organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl imidazole-1-carboxyl­ate

aLudwig-Maximilians Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 19 January 2009; accepted 26 January 2009; online 28 January 2009)

In the title compound, C8H12N2O2, mol­ecules are inter­connected by weak C—H⋯O contacts with H⋯O distances of 2.30 Å, resulting in the formation of chains along [100]. According to graph-set analysis, the unitary descriptor of these chains is C(5). In addition, there are ππ stacking inter­actions between pyrazole rings (centroid distance = 3.878 Å and ring plane distance = 3.26 Å).

Related literature

The title compound is a well known organic compound and was prepared according to a recently published procedure (Jia et al., 2007[Jia, X., Huang, Q., Li, J. & Yang, Q. (2007). Synlett, pp. 806-808.]). For details of graph-set analysis see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N2O2

  • Mr = 168.19

  • Monoclinic, P 21 /c

  • a = 5.9952 (2) Å

  • b = 13.2507 (4) Å

  • c = 11.5564 (4) Å

  • β = 94.201 (2)°

  • V = 915.58 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 (2) K

  • 0.50 × 0.38 × 0.38 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 6875 measured reflections

  • 2097 independent reflections

  • 1650 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.07

  • 2097 reflections

  • 113 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.95 2.30 3.1949 (16) 156
Symmetry code: (i) x-1, y, z.

Data collection: COLLECT (Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was synthesized in a multistep sythesis in an attempt to create new complexing ligands.

The molecule is an imidazole protected by the tert-butyloxycarbonyle (Boc) group in the 1 position (see Fig. 1).

The crystal packing is shown in Fig. 2. In the crystal, weak C—H···O contacts along [100] which can be described according to graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) with a unitary C(5) descriptor (see Fig. 3), lead to chain like structures of dimeric units which are formed by π-type interaction of two imidazole rings (see Fig. 4). The two imidazole rings are separated by about 3.26 Å and shifted, which results in only about half of one ring overlapping with the other ring (see Fig. 5).

Interestingly the imidazoles do not form longer strands of π-type interacting aromatic systems but only dimeric units which might be due to the large space occupied by the Boc protecting group which leads to separate strands of C—H···O bridged dimeric units (see Fig. 2).

Related literature top

The title compound is a well known organic compound and was prepared according to a recently published procedure (Jia et al., 2007). For details of graph-set analysis see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

Boc2O was reacted solvent free with one equivalent of imidazole. After the CO2 gas evolution had finished, the byproduct, t-butanole, was removed by fine vacuum and big colorless crystals of the title compound were obtained.

Refinement top

H atoms were placed in calculated positions (C—H 0.95 Å for aromatic C atoms and C—H 0.98 Å for methyl C atoms) and were included in the refinement in the riding model approximation with U(H) set to 1.2Ueq(C) for aromatic C atoms and 1.5Ueq(C) for methyl C atoms.

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound, viewed along [100].
[Figure 3] Fig. 3. Weak C—H···O interactions lead to chain-like structures in the crystal structure along [100] shown here normal to [001]. Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.
[Figure 4] Fig. 4. π interaction leads to dimeric units shown here normal to [100]. Symmetry code: (i) -x, -y, -z.
[Figure 5] Fig. 5. The dimeric units formed by π interaction are shifted, so that only half of the imidazole rings overlap. Two of the imidazole rings are shown here, normal to [001]. Symmetry code: (i) -x, -y, -z.
tert-Butyl imidazole-1-carboxylate top
Crystal data top
C8H12N2O2F(000) = 360
Mr = 168.19Dx = 1.220 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3660 reflections
a = 5.9952 (2) Åθ = 3.1–27.5°
b = 13.2507 (4) ŵ = 0.09 mm1
c = 11.5564 (4) ÅT = 200 K
β = 94.201 (2)°Block, colourless
V = 915.58 (5) Å30.50 × 0.38 × 0.38 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1650 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.026
MONTEL, graded multilayered X-ray optics monochromatorθmax = 27.5°, θmin = 3.4°
CCD; rotation images; thick slices scansh = 77
6875 measured reflectionsk = 1717
2097 independent reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.2307P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2097 reflectionsΔρmax = 0.17 e Å3
113 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.063 (6)
Crystal data top
C8H12N2O2V = 915.58 (5) Å3
Mr = 168.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9952 (2) ŵ = 0.09 mm1
b = 13.2507 (4) ÅT = 200 K
c = 11.5564 (4) Å0.50 × 0.38 × 0.38 mm
β = 94.201 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1650 reflections with I > 2σ(I)
6875 measured reflectionsRint = 0.026
2097 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.07Δρmax = 0.17 e Å3
2097 reflectionsΔρmin = 0.16 e Å3
113 parameters
Special details top

