organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(1-Phenyl-1H-pyrazole-3,5-di­yl)diphenol

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: h.aurangzeb@yahoo.com

(Received 9 January 2009; accepted 10 January 2009; online 23 January 2009)

The title compound, C21H16N2O2, was derived from 1-(2-hydroxy­phen­yl)-3-(-methoxy­phen­yl)propane-1,3-dione. The mol­ecular structure of the title compound is stabilized by an intra­molecular O—H⋯N hydrogen bond. The dihedral angle between the hydroxy­phenyl ring involved in this intra­molecular hydrogen bond and the pyrazole ring is significantly smaller [10.07 (6)°] than the dihedral angle between the pyrazole and the other hydroxy­phenyl ring [36.64 (5)°]. The benzene ring makes a dihedral angle of 54.95 (3)° with the pyrazole ring. The crystal packing is stabilized by O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For the biological activity of pyrazoles, see: Beeam et al. (1984[Beeam, C. F., Hall, H. L., Huff, A. M., Tummons, R. C. & Grady, S. A. O. (1984). J. Heteroat. Chem. 21, 1897-1902.]). For the preparation of new materials for medicine, see: Elguero (1983[Elguero, J. (1983). Comprehensive Heterocyclic Chemistry, Vol. 5, Part 4A, pp. 167 and 304. Elmford, New York: Pergamon Press.]). For the coordination chemistry of pyrazoles, see: Bonati (1980[Bonati, F. (1980). Chim. Ind. (Roma), 62, 323-328.]). For their use as analytical reagents, see: Freyer & Radeglia (1981[Freyer, W. & Radeglia, R. (1981). Monatsh. Chem. 112, 105-117.]). For the synthesis of 1-(2′-hydroxy­phen­yl)-3-(2′′-methoxy­phen­yl)propane-1,3-dione, see: Ahmad et al. (1997[Ahmad, R., Malik, M. A., Zia-ul-Haq, M., Duddeek, H., Stefaniak, L. & Kowski, J. S. (1997). Monatsh. Chem. 128, 633-640.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16N2O2

  • Mr = 328.36

  • Monoclinic, P 21 /c

  • a = 9.7034 (8) Å

  • b = 11.7407 (9) Å

  • c = 14.9486 (14) Å

  • β = 104.294 (7)°

  • V = 1650.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 (2) K

  • 0.48 × 0.46 × 0.46 mm

Data collection
  • Stoe IPDSII two-circle diffractometer

  • Absorption correction: none

  • 12165 measured reflections

  • 3799 independent reflections

  • 3235 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.03

  • 3799 reflections

  • 235 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.94 (2) 1.81 (2) 2.7524 (12) 176.6 (19)
O1—H1⋯N2 0.947 (19) 1.718 (19) 2.5863 (12) 150.9 (17)
Symmetry code: (i) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazoles are important because of their potential for biological activity. They have antipuretic, anti-inflammatory and antirheumatic effects (Beeam et al., 1984). Both traditional and new scientific methods have been used to prepare new materials for medicine (Elguero et al., 1983) and agriculture (Trofimenko, 1972). Neutral and anionic pyrazoles are excellent ligands and their co-ordination chemistry has been extensively studied (Bonati, 1980). Pyrazoles are also used as analytical reagents (Freyer et al., 1981) The molecular structure of the title compound is stabilized by an intramolecular O-H···N hydrogen bond. The dihedral angle between the hydroxyphenyl ring involved in this intramolecular hydrogen bond is significantly smaller [10.07 (6)°] than the dihedral angle between the pyrazole and the other hydroxyphenyl ring [36.64 (5)°]. The phenyl ring makes a makes dihedral angle of 54.95 (3)° with the pyrazol ring. The crystal packing is stabilized by O-H···O hydrogen bonds.

Related literature top

For the biological activity of pyrazoles, see: Beeam et al. (1984). For the preparation of prepare new materials for medicine, see: Elguero (1983); and agriculture, see: Trofimenko (1972). For the corrdination chemistry of pyrazoles, see: Bonati (1980). For their use as analytical reagents, see: Freyer & Radeglia (1981). For the synthesis of 1-(2'-hydroxyphenyl)-3-(2"-methoxyphenyl) propane-1,3-dione, see: Ahmad et al. (1997).

Experimental top

1-(2'-hydroxyphenyl)-3-(2"-methoxyphenyl) propane-1,3-dione (I) was prepared by a modified Baker Venkataram rearrangement as reported earlier (Ahmad et al. 1997). 1-Phenyl-3,5-bis(2'-hydroxy phenyl)phyrazole(III) was synthesized by demethylation of 2-(5-(2-methoxyphenyl)-1-phenyl-1H-pyrazol-3-yl)phenol(II), which was prepared by refluxing 1-(2'-hydroxyphenyl)-3-(2"-methoxyphenyl) propane-1,3-dione (2.7 g, 10 mmol) with phenyl hydrazine (1.08 g,0.99 ml, 10 mmol) in 100 ml absolute ethanol for seven hours as shown in Fig. 3. The product was recrystallized using absolute ethanol. (yield: 90%, m.p: 473k)

Refinement top

H atoms bonded to C were geometrically positioned and refined using a riding model with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] and with C—H = 0.95 Å. H atoms bonded to O were freely refined.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of(I) showing the formation of a one-dimensional chain along [100] direction and the hydrogen-bonding and O-H···N intramolecular contact.
[Figure 3] Fig. 3. Preparation of the title compound.
2,2'-(1-Phenyl-1H-pyrazole-3,5-diyl)diphenol top
Crystal data top
C21H16N2O2F(000) = 688
Mr = 328.36Dx = 1.322 Mg m3
Monoclinic, P21/cMelting point: 473 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.7034 (8) ÅCell parameters from 10768 reflections
b = 11.7407 (9) Åθ = 3.6–27.6°
c = 14.9486 (14) ŵ = 0.09 mm1
β = 104.294 (7)°T = 173 K
V = 1650.3 (2) Å3Block, colourless
Z = 40.48 × 0.46 × 0.46 mm
Data collection top
Stoe IPDSII two-circle
diffractometer
3235 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 27.6°, θmin = 3.6°
ω scansh = 1212
12165 measured reflectionsk = 1315
3799 independent reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.3119P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3799 reflectionsΔρmax = 0.24 e Å3
235 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (2)
Crystal data top
C21H16N2O2V = 1650.3 (2) Å3
Mr = 328.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7034 (8) ŵ = 0.09 mm1
b = 11.7407 (9) ÅT = 173 K
c = 14.9486 (14) Å0.48 × 0.46 × 0.46 mm
β = 104.294 (7)°
Data collection top
Stoe IPDSII two-circle
diffractometer
3235 reflections with I > 2σ(I)
12165 measured reflectionsRint = 0.034
3799 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
3799 reflectionsΔρmin = 0.15 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.72854 (9)0.56525 (9)0.70176 (6)0.0273 (2)
N20.60684 (9)0.61144 (9)0.64778 (6)0.0277 (2)
O10.34395 (9)0.66647 (10)0.57881 (6)0.0434 (3)
H10.428 (2)0.6418 (18)0.6211 (13)0.068 (6)*
O21.07930 (9)0.61561 (9)0.60415 (7)0.0416 (2)
H21.170 (2)0.6300 (17)0.5950 (13)0.073 (6)*
C30.63161 (11)0.62529 (9)0.56362 (7)0.0250 (2)
C40.76965 (11)0.58763 (10)0.56388 (7)0.0267 (2)
H40.81300.58850.51340.032*
C50.82919 (11)0.54909 (9)0.65248 (7)0.0260 (2)
C110.73784 (12)0.55181 (10)0.79885 (7)0.0293 (2)
C120.84714 (13)0.60411 (11)0.86344 (8)0.0354 (3)
H120.91700.64790.84420.042*
C130.85265 (15)0.59125 (13)0.95705 (9)0.0447 (3)
H130.92740.62571.00210.054*
C140.74906 (17)0.52810 (14)0.98457 (9)0.0479 (4)
H140.75320.51971.04840.057*
C150.63982 (16)0.47744 (13)0.91924 (9)0.0437 (3)
H150.56890.43490.93840.052*
C160.63368 (13)0.48862 (11)0.82558 (8)0.0349 (3)
H160.55930.45350.78060.042*
C310.51991 (11)0.67507 (9)0.48859 (7)0.0260 (2)
C320.38098 (12)0.69291 (11)0.49811 (8)0.0308 (2)
C330.27648 (13)0.73925 (12)0.42651 (9)0.0399 (3)
H330.18260.74920.43360.048*
C340.30899 (14)0.77093 (12)0.34478 (9)0.0409 (3)
H340.23780.80350.29620.049*
C350.44618 (15)0.75502 (12)0.33381 (8)0.0395 (3)
H350.46870.77650.27780.047*
C360.54978 (13)0.70771 (11)0.40505 (8)0.0329 (3)
H360.64310.69720.39710.040*
C510.96705 (11)0.49298 (10)0.69189 (7)0.0270 (2)
C521.08989 (12)0.52664 (10)0.66442 (8)0.0304 (2)
C531.21876 (13)0.46994 (11)0.69982 (9)0.0368 (3)
H531.30130.49270.68110.044*
C541.22731 (13)0.38090 (11)0.76202 (9)0.0385 (3)
H541.31550.34330.78560.046*
C551.10706 (14)0.34660 (11)0.78991 (8)0.0364 (3)
H551.11270.28580.83260.044*
C560.97871 (13)0.40228 (10)0.75474 (8)0.0317 (3)
H560.89670.37840.77370.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0242 (4)0.0347 (5)0.0222 (4)0.0020 (4)0.0044 (3)0.0012 (4)
N20.0238 (4)0.0358 (5)0.0225 (4)0.0015 (4)0.0037 (3)0.0012 (4)
O10.0252 (4)0.0723 (7)0.0332 (5)0.0042 (4)0.0082 (4)0.0121 (4)
O20.0270 (4)0.0485 (6)0.0511 (5)0.0055 (4)0.0130 (4)0.0173 (4)
C30.0258 (5)0.0271 (5)0.0216 (5)0.0035 (4)0.0047 (4)0.0019 (4)
C40.0270 (5)0.0299 (6)0.0235 (5)0.0019 (4)0.0070 (4)0.0021 (4)
C50.0248 (5)0.0268 (5)0.0266 (5)0.0013 (4)0.0066 (4)0.0027 (4)
C110.0312 (5)0.0343 (6)0.0222 (5)0.0058 (5)0.0065 (4)0.0023 (4)
C120.0339 (6)0.0421 (7)0.0283 (6)0.0023 (5)0.0041 (5)0.0004 (5)
C130.0484 (7)0.0549 (9)0.0262 (6)0.0066 (6)0.0002 (5)0.0023 (6)
C140.0656 (9)0.0546 (9)0.0243 (6)0.0107 (7)0.0127 (6)0.0059 (6)
C150.0552 (8)0.0448 (8)0.0359 (7)0.0039 (6)0.0201 (6)0.0090 (6)
C160.0371 (6)0.0373 (6)0.0313 (6)0.0017 (5)0.0102 (5)0.0028 (5)
C310.0272 (5)0.0260 (5)0.0228 (5)0.0037 (4)0.0026 (4)0.0019 (4)
C320.0279 (5)0.0354 (6)0.0276 (5)0.0033 (4)0.0038 (4)0.0011 (5)
C330.0293 (6)0.0458 (7)0.0394 (7)0.0004 (5)0.0013 (5)0.0041 (6)
C340.0420 (7)0.0379 (7)0.0337 (6)0.0039 (5)0.0079 (5)0.0066 (5)
C350.0506 (7)0.0385 (7)0.0261 (5)0.0070 (6)0.0033 (5)0.0049 (5)
C360.0367 (6)0.0355 (6)0.0263 (5)0.0038 (5)0.0071 (4)0.0005 (5)
C510.0267 (5)0.0276 (5)0.0256 (5)0.0017 (4)0.0040 (4)0.0026 (4)
C520.0285 (5)0.0316 (6)0.0307 (5)0.0026 (4)0.0066 (4)0.0000 (5)
C530.0280 (6)0.0393 (7)0.0422 (7)0.0052 (5)0.0072 (5)0.0010 (5)
C540.0347 (6)0.0360 (7)0.0411 (7)0.0106 (5)0.0024 (5)0.0016 (5)
C550.0443 (7)0.0297 (6)0.0326 (6)0.0071 (5)0.0048 (5)0.0013 (5)
C560.0357 (6)0.0297 (6)0.0296 (5)0.0003 (5)0.0078 (5)0.0020 (5)
Geometric parameters (Å, º) top
N1—N21.3672 (13)C15—H150.9500
N1—C51.3740 (13)C16—H160.9500
N1—C111.4403 (13)C31—C361.4033 (15)
N2—C31.3477 (13)C31—C321.4057 (15)
O1—C321.3765 (14)C32—C331.3907 (17)
O1—H10.947 (19)C33—C341.3859 (18)
O2—C521.3666 (15)C33—H330.9500
O2—H20.94 (2)C34—C351.3935 (19)
C3—C41.4097 (15)C34—H340.9500
C3—C311.4744 (15)C35—C361.3873 (17)
C4—C51.3838 (15)C35—H350.9500
C4—H40.9500C36—H360.9500
C5—C511.4769 (15)C51—C561.4060 (16)
C11—C121.3887 (17)C51—C521.4098 (15)
C11—C161.3896 (16)C52—C531.4000 (16)
C12—C131.3953 (17)C53—C541.3878 (19)
C12—H120.9500C53—H530.9500
C13—C141.391 (2)C54—C551.3921 (19)
C13—H130.9500C54—H540.9500
C14—C151.386 (2)C55—C561.3898 (17)
C14—H140.9500C55—H550.9500
C15—C161.3928 (17)C56—H560.9500
N2—N1—C5111.28 (8)C32—C31—C3121.69 (9)
N2—N1—C11117.92 (8)O1—C32—C33117.66 (11)
C5—N1—C11130.48 (9)O1—C32—C31121.29 (10)
C3—N2—N1105.77 (8)C33—C32—C31121.04 (11)
C32—O1—H1106.6 (11)C34—C33—C32120.13 (12)
C52—O2—H2108.2 (12)C34—C33—H33119.9
N2—C3—C4110.36 (9)C32—C33—H33119.9
N2—C3—C31119.40 (9)C33—C34—C35119.98 (11)
C4—C3—C31130.24 (9)C33—C34—H34120.0
C5—C4—C3106.08 (9)C35—C34—H34120.0
C5—C4—H4127.0C36—C35—C34119.72 (11)
C3—C4—H4127.0C36—C35—H35120.1
N1—C5—C4106.50 (9)C34—C35—H35120.1
N1—C5—C51122.78 (9)C35—C36—C31121.51 (11)
C4—C5—C51130.59 (9)C35—C36—H36119.2
C12—C11—C16121.40 (11)C31—C36—H36119.2
C12—C11—N1119.95 (10)C56—C51—C52118.20 (10)
C16—C11—N1118.63 (10)C56—C51—C5121.32 (10)
C11—C12—C13118.88 (12)C52—C51—C5120.43 (10)
C11—C12—H12120.6O2—C52—C53121.84 (10)
C13—C12—H12120.6O2—C52—C51118.35 (10)
C14—C13—C12120.19 (13)C53—C52—C51119.81 (11)
C14—C13—H13119.9C54—C53—C52120.77 (11)
C12—C13—H13119.9C54—C53—H53119.6
C15—C14—C13120.23 (12)C52—C53—H53119.6
C15—C14—H14119.9C53—C54—C55120.18 (11)
C13—C14—H14119.9C53—C54—H54119.9
C14—C15—C16120.23 (13)C55—C54—H54119.9
C14—C15—H15119.9C56—C55—C54119.32 (12)
C16—C15—H15119.9C56—C55—H55120.3
C11—C16—C15119.06 (12)C54—C55—H55120.3
C11—C16—H16120.5C55—C56—C51121.72 (11)
C15—C16—H16120.5C55—C56—H56119.1
C36—C31—C32117.60 (10)C51—C56—H56119.1
C36—C31—C3120.71 (10)
C5—N1—N2—C30.45 (12)C4—C3—C31—C32170.94 (11)
C11—N1—N2—C3173.77 (10)C36—C31—C32—O1178.03 (11)
N1—N2—C3—C40.08 (12)C3—C31—C32—O11.20 (17)
N1—N2—C3—C31179.44 (9)C36—C31—C32—C331.20 (18)
N2—C3—C4—C50.30 (13)C3—C31—C32—C33179.57 (12)
C31—C3—C4—C5179.76 (11)O1—C32—C33—C34177.90 (12)
N2—N1—C5—C40.63 (13)C31—C32—C33—C341.4 (2)
C11—N1—C5—C4172.65 (11)C32—C33—C34—C350.8 (2)
N2—N1—C5—C51175.58 (10)C33—C34—C35—C360.2 (2)
C11—N1—C5—C5111.14 (19)C34—C35—C36—C310.0 (2)
C3—C4—C5—N10.55 (12)C32—C31—C36—C350.55 (18)
C3—C4—C5—C51175.26 (11)C3—C31—C36—C35179.78 (11)
N2—N1—C11—C12121.61 (12)N1—C5—C51—C5635.52 (16)
C5—N1—C11—C1251.30 (18)C4—C5—C51—C56139.69 (13)
N2—N1—C11—C1656.64 (15)N1—C5—C51—C52146.91 (11)
C5—N1—C11—C16130.45 (13)C4—C5—C51—C5237.88 (18)
C16—C11—C12—C130.84 (19)C56—C51—C52—O2179.27 (11)
N1—C11—C12—C13179.04 (11)C5—C51—C52—O23.09 (16)
C11—C12—C13—C140.8 (2)C56—C51—C52—C530.05 (17)
C12—C13—C14—C150.1 (2)C5—C51—C52—C53177.69 (10)
C13—C14—C15—C160.5 (2)O2—C52—C53—C54179.03 (12)
C12—C11—C16—C150.23 (18)C51—C52—C53—C540.17 (18)
N1—C11—C16—C15178.46 (11)C52—C53—C54—C550.14 (19)
C14—C15—C16—C110.5 (2)C53—C54—C55—C560.10 (19)
N2—C3—C31—C36169.56 (11)C54—C55—C56—C510.32 (18)
C4—C3—C31—C369.85 (18)C52—C51—C56—C550.29 (17)
N2—C3—C31—C329.64 (16)C5—C51—C56—C55177.91 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.94 (2)1.81 (2)2.7524 (12)176.6 (19)
O1—H1···N20.947 (19)1.718 (19)2.5863 (12)150.9 (17)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H16N2O2
Mr328.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.7034 (8), 11.7407 (9), 14.9486 (14)
β (°) 104.294 (7)
V3)1650.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.48 × 0.46 × 0.46
Data collection
DiffractometerStoe IPDSII two-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12165, 3799, 3235
Rint0.034
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.03
No. of reflections3799
No. of parameters235
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.15

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.94 (2)1.81 (2)2.7524 (12)176.6 (19)
O1—H1···N20.947 (19)1.718 (19)2.5863 (12)150.9 (17)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

AB is grateful to the Higher Education Commission of Pakistan for a grant.

References

First citationAhmad, R., Malik, M. A., Zia-ul-Haq, M., Duddeek, H., Stefaniak, L. & Kowski, J. S. (1997). Monatsh. Chem. 128, 633–640.  CrossRef CAS Web of Science Google Scholar
First citationBeeam, C. F., Hall, H. L., Huff, A. M., Tummons, R. C. & Grady, S. A. O. (1984). J. Heteroat. Chem. 21, 1897–1902.  Google Scholar
First citationBonati, F. (1980). Chim. Ind. (Roma), 62, 323–328.  CAS Google Scholar
First citationElguero, J. (1983). Comprehensive Heterocyclic Chemistry, Vol. 5, Part 4A, pp. 167 and 304. Elmford, New York: Pergamon Press.  Google Scholar
First citationFreyer, W. & Radeglia, R. (1981). Monatsh. Chem. 112, 105–117.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds