organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-[(E)-3-Phenyl­allyl­­idene]indolin-2-one

aDepartment of Chemistry, Southern Methodist University, Dallas, TX 75275, USA
*Correspondence e-mail: hzhang@smu.edu

(Received 20 December 2008; accepted 15 January 2009; online 23 January 2009)

The title compound, C17H13NO, synthesized to be tested for neuroprotective activities, consists of an indoline and a phenyl­allyl­idene unit with a dihedral angle of 9.0 (1)° between the two ring systems. There are two independent mol­ecules in the asymmetric unit which are connected into a dimer by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the pharmacological properties of 3-substituted indoline-2-ones, see: Sun et al. (2003[Sun, L., Liang, C., Shirazian, S., Zhou, Y., Miller, T., Cui, J., Fukuda, J. Y., Chu, J. Y., Nematalla, A., Wang, X., Chen, H., Sistla, A., Luu, T. C., Tang, F., Wei, J. & Tang, C. (2003). J. Med. Chem. 46, 1116-1119.]); Andreani et al. (2006[Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L. & Kunkel, M. W. (2006). J. Med. Chem. 49, 6922-6924..]); Johnson et al. (2005[Johnson, K., Liu, L., Majdzadeh, N., Chavez, C., Chin, P. C., Morrison, B., Wang, L., Park, J., Chugh, P., Chen, H. & D'Mello, S. R. (2005). J. Neurochem. 93, 538-548.]). For the synthesis and neuroprotective activities of a series of 3-substituted indoline-2-one derivatives, see: Balderamos et al. (2008[Balderamos, M., Ankati, H., Akubathini, S. K., Patel, A. V., Kamila, S., Mukherjee, C., Wang, L., Biehl, E. & D'Mello, S. (2008). Exp. Biol. Med. 233, 1395-1402.]). For the original synthesis of the title compound, see: Elliott & Rivers (1964[Elliott, I. W. & Rivers, P. (1964). J. Org. Chem. 29, 2438-2440.]). For modified synthetic methods, see: Tacconi & Marinone (1968[Tacconi, M. & Marinone, F. (1968). Ricerca Sci. Univ. Pavia, 38, 1239-1244.]); Villemin & Martin (1998[Villemin, D. & Martin, B. (1998). Synth. Commun.. 28, 3201-3208.]). For the crystal structures of related compounds, see: Zhang et al. (2008[Zhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2008). Acta Cryst. E64, o2103.], 2009[Zhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2009). Acta Cryst. E65, o8.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13NO

  • Mr = 247.28

  • Monoclinic, P 21

  • a = 5.8373 (4) Å

  • b = 15.3294 (11) Å

  • c = 14.6516 (10) Å

  • β = 94.312 (1)°

  • V = 1307.35 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 (2) K

  • 0.38 × 0.21 × 0.08 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.994

  • 12503 measured reflections

  • 3282 independent reflections

  • 2386 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.132

  • S = 1.11

  • 3282 reflections

  • 343 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯O2i 0.86 2.03 2.852 (3) 159
N1—H1⋯O22ii 0.86 2.07 2.893 (3) 161
Symmetry codes: (i) x+1, y-1, z; (ii) x-1, y+1, z.

Data collection: SMART (Bruker 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

It is known that some 3-substituted indoline-2-ones compounds exhibit a variety of pharmacologically important properties such as protein kinase inhibitors (Sun et al., 2003), anti-tumor agents (Andreani et al., 2006) and neuroprotecting agents (Johnson et al., 2005). For studying the biological properties, a series of 3-substituted indoline-2-one derivatives have been synthesized in our lab and their neuroprotective activities have been tested (Balderamos et al., 2008). The results are very promising. To expand our research, a few known compounds were made for test purpose. The title compound was first made by Elliott & Rivers (1964), and modified synthetic methods were reported later (Tacconi & Marinone, 1968; Villemin & Martin, 1998). As a part of our studies on the relationship between the biological activities and solid structures a couple of crystal structures of the derivatives have been carried out (Zhang, et al., 2008, 2009). The title compound consists an indoline and a phenylallylidene unit. The two aromatic rings are slightly twisted with a dihedral angle of 9.0 (1)° (Fig 1). In the crystal the molecules are connected by intermolecular H-bonds between the two independent molecules to form a dimer (Table 1, Fig. 2).

Related literature top

For the pharmacological properties of 3-substituted indoline-2-ones, see: Sun et al. (2003); Andreani et al. (2006); Johnson et al. (2005). For the synthesis and neuroprotective activities of a series of 3-substituted indoline-2-one derivatives, see: Balderamos et al. (2008). For the original synthesis of the title compound, see: Elliott & Rivers (1964). For modified synthetic methods, see: Tacconi & Marinone (1968); Villemin & Martin (1998). For the crystal structures of related compounds, see: Zhang et al. (2008, 2009).

Experimental top

The title compound was synthesized by the condensation of trans- cinnamaldehyde (1 mmol) with 2-oxindole (1 mmol) in ethanol (10 ml) in the presence of catalytic amount of piperidine (0.1 mmol). After refluxing for 3 h, the reaction mixture was left to stand for overnight. The resulting crude solid was filtered, washed with cold ethanol (10 ml) and dried. Orange colored single crystals of the compound suitable for x-ray structure determination were recrystallized from ethanol.

Refinement top

All H atoms were placed in calculated positions and included in the final cycles of refinement using a riding model, with distances N–H = 0.86 Å and C–H = 0.93 Å, and displacement parameters Uiso(H) = 1.2Ueq(N,C). Friedel pairs have been merged prior to refinement.

Computing details top

Data collection: SMART (Bruker 1997); cell refinement: SAINT (Bruker 1997); data reduction: SAINT (Bruker 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. : A view of one of the independent molecules with displacement ellipsoids drawn at the 40% probability level. H atoms are presented as open circles with arbitrary radii. Atoms of another independent molecule were labeled as N21 H21 C22 O22 through C38 H38.
[Figure 2] Fig. 2. : A unit cell packing view of the title compound. Dash lines indicate hydrogen bonds.
(Z)-3-[(E)-3-Phenylallylidene]indolin-2-one top
Crystal data top
C17H13NOF(000) = 520
Mr = 247.28Dx = 1.256 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.8373 (4) ÅCell parameters from 3505 reflections
b = 15.3294 (11) Åθ = 2.7–28.1°
c = 14.6516 (10) ŵ = 0.08 mm1
β = 94.312 (1)°T = 296 K
V = 1307.35 (16) Å3Plates, orange
Z = 40.38 × 0.21 × 0.08 mm
Data collection top
Bruker SMART APEX
diffractometer
3282 independent reflections
Radiation source: fine-focus sealed tube2386 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 83.33 pixels mm-1θmax = 28.3°, θmin = 1.4°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1920
Tmin = 0.971, Tmax = 0.994l = 1919
12503 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.0136P]
where P = (Fo2 + 2Fc2)/3
3282 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C17H13NOV = 1307.35 (16) Å3
Mr = 247.28Z = 4
Monoclinic, P21Mo Kα radiation
a = 5.8373 (4) ŵ = 0.08 mm1
b = 15.3294 (11) ÅT = 296 K
c = 14.6516 (10) Å0.38 × 0.21 × 0.08 mm
β = 94.312 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3282 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2386 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.994Rint = 0.032
12503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.132H-atom parameters constrained
S = 1.11Δρmax = 0.17 e Å3
3282 reflectionsΔρmin = 0.15 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4059 (5)0.95163 (18)0.38623 (17)0.0543 (7)
H10.27550.97730.37610.065*
C20.5085 (5)0.9366 (2)0.4708 (2)0.0489 (8)
O20.4320 (4)0.95989 (17)0.54301 (15)0.0629 (7)
C30.7271 (5)0.8900 (2)0.4579 (2)0.0472 (8)
C40.8935 (6)0.8445 (2)0.3042 (2)0.0570 (9)
H41.02530.81750.33030.068*
C50.8528 (7)0.8490 (3)0.2103 (3)0.0688 (10)
H50.95860.82540.17290.083*
C60.6563 (7)0.8883 (3)0.1715 (2)0.0710 (11)
H60.63190.89030.10810.085*
C70.4945 (6)0.9250 (2)0.2242 (2)0.0616 (9)
H70.36280.95160.19760.074*
C80.5369 (6)0.9204 (2)0.3177 (2)0.0502 (8)
C90.7351 (5)0.8807 (2)0.3587 (2)0.0462 (8)
C100.8870 (6)0.8656 (2)0.5242 (2)0.0516 (8)
H101.01450.83600.50570.062*
C110.8796 (6)0.8809 (2)0.6199 (2)0.0533 (9)
H110.74720.90450.64140.064*
C121.0558 (6)0.8623 (2)0.6795 (2)0.0561 (9)
H121.18140.83560.65570.067*
C131.0757 (6)0.8790 (2)0.7785 (2)0.0537 (8)
C140.9034 (7)0.9174 (2)0.8247 (2)0.0654 (10)
H140.76710.93440.79270.078*
C150.9330 (8)0.9305 (3)0.9174 (3)0.0809 (12)
H150.81590.95630.94760.097*
C161.1324 (10)0.9062 (3)0.9662 (3)0.0879 (14)
H161.15170.91641.02890.105*
C171.3015 (9)0.8671 (4)0.9220 (3)0.0892 (14)
H171.43500.84850.95490.107*
C181.2756 (7)0.8550 (3)0.8289 (3)0.0686 (10)
H181.39490.83020.79920.082*
N211.0612 (5)0.08155 (18)0.53233 (18)0.0536 (7)
H211.19270.05650.54160.064*
C220.9524 (5)0.0958 (2)0.4481 (2)0.0492 (8)
O221.0232 (4)0.07199 (16)0.37516 (15)0.0594 (6)
C230.7335 (5)0.1433 (2)0.4633 (2)0.0456 (8)
C240.5755 (6)0.1884 (2)0.6182 (2)0.0556 (9)
H240.44230.21500.59300.067*
C250.6208 (7)0.1840 (2)0.7120 (2)0.0613 (9)
H250.51800.20840.75020.074*
C260.8194 (7)0.1435 (3)0.7497 (2)0.0622 (10)
H260.84600.14030.81300.075*
C270.9781 (6)0.1077 (2)0.6946 (2)0.0567 (8)
H271.11150.08100.71970.068*
C280.9305 (6)0.1132 (2)0.6021 (2)0.0482 (8)
C290.7319 (5)0.1524 (2)0.5624 (2)0.0456 (8)
C300.5699 (6)0.1654 (2)0.3983 (2)0.0530 (8)
H300.44110.19310.41830.064*
C310.5698 (6)0.1515 (2)0.3022 (2)0.0528 (8)
H310.70010.12790.27900.063*
C320.3890 (6)0.1712 (2)0.2440 (2)0.0559 (9)
H320.26140.19400.26990.067*
C330.3687 (6)0.1611 (2)0.1446 (2)0.0522 (8)
C340.5387 (7)0.1255 (3)0.0959 (3)0.0687 (10)
H340.67310.10500.12680.082*
C350.5111 (8)0.1201 (3)0.0017 (3)0.0817 (12)
H350.62660.09570.03050.098*
C360.3149 (9)0.1503 (3)0.0446 (3)0.0852 (13)
H360.29740.14680.10810.102*
C370.1474 (8)0.1852 (3)0.0019 (3)0.0829 (13)
H370.01400.20580.02970.099*
C380.1718 (6)0.1907 (3)0.0951 (2)0.0672 (10)
H380.05380.21480.12620.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0485 (14)0.0618 (19)0.0516 (16)0.0099 (13)0.0044 (12)0.0011 (13)
C20.0476 (17)0.0503 (19)0.0489 (19)0.0030 (15)0.0037 (15)0.0000 (15)
O20.0579 (14)0.0837 (19)0.0471 (14)0.0140 (13)0.0039 (11)0.0010 (13)
C30.0504 (18)0.0450 (19)0.0457 (19)0.0058 (14)0.0016 (15)0.0018 (14)
C40.0536 (18)0.062 (2)0.055 (2)0.0036 (17)0.0005 (16)0.0079 (17)
C50.074 (2)0.078 (3)0.056 (2)0.000 (2)0.0158 (19)0.0088 (19)
C60.087 (3)0.084 (3)0.042 (2)0.002 (2)0.0042 (19)0.0036 (19)
C70.072 (2)0.062 (2)0.049 (2)0.0020 (18)0.0097 (17)0.0047 (17)
C80.0557 (18)0.0449 (18)0.049 (2)0.0053 (15)0.0015 (15)0.0026 (15)
C90.0484 (17)0.0418 (17)0.0475 (19)0.0043 (15)0.0019 (14)0.0002 (15)
C100.0512 (18)0.052 (2)0.051 (2)0.0020 (16)0.0014 (15)0.0002 (16)
C110.0520 (18)0.055 (2)0.052 (2)0.0042 (16)0.0013 (16)0.0052 (17)
C120.058 (2)0.061 (2)0.050 (2)0.0075 (17)0.0041 (16)0.0026 (17)
C130.0572 (19)0.057 (2)0.0453 (19)0.0013 (17)0.0037 (15)0.0055 (16)
C140.070 (2)0.070 (2)0.056 (2)0.0124 (19)0.0078 (18)0.0073 (19)
C150.097 (3)0.083 (3)0.066 (3)0.005 (2)0.024 (2)0.000 (2)
C160.113 (4)0.096 (3)0.053 (2)0.009 (3)0.002 (3)0.011 (2)
C170.089 (3)0.113 (4)0.062 (3)0.005 (3)0.017 (2)0.002 (3)
C180.062 (2)0.087 (3)0.055 (2)0.002 (2)0.0039 (17)0.006 (2)
N210.0479 (15)0.0640 (19)0.0480 (16)0.0086 (13)0.0024 (12)0.0002 (14)
C220.0486 (17)0.0484 (19)0.0497 (19)0.0011 (14)0.0016 (14)0.0023 (14)
O220.0573 (13)0.0792 (17)0.0421 (13)0.0106 (12)0.0067 (10)0.0029 (11)
C230.0466 (17)0.0457 (18)0.0442 (18)0.0005 (14)0.0008 (14)0.0038 (14)
C240.055 (2)0.059 (2)0.054 (2)0.0009 (16)0.0071 (16)0.0014 (16)
C250.065 (2)0.068 (2)0.052 (2)0.0025 (18)0.0134 (17)0.0099 (18)
C260.083 (2)0.063 (2)0.0400 (19)0.003 (2)0.0013 (17)0.0005 (17)
C270.062 (2)0.060 (2)0.0467 (19)0.0022 (17)0.0053 (15)0.0006 (17)
C280.0514 (18)0.0470 (18)0.0459 (18)0.0026 (16)0.0016 (15)0.0043 (15)
C290.0500 (17)0.0451 (18)0.0416 (18)0.0027 (15)0.0026 (14)0.0012 (15)
C300.0478 (17)0.059 (2)0.053 (2)0.0019 (16)0.0040 (15)0.0051 (17)
C310.0538 (18)0.058 (2)0.0463 (19)0.0003 (17)0.0006 (15)0.0047 (16)
C320.0533 (19)0.063 (2)0.052 (2)0.0010 (17)0.0059 (16)0.0080 (17)
C330.0563 (19)0.053 (2)0.0476 (19)0.0018 (17)0.0057 (15)0.0025 (15)
C340.070 (2)0.076 (3)0.060 (2)0.008 (2)0.0065 (19)0.008 (2)
C350.090 (3)0.092 (3)0.066 (2)0.010 (3)0.020 (2)0.008 (2)
C360.105 (3)0.104 (3)0.045 (2)0.005 (3)0.001 (2)0.002 (2)
C370.085 (3)0.105 (3)0.056 (2)0.010 (3)0.013 (2)0.001 (2)
C380.063 (2)0.080 (3)0.057 (2)0.0100 (19)0.0065 (18)0.000 (2)
Geometric parameters (Å, º) top
N1—C21.355 (4)N21—C221.362 (4)
N1—C81.392 (4)N21—C281.407 (4)
N1—H10.8600N21—H210.8600
C2—O21.232 (3)C22—O221.230 (4)
C2—C31.487 (4)C22—C231.501 (4)
C3—C101.348 (4)C23—C301.341 (4)
C3—C91.464 (4)C23—C291.460 (4)
C4—C51.380 (5)C24—C251.380 (5)
C4—C91.383 (5)C24—C291.386 (4)
C4—H40.9300C24—H240.9300
C5—C61.380 (6)C25—C261.392 (5)
C5—H50.9300C25—H250.9300
C6—C71.383 (5)C26—C271.386 (5)
C6—H60.9300C26—H260.9300
C7—C81.374 (4)C27—C281.366 (4)
C7—H70.9300C27—H270.9300
C8—C91.402 (4)C28—C291.394 (4)
C10—C111.426 (5)C30—C311.423 (4)
C10—H100.9300C30—H300.9300
C11—C121.328 (4)C31—C321.341 (4)
C11—H110.9300C31—H310.9300
C12—C131.469 (4)C32—C331.460 (4)
C12—H120.9300C32—H320.9300
C13—C181.384 (5)C33—C341.377 (5)
C13—C141.386 (5)C33—C381.388 (5)
C14—C151.370 (5)C34—C351.380 (5)
C14—H140.9300C34—H340.9300
C15—C161.371 (6)C35—C361.368 (6)
C15—H150.9300C35—H350.9300
C16—C171.360 (7)C36—C371.344 (6)
C16—H160.9300C36—H360.9300
C17—C181.374 (5)C37—C381.365 (5)
C17—H170.9300C37—H370.9300
C18—H180.9300C38—H380.9300
C2—N1—C8111.8 (3)C22—N21—C28111.2 (3)
C2—N1—H1124.1C22—N21—H21124.4
C8—N1—H1124.1C28—N21—H21124.4
O2—C2—N1124.9 (3)O22—C22—N21125.1 (3)
O2—C2—C3128.2 (3)O22—C22—C23128.1 (3)
N1—C2—C3106.8 (3)N21—C22—C23106.7 (3)
C10—C3—C9128.0 (3)C30—C23—C29128.7 (3)
C10—C3—C2126.5 (3)C30—C23—C22125.9 (3)
C9—C3—C2105.4 (3)C29—C23—C22105.2 (3)
C5—C4—C9118.9 (3)C25—C24—C29118.8 (3)
C5—C4—H4120.6C25—C24—H24120.6
C9—C4—H4120.6C29—C24—H24120.6
C4—C5—C6120.5 (4)C24—C25—C26120.5 (3)
C4—C5—H5119.7C24—C25—H25119.7
C6—C5—H5119.7C26—C25—H25119.7
C5—C6—C7121.9 (3)C27—C26—C25121.2 (3)
C5—C6—H6119.0C27—C26—H26119.4
C7—C6—H6119.0C25—C26—H26119.4
C8—C7—C6117.1 (3)C28—C27—C26117.3 (3)
C8—C7—H7121.4C28—C27—H27121.4
C6—C7—H7121.4C26—C27—H27121.4
C7—C8—N1129.3 (3)C27—C28—C29122.8 (3)
C7—C8—C9122.0 (3)C27—C28—N21128.3 (3)
N1—C8—C9108.7 (3)C29—C28—N21108.9 (3)
C4—C9—C8119.5 (3)C24—C29—C28119.3 (3)
C4—C9—C3133.2 (3)C24—C29—C23132.8 (3)
C8—C9—C3107.2 (3)C28—C29—C23107.9 (3)
C3—C10—C11126.4 (3)C23—C30—C31127.7 (3)
C3—C10—H10116.8C23—C30—H30116.1
C11—C10—H10116.8C31—C30—H30116.1
C12—C11—C10122.2 (3)C32—C31—C30122.5 (3)
C12—C11—H11118.9C32—C31—H31118.7
C10—C11—H11118.9C30—C31—H31118.7
C11—C12—C13127.7 (3)C31—C32—C33127.7 (3)
C11—C12—H12116.2C31—C32—H32116.1
C13—C12—H12116.2C33—C32—H32116.1
C18—C13—C14117.8 (3)C34—C33—C38117.4 (3)
C18—C13—C12118.8 (3)C34—C33—C32123.4 (3)
C14—C13—C12123.4 (3)C38—C33—C32119.2 (3)
C15—C14—C13120.3 (4)C33—C34—C35120.5 (4)
C15—C14—H14119.8C33—C34—H34119.8
C13—C14—H14119.8C35—C34—H34119.8
C14—C15—C16121.1 (4)C36—C35—C34120.4 (4)
C14—C15—H15119.5C36—C35—H35119.8
C16—C15—H15119.5C34—C35—H35119.8
C17—C16—C15119.3 (4)C37—C36—C35119.8 (4)
C17—C16—H16120.4C37—C36—H36120.1
C15—C16—H16120.4C35—C36—H36120.1
C16—C17—C18120.2 (4)C36—C37—C38120.4 (4)
C16—C17—H17119.9C36—C37—H37119.8
C18—C17—H17119.9C38—C37—H37119.8
C17—C18—C13121.3 (4)C37—C38—C33121.5 (4)
C17—C18—H18119.3C37—C38—H38119.3
C13—C18—H18119.3C33—C38—H38119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O2i0.862.032.852 (3)159
N1—H1···O22ii0.862.072.893 (3)161
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H13NO
Mr247.28
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)5.8373 (4), 15.3294 (11), 14.6516 (10)
β (°) 94.312 (1)
V3)1307.35 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.38 × 0.21 × 0.08
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
12503, 3282, 2386
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.132, 1.11
No. of reflections3282
No. of parameters343
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: SMART (Bruker 1997), SAINT (Bruker 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O2i0.862.032.852 (3)158.6
N1—H1···O22ii0.862.072.893 (3)160.7
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z.
 

Acknowledgements

The authors are grateful for the grants from the Welch Foundation (N-118) and the DARPA (HR0011–06–1–0032).

References

First citationAndreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L. & Kunkel, M. W. (2006). J. Med. Chem. 49, 6922-6924.Web of Science CrossRef PubMed CAS Google Scholar
First citationBalderamos, M., Ankati, H., Akubathini, S. K., Patel, A. V., Kamila, S., Mukherjee, C., Wang, L., Biehl, E. & D'Mello, S. (2008). Exp. Biol. Med. 233, 1395-1402.  CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElliott, I. W. & Rivers, P. (1964). J. Org. Chem. 29, 2438-2440.  CrossRef CAS Web of Science Google Scholar
First citationJohnson, K., Liu, L., Majdzadeh, N., Chavez, C., Chin, P. C., Morrison, B., Wang, L., Park, J., Chugh, P., Chen, H. & D'Mello, S. R. (2005). J. Neurochem. 93, 538-548.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, L., Liang, C., Shirazian, S., Zhou, Y., Miller, T., Cui, J., Fukuda, J. Y., Chu, J. Y., Nematalla, A., Wang, X., Chen, H., Sistla, A., Luu, T. C., Tang, F., Wei, J. & Tang, C. (2003). J. Med. Chem. 46, 1116-1119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTacconi, M. & Marinone, F. (1968). Ricerca Sci. Univ. Pavia, 38, 1239-1244.  CAS Google Scholar
First citationVillemin, D. & Martin, B. (1998). Synth. Commun.. 28, 3201-3208.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2008). Acta Cryst. E64, o2103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2009). Acta Cryst. E65, o8.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds