supplementary materials


Acta Cryst. (2009). E65, o277    [ doi:10.1107/S1600536809000117 ]

N-(3-Bromo-1,4-dioxo-1,4-dihydro-2-naphthyl)-4-fluoro-N-(4-fluorobenzoyl)benzamide

E. S. Akinboye, R. J. Butcher, D. A. Wright, Y. Brandy and O. Bakare

Abstract top

In the title compound, C24H12BrF2NO4, synthesized from 2-amino-3-bromo-1,4-naphthoquinone and 4-fluorobenzoyl chloride, the two p-fluorophenyl rings are inclined at 73.9 (1) and 73.6 (1)° to the naphthoquinone ring system. The two imido carbonyl O atoms are anti to each other, while the fluorophenyl rings are located opposite each other, connected to the imide group in a funnel-like arrangement. This conformation allows the fluorine groups be oriented slightly away from each other. An examination of the packing shows a close intermolecular F...O contact of 2.982 (5) Å and a Br...O contact of 2.977 (4) Å. In addition, the molecules are linked by weak intermolecular C-H...O and C-H...F interactions.

Comment top

We have developed some imido-substituted 2-chloro-1,4-naphthoquinones with cytotoxic activities on some cancer cell lines (Bakare et al., 2003; Berhe et al., 2008); and have recently reported on the crystal structure of N-(3-bromo-1,4-dioxo- 1,4-dihydro-naphthalen-2-yl)-2-chloro-N-(2-chloro-benzoyl)-benzamide (Akinboye et al., 2009). In continuation of our work, the title compound C24H12BrF2NO4, (I), was synthesized as a potential anticancer agent.

The crystal structure shows that the two p-fluorophenyl rings are inclined at 73.9 (1) and 73.6 (1)° to the naphthoquinone ring. The two imido carbonyl oxygen atoms are anti-to each other, while fluorophenyl rings are placed facing each other and connected to the imide moiety in a funnel-like arrangement. This conformation allowed the fluorine groups in the para position of each fluorophenyl ring to be oriented slightly away from each other. An examination of the packing shows a close contact between F1A and O2 at (1/2 - x, 1/2 + y, 1/2 - z) (2.982 (5)Å) and between C2 and O1B at (1/2 - x, -1/2 + y, 1/2 - z) (2.977 (4)Å). In addition, the molecules are linked by weak intermolecular C—H···O and C—H···F interactions (Table 1).

Related literature top

For similar structures, see: Lien et al. (1997); Huang et al. (2005); Bakare et al. (2003); Akinboye et al. (2009); Win et al. (2005); Rubin-Preminger et al. (2004). For general background, see: Berhe et al. (2008).

Experimental top

To a solution 2-amino-3-bromo-1,4-naphthoquinone (300 mg, 1.19 mmol) in dry THF was added NaH (68.64 mg 2.86 mmol) and the mixture was stirred for 15 minutes. 4-Fluoro-benzoylchloride (0.35 ml, 2.86 mmol) was added thereafter and this mixture was stirred at room temperature for 16–24 hr under argon. The solvent was removed in vacuo and the solid residue was dissolved in dichloromethane (40 ml). The resultant solution was washed with water (3 x 15 ml), saturated NaCl solution (2 x 15 ml) and dried over anhydrous magnesium sulfate. The solvent was removed in vacuo and the residue recrystallized from ethyl acetate to obtain a yellow solid (391.0 g m). Further recrystallization was carried out in ethanol to furnish the title imide (340.2 mg, 57%).

Refinement top

The methyl H atoms were constrained to an ideal geometry with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level.
[Figure 2] Fig. 2. View of the packing viewed down the a axis. Dashed bonds show weak C—H···F interactions as well as the close Br···O intermolecular contact.
N-(3-Bromo-1,4-dioxo-1,4-dihydro-2-naphthyl)-4-fluoro-N- (4-fluorobenzoyl)benzamide top
Crystal data top
C24H12BrF2NO4F(000) = 992
Mr = 496.26Dx = 1.665 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 5844 reflections
a = 14.5931 (3) Åθ = 4.0–73.4°
b = 6.6471 (1) ŵ = 3.30 mm1
c = 20.6324 (4) ÅT = 200 K
β = 98.407 (2)°Prism, pale yellow
V = 1979.88 (6) Å30.53 × 0.48 × 0.32 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R
diffractometer
3802 independent reflections
Radiation source: fine-focus sealed tube3362 reflections with I > 2σ(I)
graphiteRint = 0.023
Detector resolution: 10.5081 pixels mm-1θmax = 73.6°, θmin = 4.0°
φ and ω scansh = 1718
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 85
Tmin = 0.230, Tmax = 0.348l = 2525
7835 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0639P)2 + 6.5199P]
where P = (Fo2 + 2Fc2)/3
3802 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 1.29 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C24H12BrF2NO4V = 1979.88 (6) Å3
Mr = 496.26Z = 4
Monoclinic, P21/nCu Kα radiation
a = 14.5931 (3) ŵ = 3.30 mm1
b = 6.6471 (1) ÅT = 200 K
c = 20.6324 (4) Å0.53 × 0.48 × 0.32 mm
β = 98.407 (2)°
Data collection top
Oxford Diffraction Gemini R
diffractometer
3802 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3362 reflections with I > 2σ(I)
Tmin = 0.230, Tmax = 0.348Rint = 0.023
7835 measured reflectionsθmax = 73.6°
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.158Δρmax = 1.29 e Å3
S = 1.14Δρmin = 0.51 e Å3
3802 reflectionsAbsolute structure: ?
289 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.22095 (3)0.70099 (8)0.19146 (2)0.0444 (2)
F1A0.2690 (2)0.9709 (5)0.41727 (16)0.0599 (8)
F1B0.1251 (3)0.7110 (6)0.52944 (16)0.0752 (11)
O10.1976 (2)0.7543 (6)0.04619 (17)0.0448 (8)
O20.1290 (2)0.8464 (5)0.12723 (16)0.0439 (8)
O1A0.0683 (2)0.4826 (5)0.21656 (17)0.0479 (8)
O1B0.0933 (2)1.0688 (5)0.24341 (15)0.0424 (7)
N0.0163 (2)0.7707 (6)0.22161 (18)0.0358 (8)
C10.1109 (3)0.7445 (7)0.1341 (2)0.0330 (9)
C20.1213 (3)0.7515 (6)0.0634 (2)0.0335 (9)
C30.0344 (3)0.7515 (6)0.0152 (2)0.0336 (9)
C40.0391 (3)0.7337 (7)0.0509 (2)0.0386 (10)
H4A0.09760.72180.06560.046*
C50.0414 (4)0.7333 (6)0.0961 (2)0.0404 (10)
H5A0.03800.72080.14150.048*
C60.1272 (3)0.7512 (7)0.0744 (2)0.0395 (10)
H6A0.18240.75030.10510.047*
C70.1317 (3)0.7702 (7)0.0086 (2)0.0375 (10)
H7A0.19030.78300.00590.045*
C80.0513 (3)0.7706 (6)0.0370 (2)0.0333 (9)
C90.0579 (3)0.7970 (6)0.1070 (2)0.0343 (9)
C100.0287 (3)0.7658 (6)0.1550 (2)0.0324 (9)
C1A0.0557 (3)0.6469 (7)0.2405 (2)0.0372 (10)
C2A0.1127 (3)0.7365 (7)0.2871 (2)0.0363 (9)
C3A0.1389 (3)0.9372 (7)0.2822 (2)0.0389 (10)
H3AA0.11941.01990.24930.047*
C4A0.1936 (3)1.0168 (8)0.3254 (2)0.0424 (10)
H4AA0.21311.15320.32220.051*
C5A0.2187 (3)0.8922 (9)0.3732 (2)0.0457 (11)
C6A0.1944 (4)0.6934 (8)0.3788 (3)0.0492 (12)
H6AA0.21350.61200.41220.059*
C7A0.1415 (3)0.6137 (8)0.3348 (2)0.0444 (11)
H7AA0.12480.47540.33710.053*
C1B0.0646 (3)0.9152 (7)0.2643 (2)0.0354 (9)
C2B0.0816 (3)0.8578 (8)0.3349 (2)0.0382 (10)
C3B0.0772 (3)1.0046 (8)0.3817 (2)0.0452 (11)
H3BA0.06411.13970.36850.054*
C4B0.0918 (4)0.9575 (10)0.4476 (3)0.0529 (13)
H4BA0.08801.05760.47990.063*
C5B0.1121 (4)0.7597 (10)0.4649 (3)0.0544 (14)
C6B0.1210 (3)0.6130 (9)0.4200 (3)0.0517 (13)
H6BA0.13770.47980.43370.062*
C7B0.1051 (3)0.6619 (8)0.3541 (2)0.0430 (11)
H7BA0.11030.56160.32200.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0270 (3)0.0572 (4)0.0469 (3)0.0056 (2)0.00134 (19)0.0002 (2)
F1A0.0519 (17)0.068 (2)0.0664 (19)0.0020 (15)0.0300 (15)0.0024 (16)
F1B0.084 (3)0.098 (3)0.0405 (17)0.006 (2)0.0033 (16)0.0140 (17)
O10.0291 (15)0.057 (2)0.0496 (19)0.0045 (14)0.0103 (13)0.0014 (16)
O20.0304 (15)0.058 (2)0.0429 (17)0.0055 (15)0.0043 (13)0.0034 (15)
O1A0.0466 (19)0.0395 (19)0.059 (2)0.0065 (15)0.0130 (16)0.0070 (16)
O1B0.0404 (17)0.0418 (18)0.0429 (17)0.0065 (14)0.0012 (13)0.0001 (14)
N0.0286 (17)0.042 (2)0.0366 (19)0.0023 (15)0.0036 (14)0.0002 (15)
C10.0211 (18)0.033 (2)0.043 (2)0.0010 (16)0.0030 (16)0.0005 (17)
C20.032 (2)0.025 (2)0.043 (2)0.0023 (16)0.0040 (17)0.0023 (17)
C30.033 (2)0.026 (2)0.041 (2)0.0018 (17)0.0048 (17)0.0015 (17)
C40.044 (3)0.029 (2)0.043 (2)0.0020 (19)0.0075 (19)0.0007 (18)
C50.056 (3)0.023 (2)0.041 (2)0.0026 (19)0.006 (2)0.0002 (17)
C60.045 (3)0.027 (2)0.043 (2)0.0013 (19)0.006 (2)0.0010 (18)
C70.031 (2)0.034 (2)0.046 (2)0.0018 (18)0.0000 (18)0.0016 (18)
C80.030 (2)0.027 (2)0.042 (2)0.0008 (16)0.0012 (17)0.0009 (17)
C90.027 (2)0.033 (2)0.042 (2)0.0026 (17)0.0021 (17)0.0000 (17)
C100.031 (2)0.026 (2)0.040 (2)0.0008 (16)0.0012 (17)0.0000 (16)
C1A0.030 (2)0.042 (3)0.039 (2)0.0005 (19)0.0017 (17)0.0016 (19)
C2A0.027 (2)0.042 (2)0.039 (2)0.0057 (18)0.0015 (17)0.0000 (18)
C3A0.030 (2)0.046 (3)0.040 (2)0.0022 (19)0.0029 (17)0.0060 (19)
C4A0.030 (2)0.046 (3)0.051 (3)0.0027 (19)0.0042 (19)0.003 (2)
C5A0.030 (2)0.062 (3)0.046 (3)0.003 (2)0.0092 (19)0.002 (2)
C6A0.045 (3)0.051 (3)0.055 (3)0.005 (2)0.015 (2)0.009 (2)
C7A0.039 (2)0.041 (3)0.054 (3)0.004 (2)0.009 (2)0.004 (2)
C1B0.0225 (18)0.042 (3)0.041 (2)0.0030 (17)0.0015 (16)0.0013 (19)
C2B0.0250 (19)0.049 (3)0.040 (2)0.0066 (19)0.0008 (16)0.000 (2)
C3B0.036 (2)0.050 (3)0.049 (3)0.004 (2)0.003 (2)0.002 (2)
C4B0.046 (3)0.069 (4)0.043 (3)0.008 (3)0.004 (2)0.007 (2)
C5B0.040 (3)0.083 (4)0.039 (3)0.012 (3)0.001 (2)0.010 (3)
C6B0.035 (2)0.062 (3)0.056 (3)0.002 (2)0.002 (2)0.011 (3)
C7B0.029 (2)0.051 (3)0.048 (3)0.003 (2)0.0004 (18)0.002 (2)
Geometric parameters (Å, °) top
Br—C11.873 (4)C9—C101.503 (6)
F1A—C5A1.353 (6)C1A—C2A1.486 (6)
F1B—C5B1.356 (6)C2A—C3A1.387 (7)
O1—C21.217 (5)C2A—C7A1.390 (7)
O2—C91.218 (5)C3A—C4A1.385 (7)
O1A—C1A1.201 (6)C3A—H3AA0.9500
O1B—C1B1.207 (6)C4A—C5A1.378 (7)
N—C101.412 (6)C4A—H4AA0.9500
N—C1B1.419 (6)C5A—C6A1.369 (8)
N—C1A1.433 (6)C6A—C7A1.381 (7)
C1—C101.340 (6)C6A—H6AA0.9500
C1—C21.489 (6)C7A—H7AA0.9500
C2—C31.493 (6)C1B—C2B1.492 (6)
C3—C41.382 (6)C2B—C3B1.381 (7)
C3—C81.395 (6)C2B—C7B1.390 (7)
C4—C51.388 (7)C3B—C4B1.380 (7)
C4—H4A0.9500C3B—H3BA0.9500
C5—C61.395 (7)C4B—C5B1.383 (9)
C5—H5A0.9500C4B—H4BA0.9500
C6—C71.374 (7)C5B—C6B1.365 (9)
C6—H6A0.9500C6B—C7B1.384 (7)
C7—C81.393 (6)C6B—H6BA0.9500
C7—H7A0.9500C7B—H7BA0.9500
C8—C91.473 (6)
C10—N—C1B119.8 (4)C7A—C2A—C1A118.6 (4)
C10—N—C1A117.0 (4)C4A—C3A—C2A119.9 (4)
C1B—N—C1A122.5 (4)C4A—C3A—H3AA120.0
C10—C1—C2122.5 (4)C2A—C3A—H3AA120.0
C10—C1—Br122.5 (3)C5A—C4A—C3A118.0 (5)
C2—C1—Br115.0 (3)C5A—C4A—H4AA121.0
O1—C2—C1121.0 (4)C3A—C4A—H4AA121.0
O1—C2—C3122.0 (4)F1A—C5A—C6A118.4 (5)
C1—C2—C3117.0 (4)F1A—C5A—C4A118.4 (5)
C4—C3—C8120.1 (4)C6A—C5A—C4A123.2 (5)
C4—C3—C2119.9 (4)C5A—C6A—C7A118.6 (5)
C8—C3—C2120.0 (4)C5A—C6A—H6AA120.7
C3—C4—C5120.3 (4)C7A—C6A—H6AA120.7
C3—C4—H4A119.8C6A—C7A—C2A119.7 (5)
C5—C4—H4A119.8C6A—C7A—H7AA120.1
C4—C5—C6119.7 (4)C2A—C7A—H7AA120.1
C4—C5—H5A120.2O1B—C1B—N121.2 (4)
C6—C5—H5A120.2O1B—C1B—C2B123.3 (4)
C7—C6—C5120.0 (4)N—C1B—C2B115.4 (4)
C7—C6—H6A120.0C3B—C2B—C7B119.9 (4)
C5—C6—H6A120.0C3B—C2B—C1B119.0 (4)
C6—C7—C8120.7 (4)C7B—C2B—C1B121.1 (4)
C6—C7—H7A119.7C4B—C3B—C2B120.8 (5)
C8—C7—H7A119.7C4B—C3B—H3BA119.6
C7—C8—C3119.3 (4)C2B—C3B—H3BA119.6
C7—C8—C9119.6 (4)C3B—C4B—C5B117.8 (5)
C3—C8—C9121.1 (4)C3B—C4B—H4BA121.1
O2—C9—C8123.4 (4)C5B—C4B—H4BA121.1
O2—C9—C10119.2 (4)F1B—C5B—C6B118.9 (6)
C8—C9—C10117.4 (4)F1B—C5B—C4B118.3 (5)
C1—C10—N124.3 (4)C6B—C5B—C4B122.8 (5)
C1—C10—C9120.6 (4)C5B—C6B—C7B118.7 (5)
N—C10—C9115.0 (4)C5B—C6B—H6BA120.6
O1A—C1A—N119.0 (4)C7B—C6B—H6BA120.6
O1A—C1A—C2A124.3 (4)C6B—C7B—C2B119.9 (5)
N—C1A—C2A116.6 (4)C6B—C7B—H7BA120.1
C3A—C2A—C7A120.6 (4)C2B—C7B—H7BA120.1
C3A—C2A—C1A120.8 (4)
C10—C1—C2—O1171.7 (4)C1B—N—C1A—O1A150.5 (4)
Br—C1—C2—O18.9 (6)C10—N—C1A—C2A138.8 (4)
C10—C1—C2—C39.3 (6)C1B—N—C1A—C2A31.9 (6)
Br—C1—C2—C3170.1 (3)O1A—C1A—C2A—C3A138.5 (5)
O1—C2—C3—C46.7 (7)N—C1A—C2A—C3A39.0 (6)
C1—C2—C3—C4172.3 (4)O1A—C1A—C2A—C7A39.8 (7)
O1—C2—C3—C8172.9 (4)N—C1A—C2A—C7A142.8 (4)
C1—C2—C3—C88.1 (6)C7A—C2A—C3A—C4A0.5 (7)
C8—C3—C4—C50.5 (6)C1A—C2A—C3A—C4A178.8 (4)
C2—C3—C4—C5179.9 (4)C2A—C3A—C4A—C5A1.2 (7)
C3—C4—C5—C60.1 (7)C3A—C4A—C5A—F1A177.4 (4)
C4—C5—C6—C70.3 (7)C3A—C4A—C5A—C6A1.8 (7)
C5—C6—C7—C80.3 (7)F1A—C5A—C6A—C7A178.6 (5)
C6—C7—C8—C30.1 (7)C4A—C5A—C6A—C7A0.5 (8)
C6—C7—C8—C9178.3 (4)C5A—C6A—C7A—C2A1.3 (8)
C4—C3—C8—C70.5 (6)C3A—C2A—C7A—C6A1.8 (7)
C2—C3—C8—C7179.9 (4)C1A—C2A—C7A—C6A179.9 (4)
C4—C3—C8—C9177.8 (4)C10—N—C1B—O1B22.6 (6)
C2—C3—C8—C91.8 (6)C1A—N—C1B—O1B147.9 (4)
C7—C8—C9—O210.5 (7)C10—N—C1B—C2B154.1 (4)
C3—C8—C9—O2167.7 (4)C1A—N—C1B—C2B35.4 (6)
C7—C8—C9—C10171.1 (4)O1B—C1B—C2B—C3B40.0 (6)
C3—C8—C9—C1010.6 (6)N—C1B—C2B—C3B143.5 (4)
C2—C1—C10—N176.5 (4)O1B—C1B—C2B—C7B137.4 (5)
Br—C1—C10—N4.1 (6)N—C1B—C2B—C7B39.1 (6)
C2—C1—C10—C90.4 (6)C7B—C2B—C3B—C4B3.1 (7)
Br—C1—C10—C9179.0 (3)C1B—C2B—C3B—C4B179.5 (4)
C1B—N—C10—C156.5 (6)C2B—C3B—C4B—C5B0.9 (7)
C1A—N—C10—C1132.5 (5)C3B—C4B—C5B—F1B179.0 (5)
C1B—N—C10—C9120.6 (4)C3B—C4B—C5B—C6B2.1 (8)
C1A—N—C10—C950.5 (5)F1B—C5B—C6B—C7B178.2 (5)
O2—C9—C10—C1168.8 (4)C4B—C5B—C6B—C7B2.9 (8)
C8—C9—C10—C19.6 (6)C5B—C6B—C7B—C2B0.7 (7)
O2—C9—C10—N8.3 (6)C3B—C2B—C7B—C6B2.2 (7)
C8—C9—C10—N173.2 (4)C1B—C2B—C7B—C6B179.6 (4)
C10—N—C1A—O1A38.7 (6)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1Bi0.952.563.297 (6)135
C4—H4A···F1Aii0.952.403.266 (6)151
Symmetry codes: (i) −x, −y+2, −z; (ii) x+1/2, −y+3/2, z−1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1Bi0.952.563.297 (6)135
C4—H4A···F1Aii0.952.403.266 (6)151
Symmetry codes: (i) −x, −y+2, −z; (ii) x+1/2, −y+3/2, z−1/2.
Acknowledgements top

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

references
References top

Akinboye, E. S., Butcher, R. J., Brandy, Y., Adesiyun, T. A. & Bakare, O. (2009). Acta Cryst. E65, o24.

Bakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. 11, 3165–3170.

Berhe, S., Kanaan, Y., Copeland, R. L., Wright, D. A., Zalkow, L. H. & Bakare, O. (2008). Lett. Drug Des. Disc. 5, 485–488.

Huang, L., Chang, F., Lee, K., Wang, J., Teng, C. & Kuo, S. (2005). Bioorg. Med. Chem. 6, 2261–2269.

Lien, J., Huang, L., Wang, J., Teng, C., Lee, K. & Kuo, S. (1997). Bioorg. Med. Chem. 5, 2111–2120.

Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

Rubin-Preminger, J. M., Win, T., Granot, Y. & Bittner, S. (2004). Z. Kristallogr. New Cryst. Struct. 219, o323.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Win, T., Yerushalmi, S. & Bittner, S. (2005). Synthesis, p. 1631.