Refinement. Hydrogen atoms were placed in calculated positions (C–H 0.95 Å for aromatic C atoms and C–H 0.98 Å for methyl C atoms) and were included in the refinement in the riding model approximation with U(H) set to 1.2 Ueq(C) for aromatic C atoms and 1.5 Ueq(C) for methyl C atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15042 (14)0.21450 (6)0.03780 (8)0.0356 (3)
O20.50241 (15)0.15584 (8)0.07833 (10)0.0527 (3)
N10.19880 (17)0.06402 (8)0.12264 (9)0.0329 (3)
N20.0623 (2)0.03954 (9)0.17875 (11)0.0442 (3)
C10.0253 (2)0.04699 (10)0.13009 (11)0.0359 (3)
H10.13970.09270.10310.043*
C20.1485 (2)0.08085 (11)0.20408 (13)0.0450 (4)
H20.17500.14450.24040.054*
C30.3103 (2)0.01943 (10)0.17071 (12)0.0410 (3)
H30.46710.03070.17840.049*
C40.3034 (2)0.14897 (10)0.07701 (11)0.0350 (3)
C50.2187 (2)0.30947 (10)0.01876 (12)0.0373 (3)
C60.0052 (3)0.35703 (12)0.05516 (15)0.0526 (4)
H6A0.08610.37080.01380.079*
H6B0.09290.31070.10650.079*
H6C0.01870.42040.09630.079*
C70.3515 (3)0.37416 (11)0.06973 (13)0.0485 (4)
H7A0.49410.34100.09260.073*
H7B0.26610.38300.13820.073*
H7C0.38010.44020.03570.073*
C80.3472 (3)0.28433 (12)0.12317 (13)0.0501 (4)
H8A0.25660.24000.17560.075*
H8B0.48710.25010.09740.075*
H8C0.38120.34670.16400.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0293 (5)0.0336 (5)0.0438 (5)0.0001 (3)0.0018 (4)0.0068 (4)
O20.0279 (5)0.0595 (7)0.0709 (7)0.0038 (4)0.0052 (5)0.0188 (6)
N10.0322 (6)0.0335 (6)0.0329 (5)0.0020 (4)0.0007 (4)0.0020 (4)
N20.0469 (7)0.0399 (6)0.0458 (7)0.0045 (5)0.0035 (5)0.0022 (5)
C10.0334 (7)0.0376 (7)0.0366 (7)0.0013 (5)0.0017 (5)0.0004 (5)
C20.0549 (9)0.0359 (7)0.0436 (8)0.0016 (6)0.0004 (6)0.0049 (6)
C30.0424 (8)0.0385 (7)0.0413 (7)0.0078 (6)0.0022 (6)0.0036 (6)
C40.0312 (7)0.0384 (7)0.0353 (6)0.0023 (5)0.0016 (5)0.0028 (5)
C50.0389 (7)0.0338 (7)0.0392 (7)0.0034 (5)0.0036 (5)0.0049 (5)
C60.0507 (9)0.0407 (8)0.0654 (10)0.0045 (7)0.0025 (7)0.0133 (7)
C70.0532 (9)0.0456 (8)0.0470 (8)0.0127 (7)0.0054 (7)0.0033 (7)
C80.0600 (10)0.0514 (9)0.0397 (8)0.0053 (7)0.0093 (7)0.0038 (7)
Geometric parameters (Å, º) top
O1—C41.3187 (15)C5—C61.5144 (19)
O1—C51.4892 (15)C5—C71.5147 (19)
O2—C41.1958 (15)C5—C81.515 (2)
N1—C11.3714 (16)C6—H6A0.9800
N1—C31.3870 (16)C6—H6B0.9800
N1—C41.4094 (17)C6—H6C0.9800
N2—C11.3032 (17)C7—H7A0.9800
N2—C21.3886 (19)C7—H7B0.9800
C1—H10.9500C7—H7C0.9800
C2—C31.344 (2)C8—H8A0.9800
C2—H20.9500C8—H8B0.9800
C3—H30.9500C8—H8C0.9800
C4—O1—C5120.04 (10)C6—C5—C8111.24 (12)
C1—N1—C3106.82 (11)C7—C5—C8112.92 (12)
C1—N1—C4128.28 (10)C5—C6—H6A109.5
C3—N1—C4124.90 (11)C5—C6—H6B109.5
C1—N2—C2104.88 (11)H6A—C6—H6B109.5
N2—C1—N1111.73 (11)C5—C6—H6C109.5
N2—C1—H1124.1H6A—C6—H6C109.5
N1—C1—H1124.1H6B—C6—H6C109.5
C3—C2—N2111.44 (12)C5—C7—H7A109.5
C3—C2—H2124.3C5—C7—H7B109.5
N2—C2—H2124.3H7A—C7—H7B109.5
C2—C3—N1105.13 (12)C5—C7—H7C109.5
C2—C3—H3127.4H7A—C7—H7C109.5
N1—C3—H3127.4H7B—C7—H7C109.5
O2—C4—O1128.48 (12)C5—C8—H8A109.5
O2—C4—N1121.79 (11)C5—C8—H8B109.5
O1—C4—N1109.72 (10)H8A—C8—H8B109.5
O1—C5—C6101.94 (10)C5—C8—H8C109.5
O1—C5—C7109.24 (11)H8A—C8—H8C109.5
C6—C5—C7111.30 (12)H8B—C8—H8C109.5
O1—C5—C8109.63 (11)
C2—N2—C1—N10.07 (15)C5—O1—C4—N1177.82 (10)
C3—N1—C1—N20.14 (15)C1—N1—C4—O2178.00 (13)
C4—N1—C1—N2179.21 (12)C3—N1—C4—O21.2 (2)
C1—N2—C2—C30.04 (16)C1—N1—C4—O10.98 (18)
N2—C2—C3—N10.12 (16)C3—N1—C4—O1179.77 (11)
C1—N1—C3—C20.15 (14)C4—O1—C5—C6176.89 (11)
C4—N1—C3—C2179.23 (12)C4—O1—C5—C765.27 (15)
C5—O1—C4—O23.3 (2)C4—O1—C5—C858.95 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.303.1949 (16)156
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC8H12N2O2
Mr168.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)5.9952 (2), 13.2507 (4), 11.5564 (4)
β (°) 94.201 (2)
V3)915.58 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.38 × 0.38
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6875, 2097, 1650
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.07
No. of reflections2097
No. of parameters113
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: COLLECT (Nonius, 2004), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.303.1949 (16)156
Symmetry code: (i) x1, y, z.
 

Acknowledgements

TK thanks the Hanns Seidel Stiftung for a personal grant funded by the German Bundesministerium für Bildung und Forschung.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJia, X., Huang, Q., Li, J. & Yang, Q. (2007). Synlett, pp. 806–808.  Web of Science CrossRef Google Scholar
First citationNonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds