, W., Kim, E., Park, I. Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. & Leed, E. (2002). Bioorg. Med. Chem. 10, 2953-2961.]) and references therein. For new chemotherapeutic agents for the treatment of cancer derived from natural compounds, see: Mackay et al. (1997[Mackay, S. P., Meth-Cohn, O. & Waich, R. D. (1997). In Advances in Heterocyclic Chemistry, edited by A. R. Katritzky. New York: Academic Press.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11NO

  • Mr = 221.25

  • Triclinic, [P \overline 1]

  • a = 3.8692 (5) Å

  • b = 12.0171 (16) Å

  • c = 12.3209 (16) Å

  • α = 106.652 (2)°

  • β = 94.137 (2)°

  • γ = 90.579 (2)°

  • V = 547.14 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 290 (2) K

  • 0.21 × 0.15 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.938, Tmax = 0.993

  • 5473 measured reflections

  • 2001 independent reflections

  • 1545 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.06

  • 2001 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.896 (16) 1.945 (16) 2.8373 (15) 174.0 (15)
C11—H11⋯O1ii 0.93 2.59 3.4449 (19) 152
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])'; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

New chemotherapeutic agents for a treatment of cancer from natural compounds have been developed over the last decade (Mackay et al., 1997). Most of the 3-arylisoquinoline derivatives exhibited potent cytotoxicities against five different human tumor cell lines. These potent antitumor activity is studied by molecular modeling to correlate structure-activity relationships (Cho et al., 2002 and references therein).

In the title compound C15H11NO (Fig. 1) the phenyl ring attached to the isoquinolinone moiety at C2 is twisted, forming a dihedral angle of 39.44 (4)°. Bond lengths and angles are within normal ranges (Allen et al., 1987). The C15H11NO monomers are linked via N—H···O and C—H···O hydrogen bonds to form dimers across the inversion center located at (1/2, 1/2, 0) (Fig. 2) and giving raise to two R12(7) and one R22(14) graph-set motifs respectively (Bernstein et al., 1995).

Related literature top

For general background and related crystal structures, see: Cho et al. (2002) and references therein. For new chemotherapeutic agents for the treatment of cancer derived from natural compounds, see: Mackay et al. (1997). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of 3-pheylisocoumarin in THF was treated with ammonia and stirred overnight under reflux conditions; the solvent was concentrated to give the solid which was further purified by column chromatography. The material was recrystalized from Dichloromethane.

Refinement top

All the H atoms in (I) were positioned geometrically and refined using a riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms. The H atom of N was located from difference fourier map and refined isotropically resulting in N—H abond length of 0.895 (17) Å.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)'; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of molecule (I) with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing diagram of (I).The dotted lines indicate intermolecular interactions. H atoms not involved in H-bonding have been omitted for clarity.
3-Phenylisoquinolin-1(2H)-one top
Crystal data top
C15H11NOZ = 2
Mr = 221.25F(000) = 232
Triclinic, P1Dx = 1.343 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8692 (5) ÅCell parameters from 956 reflections
b = 12.0171 (16) Åθ = 2.0–24.7°
c = 12.3209 (16) ŵ = 0.09 mm1
α = 106.652 (2)°T = 290 K
β = 94.137 (2)°Plate, brown
γ = 90.579 (2)°0.21 × 0.15 × 0.08 mm
V = 547.14 (12) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2001 independent reflections
Radiation source: fine-focus sealed tube1545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 44
Tmin = 0.938, Tmax = 0.993k = 1414
5473 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.0314P]
where P = (Fo2 + 2Fc2)/3
2001 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H11NOγ = 90.579 (2)°
Mr = 221.25V = 547.14 (12) Å3
Triclinic, P1Z = 2
a = 3.8692 (5) ÅMo Kα radiation
b = 12.0171 (16) ŵ = 0.09 mm1
c = 12.3209 (16) ÅT = 290 K
α = 106.652 (2)°0.21 × 0.15 × 0.08 mm
β = 94.137 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2001 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1545 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.993Rint = 0.016
5473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.15 e Å3
2001 reflectionsΔρmin = 0.15 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3290 (3)0.49798 (9)0.14029 (9)0.0377 (3)
H1N0.425 (4)0.4508 (14)0.0808 (14)0.053 (4)*
O10.3406 (3)0.63724 (8)0.04974 (8)0.0494 (3)
C10.2740 (3)0.60824 (11)0.13505 (11)0.0370 (3)
C20.2647 (3)0.45724 (11)0.23136 (11)0.0355 (3)
C30.1426 (4)0.53085 (11)0.32449 (11)0.0404 (3)
H30.10270.50450.38660.048*
C40.0576 (4)0.72807 (13)0.42310 (12)0.0475 (4)
H40.10230.70440.48640.057*
C50.1204 (4)0.83970 (13)0.42281 (13)0.0539 (4)
H50.20670.89120.48590.065*
C60.0564 (4)0.87701 (13)0.32897 (14)0.0540 (4)
H60.09880.95330.32980.065*
C70.0688 (4)0.80168 (12)0.23554 (12)0.0461 (4)
H70.10920.82660.17260.055*
C80.1361 (3)0.68737 (11)0.23437 (11)0.0372 (3)
C90.0743 (3)0.64835 (12)0.32866 (11)0.0377 (3)
C100.3263 (3)0.33257 (11)0.21691 (11)0.0371 (3)
C110.2399 (4)0.25028 (12)0.11318 (12)0.0434 (4)
H110.14540.27350.05190.052*
C120.2941 (4)0.13396 (13)0.10093 (14)0.0526 (4)
H120.23560.07920.03130.063*
C130.4338 (4)0.09853 (13)0.19090 (15)0.0558 (4)
H130.46950.02010.18210.067*
C140.5206 (4)0.17909 (13)0.29387 (14)0.0527 (4)
H140.61490.15510.35470.063*
C150.4681 (4)0.29547 (12)0.30712 (12)0.0442 (4)
H150.52790.34960.37700.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0459 (7)0.0342 (6)0.0338 (6)0.0047 (5)0.0075 (5)0.0098 (5)
O10.0698 (7)0.0432 (6)0.0407 (6)0.0101 (5)0.0135 (5)0.0181 (5)
C10.0399 (8)0.0366 (7)0.0351 (7)0.0009 (6)0.0006 (6)0.0118 (6)
C20.0352 (7)0.0375 (7)0.0346 (7)0.0010 (5)0.0016 (5)0.0120 (6)
C30.0441 (8)0.0436 (8)0.0356 (7)0.0006 (6)0.0054 (6)0.0144 (6)
C40.0477 (9)0.0507 (9)0.0400 (8)0.0004 (7)0.0065 (6)0.0059 (7)
C50.0530 (9)0.0483 (9)0.0493 (9)0.0076 (7)0.0040 (7)0.0036 (7)
C60.0593 (10)0.0376 (8)0.0587 (10)0.0082 (7)0.0026 (8)0.0053 (7)
C70.0518 (9)0.0393 (8)0.0458 (8)0.0026 (6)0.0010 (7)0.0111 (6)
C80.0352 (7)0.0367 (7)0.0375 (7)0.0002 (6)0.0020 (5)0.0082 (6)
C90.0341 (7)0.0403 (8)0.0356 (7)0.0015 (6)0.0015 (5)0.0062 (6)
C100.0345 (7)0.0377 (7)0.0417 (8)0.0003 (6)0.0068 (6)0.0148 (6)
C110.0493 (9)0.0375 (8)0.0444 (8)0.0002 (6)0.0017 (6)0.0137 (6)
C120.0591 (10)0.0383 (8)0.0568 (10)0.0021 (7)0.0041 (7)0.0082 (7)
C130.0591 (10)0.0386 (8)0.0752 (11)0.0049 (7)0.0100 (8)0.0240 (8)
C140.0554 (10)0.0525 (9)0.0590 (10)0.0073 (7)0.0046 (7)0.0301 (8)
C150.0476 (8)0.0455 (8)0.0421 (8)0.0018 (6)0.0028 (6)0.0170 (6)
Geometric parameters (Å, º) top
N1—C11.3631 (17)C6—H60.9300
N1—C21.3831 (16)C7—C81.3970 (19)
N1—H1N0.895 (17)C7—H70.9300
O1—C11.2408 (15)C8—C91.4060 (18)
C1—C81.4574 (19)C10—C111.3894 (19)
C2—C31.3518 (18)C10—C151.3914 (19)
C2—C101.4811 (18)C11—C121.382 (2)
C3—C91.4263 (19)C11—H110.9300
C3—H30.9300C12—C131.375 (2)
C4—C51.367 (2)C12—H120.9300
C4—C91.410 (2)C13—C141.374 (2)
C4—H40.9300C13—H130.9300
C5—C61.391 (2)C14—C151.380 (2)
C5—H50.9300C14—H140.9300
C6—C71.368 (2)C15—H150.9300
C1—N1—C2125.14 (12)C7—C8—C9120.48 (13)
C1—N1—H1N115.8 (10)C7—C8—C1119.76 (12)
C2—N1—H1N119.0 (10)C9—C8—C1119.76 (12)
O1—C1—N1120.67 (12)C8—C9—C4117.81 (13)
O1—C1—C8123.27 (12)C8—C9—C3119.16 (12)
N1—C1—C8116.06 (11)C4—C9—C3123.03 (13)
C3—C2—N1119.03 (12)C11—C10—C15118.75 (13)
C3—C2—C10124.69 (12)C11—C10—C2120.53 (12)
N1—C2—C10116.25 (11)C15—C10—C2120.72 (12)
C2—C3—C9120.84 (12)C12—C11—C10120.12 (13)
C2—C3—H3119.6C12—C11—H11119.9
C9—C3—H3119.6C10—C11—H11119.9
C5—C4—C9120.84 (14)C13—C12—C11120.49 (15)
C5—C4—H4119.6C13—C12—H12119.8
C9—C4—H4119.6C11—C12—H12119.8
C4—C5—C6120.60 (14)C14—C13—C12119.93 (14)
C4—C5—H5119.7C14—C13—H13120.0
C6—C5—H5119.7C12—C13—H13120.0
C7—C6—C5120.09 (14)C13—C14—C15120.12 (14)
C7—C6—H6120.0C13—C14—H14119.9
C5—C6—H6120.0C15—C14—H14119.9
C6—C7—C8120.18 (14)C14—C15—C10120.59 (14)
C6—C7—H7119.9C14—C15—H15119.7
C8—C7—H7119.9C10—C15—H15119.7
C2—N1—C1—O1179.73 (12)C1—C8—C9—C31.05 (19)
C2—N1—C1—C80.11 (19)C5—C4—C9—C80.4 (2)
C1—N1—C2—C31.0 (2)C5—C4—C9—C3179.69 (13)
C1—N1—C2—C10177.01 (11)C2—C3—C9—C80.1 (2)
N1—C2—C3—C91.15 (19)C2—C3—C9—C4179.11 (13)
C10—C2—C3—C9176.74 (12)C3—C2—C10—C11139.32 (15)
C9—C4—C5—C60.2 (2)N1—C2—C10—C1138.62 (18)
C4—C5—C6—C70.3 (2)C3—C2—C10—C1539.97 (19)
C5—C6—C7—C80.6 (2)N1—C2—C10—C15142.09 (13)
C6—C7—C8—C90.4 (2)C15—C10—C11—C120.2 (2)
C6—C7—C8—C1179.14 (13)C2—C10—C11—C12179.14 (13)
O1—C1—C8—C70.8 (2)C10—C11—C12—C130.0 (2)
N1—C1—C8—C7179.33 (11)C11—C12—C13—C140.0 (2)
O1—C1—C8—C9178.69 (12)C12—C13—C14—C150.1 (2)
N1—C1—C8—C91.15 (18)C13—C14—C15—C100.2 (2)
C7—C8—C9—C40.2 (2)C11—C10—C15—C140.2 (2)
C1—C8—C9—C4179.67 (12)C2—C10—C15—C14179.07 (13)
C7—C8—C9—C3179.44 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.896 (16)1.945 (16)2.8373 (15)174.0 (15)
C11—H11···O1ii0.932.593.4449 (19)152
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H11NO
Mr221.25
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)3.8692 (5), 12.0171 (16), 12.3209 (16)
α, β, γ (°)106.652 (2), 94.137 (2), 90.579 (2)
V3)547.14 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.15 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.938, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5473, 2001, 1545
Rint0.016
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.06
No. of reflections2001
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008)', SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.896 (16)1.945 (16)2.8373 (15)174.0 (15)
C11—H11···O1ii0.93002.59003.4449 (19)152.00
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Prof T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, W., Kim, E., Park, I. Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. & Leed, E. (2002). Bioorg. Med. Chem. 10, 2953–2961.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMackay, S. P., Meth-Cohn, O. & Waich, R. D. (1997). In Advances in Heterocyclic Chemistry, edited by A. R. Katritzky. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds