organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Hexa­methyl­enedi-1,3-benzo­thia­zole

aDepartment of Light Chemical Engineering, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kingwell2004@sina.com.cn

(Received 22 December 2008; accepted 7 January 2009; online 14 January 2009)

The title compound, C20H20N2S2, was prepared by the reaction of suberic acid and 2-amino­thio­phenol under microwave irradiation. The mol­ecule lies on an inversion center.

Related literature

For details of the synthesis and the application of benzothia­zoles, see: Chakraborti et al. (2004[Chakraborti, A. K., Selvam, C., Kaur, G. & Bhagat, S. (2004). Synlett, pp. 851-855.]); Seijas et al. (2007[Seijas, J. A., Vazquez, T. M. P., Carballido, R. M. R., Crecente, C. J. & Romar, L. L. (2007). Synlett, pp. 313-317.]); Wang et al. (2009[Wang, G., Wu, L., Zhuang, L. & Wang, J. (2009). Acta Cryst. E65, o158.]). For the use of microwave-assisted organic synthesis, see: Kappe & Stadler (2005[Kappe, C. O. & Stadler, A. (2005). Microwaves in Organic and Medicinal Chemistry. Weinheim: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N2S2

  • Mr = 342.50

  • Monoclinic, P 21 /n

  • a = 5.7590 (12) Å

  • b = 8.3030 (17) Å

  • c = 18.974 (4) Å

  • β = 96.03 (3)°

  • V = 902.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.916, Tmax = 0.971

  • 1626 measured reflections

  • 1626 independent reflections

  • 1102 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 9%

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.182

  • S = 1.01

  • 1626 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzothiazole are remarkable heterocyclic ring systems. They have been found to exhibit a wide spectrum of biological activities. Many kinds of 2-substituted benzothiazoles are utilized as vulcanization accelators in the manufacture of rubber,as fluorescent brightening agents in textile dyeing,and in the leather industry (Chakraborti et al., 2004; Seijas et al., 2007; Wang et al., 2009). There are numerous synthetic methods to produce 2-arylbenzothiazoles. The most important ones include the reaction of o-aminothiophenols with benzoic acids or their derivatives (Chakraborti et al., 2004; Seijas et al., 2007; Wang et al., 2009). Microwave-assisted organic synthesis (MAOS) is a powerful technique that is being used more and more to accelerate thermal organic reactions (Kappe & Stadler, 2005). We are focusing on Microwave-assisted synthesis of new products of bisbenzothiazole. We here report the crystal structure of the title compound (I). The atom-numbering scheme of (I) is shown in Fig. 1.The compound lies on an inversion center (symmetry code -x+1, -y, -z ).

Related literature top

For details of the synthesis procedure and the application of benzothiazoles, see: Chakraborti et al. (2004); Seijas et al. (2007); Wang et al. (2009). For the use of microwave-assisted organic synthesis, see: Kappe & Stadler (2005).

Experimental top

A mixture of 2-aminothiophenol (2.5 g, 20 mmol), 5 ml orthophosphoric acid, 5 g polyphosphoric acid and 1,6-hexanedicarboxylic acid (1.74 g, 10 mmol) in a beakerflask (150 ml) was placed in a domestic microwave oven (0.8 KW, 2450 MHz) and irradiated (micromode, full power) for 4 min(30 s per time). The reaction mixture was cooled to r.t. and washed with aq NaOH (20%, 150 ml). The pH was adjusted to 10, the resulted solide was filtered. Then the crude compound (I) was obtained. It was crystallized from ethanol. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of methanol. 1H NMR (DMSO, δ, p.p.m.) 7.35–7.40 (m, 2 H), 7.46–7.51 (m, 2 H), 7.64 (dd, 2 H), 7.81 (d, 2 H), 7.95 (dd, 2 H), 8.05 (d, 2 H).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for methyl and methylene H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) showing the atom-numbering scheme and 30% displacement ellipsoids. Unlabeled atoms are related to labeled atoms by symmetry code (-x+1, -y, -z).
2,2'-Hexamethylenedi-1,3-benzothiazole top
Crystal data top
C20H20N2S2F(000) = 372
Mr = 342.50Dx = 1.297 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 27 reflections
a = 5.7590 (12) Åθ = 1–25°
b = 8.3030 (17) ŵ = 0.30 mm1
c = 18.974 (4) ÅT = 293 K
β = 96.03 (3)°Block, yellow
V = 902.3 (3) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1102 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 2.2°
ω/2θ scansh = 66
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.916, Tmax = 0.971l = 022
1626 measured reflections3 standard reflections every 200 reflections
1626 independent reflections intensity decay: 9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.06P)2 + 1.95P]
where P = (Fo2 + 2Fc2)/3
1626 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C20H20N2S2V = 902.3 (3) Å3
Mr = 342.50Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.7590 (12) ŵ = 0.30 mm1
b = 8.3030 (17) ÅT = 293 K
c = 18.974 (4) Å0.30 × 0.20 × 0.10 mm
β = 96.03 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1102 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.916, Tmax = 0.9713 standard reflections every 200 reflections
1626 measured reflections intensity decay: 9%
1626 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.01Δρmax = 0.37 e Å3
1626 reflectionsΔρmin = 0.40 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.21252 (19)0.52096 (15)0.08482 (6)0.0614 (4)
N0.6060 (6)0.5674 (4)0.16015 (18)0.0569 (9)
C10.0926 (8)0.8256 (6)0.1352 (3)0.0701 (13)
H1A0.05420.82440.10960.084*
C20.1629 (9)0.9538 (6)0.1788 (3)0.0738 (14)
H2A0.06011.03870.18310.089*
C30.3826 (9)0.9590 (6)0.2162 (2)0.0673 (13)
H3A0.42661.04810.24420.081*
C40.5351 (8)0.8342 (5)0.2123 (2)0.0573 (11)
H4A0.68130.83700.23820.069*
C50.4707 (7)0.7038 (5)0.1695 (2)0.0468 (9)
C60.2468 (7)0.6990 (5)0.1308 (2)0.0539 (10)
C70.4953 (7)0.4647 (5)0.1187 (2)0.0495 (9)
C80.5905 (8)0.3044 (5)0.1000 (2)0.0631 (12)
H8A0.74630.32140.08640.076*
H8B0.60650.23910.14260.076*
C90.4567 (8)0.2091 (5)0.0429 (2)0.0556 (10)
H9A0.44140.27250.00020.067*
H9B0.30090.19010.05620.067*
C100.5656 (8)0.0488 (5)0.0278 (2)0.0583 (11)
H10A0.72060.06830.01390.070*
H10B0.58360.01340.07120.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0522 (7)0.0655 (8)0.0654 (7)0.0031 (5)0.0018 (5)0.0103 (6)
N0.063 (2)0.056 (2)0.051 (2)0.0014 (17)0.0036 (16)0.0028 (17)
C10.061 (3)0.075 (3)0.076 (3)0.008 (2)0.018 (2)0.002 (3)
C20.084 (4)0.065 (3)0.078 (3)0.013 (3)0.035 (3)0.007 (3)
C30.088 (4)0.061 (3)0.058 (3)0.011 (3)0.031 (2)0.013 (2)
C40.067 (3)0.063 (3)0.043 (2)0.014 (2)0.0089 (19)0.011 (2)
C50.057 (2)0.044 (2)0.040 (2)0.0024 (17)0.0089 (17)0.0032 (17)
C60.050 (2)0.066 (3)0.047 (2)0.006 (2)0.0127 (18)0.006 (2)
C70.055 (2)0.047 (2)0.046 (2)0.0056 (18)0.0063 (17)0.0045 (18)
C80.070 (3)0.053 (3)0.066 (3)0.009 (2)0.005 (2)0.007 (2)
C90.067 (3)0.052 (2)0.048 (2)0.002 (2)0.0086 (19)0.0016 (19)
C100.071 (3)0.053 (2)0.052 (2)0.007 (2)0.012 (2)0.002 (2)
Geometric parameters (Å, º) top
S—C61.717 (4)C4—H4A0.9300
S—C71.750 (4)C5—C61.416 (5)
N—C71.283 (5)C7—C81.496 (6)
N—C51.397 (5)C8—C91.489 (6)
C1—C21.382 (7)C8—H8A0.9700
C1—C61.384 (6)C8—H8B0.9700
C1—H1A0.9300C9—C101.512 (6)
C2—C31.385 (7)C9—H9A0.9700
C2—H2A0.9300C9—H9B0.9700
C3—C41.365 (6)C10—C10i1.473 (8)
C3—H3A0.9300C10—H10A0.9700
C4—C51.380 (5)C10—H10B0.9700
C6—S—C789.46 (19)N—C7—S115.5 (3)
C7—N—C5111.6 (4)C8—C7—S120.0 (3)
C2—C1—C6118.1 (5)C9—C8—C7118.1 (4)
C2—C1—H1A120.9C9—C8—H8A107.8
C6—C1—H1A120.9C7—C8—H8A107.8
C1—C2—C3121.7 (5)C9—C8—H8B107.8
C1—C2—H2A119.2C7—C8—H8B107.8
C3—C2—H2A119.2H8A—C8—H8B107.1
C4—C3—C2120.4 (4)C8—C9—C10114.4 (4)
C4—C3—H3A119.8C8—C9—H9A108.7
C2—C3—H3A119.8C10—C9—H9A108.7
C3—C4—C5119.5 (4)C8—C9—H9B108.7
C3—C4—H4A120.2C10—C9—H9B108.7
C5—C4—H4A120.2H9A—C9—H9B107.6
C4—C5—N126.3 (4)C10i—C10—C9115.4 (5)
C4—C5—C6120.1 (4)C10i—C10—H10A108.4
N—C5—C6113.6 (4)C9—C10—H10A108.4
C1—C6—C5120.1 (4)C10i—C10—H10B108.4
C1—C6—S130.1 (4)C9—C10—H10B108.4
C5—C6—S109.7 (3)H10A—C10—H10B107.5
N—C7—C8124.4 (4)
C6—C1—C2—C31.3 (7)N—C5—C6—S0.9 (4)
C1—C2—C3—C41.6 (7)C7—S—C6—C1179.0 (5)
C2—C3—C4—C51.3 (7)C7—S—C6—C50.5 (3)
C3—C4—C5—N179.7 (4)C5—N—C7—C8178.0 (4)
C3—C4—C5—C60.8 (6)C5—N—C7—S0.5 (5)
C7—N—C5—C4178.0 (4)C6—S—C7—N0.0 (3)
C7—N—C5—C60.9 (5)C6—S—C7—C8178.6 (4)
C2—C1—C6—C50.8 (7)N—C7—C8—C9170.9 (4)
C2—C1—C6—S177.5 (4)S—C7—C8—C910.6 (6)
C4—C5—C6—C10.5 (6)C7—C8—C9—C10179.9 (4)
N—C5—C6—C1179.6 (4)C8—C9—C10—C10i179.1 (5)
C4—C5—C6—S178.1 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H20N2S2
Mr342.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.7590 (12), 8.3030 (17), 18.974 (4)
β (°) 96.03 (3)
V3)902.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.916, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
1626, 1626, 1102
Rint0.000
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.182, 1.01
No. of reflections1626
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.40

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationChakraborti, A. K., Selvam, C., Kaur, G. & Bhagat, S. (2004). Synlett, pp. 851–855.  Web of Science CrossRef Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKappe, C. O. & Stadler, A. (2005). Microwaves in Organic and Medicinal Chemistry. Weinheim: Wiley-VCH.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSeijas, J. A., Vazquez, T. M. P., Carballido, R. M. R., Crecente, C. J. & Romar, L. L. (2007). Synlett, pp. 313–317.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G., Wu, L., Zhuang, L. & Wang, J. (2009). Acta Cryst. E65, o158.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds