metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m211-m212

catena-Poly[[bis­­(5-chloro-2-nitro­benzoato)copper(II)]-bis­­(μ-5-chloro-2-nitro­benzoato)]

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 17 December 2008; accepted 15 January 2009; online 23 January 2009)

In the title compound, [Cu2(C7H3ClNO4)4]n, the coordination geometry around each CuII ion is distorted square-pyramidal. The CuO5 coordination is formed by five O atoms from the carboxyl­ate groups of five 5-chloro-2-nitro­benzoate ligands. This coordination leads to the formation of centrosymmetric binuclear units which are edge-shared, forming a linear chain along the a axis, with the CuII ions alternately separated by 2.5891 (4) and 3.1763 (4) Å. The chains are inter­connected into a three-dimensional network by C—H⋯O inter­actions.

Related literature

For general background, see: Balaraman et al. (2006[Balaraman, S., Venugopal, R., Palanisamy, U. M., Helen, S. & Mallayan, P. (2006). J. Inorg. Biochem. 100, 316-330.]); Tomoya et al. (2005[Tomoya, H., Yuko, K., Eriko, E., Takashi, S., Hidekazu, A., Makoto, C., Pitchumony, T. S. & Mallayan, P. (2005). J. Inorg. Biochem. 99, 1205-1219.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkins Trans. 2, pp. S1-19.]). For related structures, see: Kabbani et al. (2004[Kabbani, A. T., Zaworotko, M. J., Abourahma, H., Walsh, R. D. B. & Hammud, H. H. (2004). J. Chem. Crystallogr. 11, 749-756.]); Stachová et al. (2004[Stachová, P., Valigura, D., Koman, M., Melník, M., Korabik, M., Mrozińki, J. & Glowiak, T. (2004). Polyhedron, 23, 1303-1308.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H3ClNO4)4]

  • Mr = 929.30

  • Triclinic, [P \overline 1]

  • a = 5.0353 (1) Å

  • b = 11.8001 (3) Å

  • c = 13.8595 (3) Å

  • α = 84.539 (2)°

  • β = 85.553 (1)°

  • γ = 85.610 (2)°

  • V = 815.30 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 100.0 (1) K

  • 0.47 × 0.21 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.498, Tmax = 0.875

  • 11613 measured reflections

  • 4656 independent reflections

  • 3994 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.116

  • S = 1.10

  • 4656 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O5 1.942 (2)
Cu1—O6i 1.946 (2)
Cu1—O2ii 1.950 (2)
Cu1—O1iii 2.008 (2)
Cu1—O1 2.165 (2)
Symmetry codes: (i) -x, -y, -z+1; (ii) x-1, y, z; (iii) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O4iv 0.93 2.44 3.254 (3) 146
C11—H11A⋯O8v 0.93 2.46 3.384 (3) 172
C14—H14A⋯O4i 0.93 2.54 3.417 (3) 156
Symmetry codes: (i) -x, -y, -z+1; (iv) -x, -y+1, -z+1; (v) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The ability to induce DNA cleavage in the presence of H2O2 and reductants by phenanthroline-based copper complexes such as [Cu(imda)(5,6-dmp)] (where 5,6-dmp is 5,6-dimethyl-1,10-phenanthroline) and [Cu(N,N'-dialkyl-1,10-phenanthroline -2,9-dimethanamine)] (Balaraman et al., 2006; Tomoya et al., 2005) have driven us to investigate the DNA cleavage ability of benzoic acid-based copper complexes. Several benzoic acid-based copper complexes have been prepared in our laboratory and their DNA cleavage abilities are further investigated. In this paper, we report the crystal structure of the title compound.

In the title compound, the coordination geometry around each CuII ion can be described as square-pyramidal, formed by five O atoms from the carboxylate groups of five 5-chloro-2-nitrobenzoate ligands. The basal plane positions are occupied by atoms O5, O6A, O2B and O1C with an average Cu—O bond length of 1.962 (2) Å. The apical position is occupied by atom O1 (Fig.1). The Cu1 atom is displaced away from the basal plane by 0.1689 (3) Å and the Cu—Cu(-x,-y,1 - z) separation is 2.5891 (4) Å. Similar CuO5 coordination were observed in related structures reported by Kabbani et al. (2004) and Stachová et al. (2004). The CuO5 square pyramids are edge-shared to form a linear polymeric chain along the a axis. In the chain, the CuII ions are alternately separated by 2.5891 (4) and 3.1763 (4) Å.

Bond lengths of the ligands have normal values (Allen et al., 1987). The dihedral angle between nitro groups and the benzene rings are: C1–C6/N1/O3/O4 = 12.0 (3)° and C9–C14/N2/O7/O8 = 65.1 (3)°.

The polymeric chains are interconnected through C—H···O intramolecular interactions, forming a three-dimensional network (Table 2 and Fig. 2).

Related literature top

For general background, see: Balaraman et al. (2006); Tomoya et al. (2005). For bond-length data, see: Allen et al. (1987). For related structures, see: Kabbani et al. (2004); Stachová et al. (2004).

Experimental top

An ethanol solution (50 ml) of 5-chloro-2-nitrobenzoic acid (4.84 g, 0.024 mol) was added to a solution of copper(II) sulfate pentahydrate (3.00 g, 0.012 mol) in ethanol (50 ml) and the mixture was stirred and refluxed for 2 h. The resulting solution was filtered and left to cool down to room temperature. After a few days of slow evaporation, blue crystals suitable for X-ray analysis were collected.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Part of the polymeric chain of the title compound, showing the coordination environment of the Cu atom and with displacement ellipsoids drawn at the 50% probability level. H-atoms are omitted for clarity. Symmetry codes: (A) -x, -y, 1-z; (B) x-1, y, z; (C) 1-x, -y, 1-z.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.
catena-Poly[[bis(5-chloro-2-nitrobenzoato)copper(II)]-bis(µ-5-chloro- 2-nitrobenzoato)] top
Crystal data top
[Cu2(C7H3ClNO4)4]Z = 1
Mr = 929.30F(000) = 462
Triclinic, P1Dx = 1.893 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0353 (1) ÅCell parameters from 4198 reflections
b = 11.8001 (3) Åθ = 2.4–33.5°
c = 13.8595 (3) ŵ = 1.72 mm1
α = 84.539 (2)°T = 100 K
β = 85.553 (1)°Plate, blue
γ = 85.610 (2)°0.47 × 0.21 × 0.08 mm
V = 815.30 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4656 independent reflections
Radiation source: fine-focus sealed tube3994 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 30.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.498, Tmax = 0.875k = 1616
11613 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.3146P]
where P = (Fo2 + 2Fc2)/3
4656 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 1.04 e Å3
Crystal data top
[Cu2(C7H3ClNO4)4]γ = 85.610 (2)°
Mr = 929.30V = 815.30 (3) Å3
Triclinic, P1Z = 1
a = 5.0353 (1) ÅMo Kα radiation
b = 11.8001 (3) ŵ = 1.72 mm1
c = 13.8595 (3) ÅT = 100 K
α = 84.539 (2)°0.47 × 0.21 × 0.08 mm
β = 85.553 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4656 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3994 reflections with I > 2σ(I)
Tmin = 0.498, Tmax = 0.875Rint = 0.034
11613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.10Δρmax = 0.72 e Å3
4656 reflectionsΔρmin = 1.04 e Å3
244 parameters
Special details top

Experimental. The data was collected with the Oxford Cryosystem Cobra low-temperature attachment

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.21339 (5)0.05196 (2)0.471444 (19)0.01008 (9)
Cl10.39928 (16)0.36470 (6)0.09685 (5)0.02730 (16)
Cl20.29870 (15)0.38843 (6)0.13820 (5)0.02494 (16)
O10.6289 (3)0.09053 (14)0.45747 (12)0.0112 (3)
O21.0009 (3)0.17993 (14)0.40983 (12)0.0130 (3)
O30.6319 (4)0.29482 (16)0.56079 (13)0.0190 (4)
O40.2829 (4)0.41394 (17)0.56834 (15)0.0242 (4)
O50.2124 (3)0.02541 (15)0.35393 (12)0.0138 (3)
O60.1564 (3)0.11767 (15)0.40442 (12)0.0141 (3)
O70.1420 (4)0.10970 (17)0.17610 (15)0.0247 (4)
O80.5268 (4)0.0237 (2)0.13998 (16)0.0283 (5)
N10.4497 (4)0.35283 (18)0.52330 (16)0.0162 (4)
N20.2865 (4)0.02437 (19)0.16027 (15)0.0172 (4)
C10.4307 (5)0.3520 (2)0.41832 (17)0.0138 (4)
C20.2609 (5)0.4338 (2)0.3721 (2)0.0191 (5)
H2A0.15710.48640.40730.023*
C30.2481 (5)0.4361 (2)0.2728 (2)0.0215 (5)
H3A0.13390.48990.24030.026*
C40.4063 (5)0.3577 (2)0.22185 (19)0.0191 (5)
C50.5750 (5)0.2744 (2)0.26839 (18)0.0150 (4)
H5A0.67800.22190.23290.018*
C60.5877 (4)0.2705 (2)0.36849 (18)0.0128 (4)
C70.7537 (4)0.1749 (2)0.41697 (16)0.0116 (4)
C80.0272 (4)0.0881 (2)0.34205 (17)0.0125 (4)
C90.0247 (5)0.1317 (2)0.24379 (17)0.0131 (4)
C100.1569 (5)0.0832 (2)0.16019 (18)0.0156 (5)
C110.1618 (5)0.1279 (2)0.07137 (19)0.0209 (5)
H11A0.25770.09480.01730.025*
C120.0212 (5)0.2231 (2)0.06434 (19)0.0217 (5)
H12A0.02000.25450.00530.026*
C130.1169 (5)0.2706 (2)0.14635 (19)0.0187 (5)
C140.1152 (5)0.2281 (2)0.23593 (18)0.0168 (5)
H14A0.20600.26320.29030.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00866 (14)0.01013 (15)0.01168 (15)0.00058 (9)0.00121 (9)0.00174 (10)
Cl10.0418 (4)0.0235 (3)0.0178 (3)0.0067 (3)0.0126 (3)0.0037 (2)
Cl20.0375 (4)0.0189 (3)0.0210 (3)0.0106 (3)0.0089 (3)0.0029 (2)
O10.0094 (7)0.0094 (8)0.0142 (7)0.0000 (6)0.0016 (6)0.0014 (6)
O20.0087 (7)0.0118 (8)0.0181 (8)0.0005 (6)0.0013 (6)0.0012 (6)
O30.0224 (9)0.0174 (9)0.0175 (9)0.0029 (7)0.0051 (7)0.0030 (7)
O40.0250 (10)0.0228 (10)0.0237 (10)0.0053 (8)0.0051 (8)0.0068 (8)
O50.0148 (8)0.0154 (8)0.0120 (7)0.0021 (6)0.0019 (6)0.0032 (6)
O60.0135 (7)0.0151 (8)0.0144 (8)0.0012 (6)0.0007 (6)0.0049 (6)
O70.0288 (10)0.0179 (10)0.0275 (10)0.0044 (8)0.0037 (8)0.0001 (8)
O80.0184 (9)0.0366 (12)0.0305 (11)0.0099 (8)0.0025 (8)0.0026 (9)
N10.0169 (9)0.0138 (10)0.0181 (10)0.0024 (7)0.0002 (8)0.0021 (8)
N20.0204 (10)0.0178 (11)0.0137 (9)0.0049 (8)0.0012 (8)0.0004 (8)
C10.0140 (10)0.0113 (11)0.0164 (11)0.0027 (8)0.0004 (8)0.0023 (8)
C20.0167 (11)0.0139 (12)0.0264 (13)0.0007 (9)0.0003 (9)0.0013 (10)
C30.0182 (11)0.0162 (12)0.0299 (14)0.0012 (9)0.0099 (10)0.0040 (10)
C40.0229 (12)0.0191 (13)0.0164 (11)0.0073 (10)0.0057 (9)0.0014 (9)
C50.0178 (11)0.0127 (11)0.0149 (11)0.0032 (8)0.0024 (8)0.0005 (8)
C60.0100 (9)0.0100 (10)0.0185 (11)0.0021 (8)0.0015 (8)0.0002 (8)
C70.0136 (10)0.0113 (10)0.0104 (9)0.0026 (8)0.0001 (8)0.0033 (8)
C80.0126 (10)0.0114 (11)0.0138 (10)0.0001 (8)0.0018 (8)0.0022 (8)
C90.0132 (10)0.0134 (11)0.0132 (10)0.0001 (8)0.0025 (8)0.0032 (8)
C100.0149 (10)0.0146 (11)0.0176 (11)0.0027 (8)0.0012 (8)0.0010 (9)
C110.0232 (12)0.0250 (14)0.0145 (11)0.0040 (10)0.0002 (9)0.0012 (10)
C120.0273 (13)0.0242 (14)0.0151 (11)0.0021 (10)0.0033 (10)0.0078 (10)
C130.0222 (12)0.0157 (12)0.0197 (12)0.0031 (9)0.0063 (9)0.0033 (9)
C140.0196 (11)0.0153 (12)0.0155 (11)0.0029 (9)0.0016 (9)0.0000 (9)
Geometric parameters (Å, º) top
Cu1—O51.942 (2)C1—C21.384 (4)
Cu1—O6i1.946 (2)C1—C61.397 (3)
Cu1—O2ii1.950 (2)C2—C31.381 (4)
Cu1—O1iii2.008 (2)C2—H2A0.93
Cu1—O12.165 (2)C3—C41.383 (4)
Cu1—Cu1i2.5891 (5)C3—H3A0.93
Cl1—C41.729 (3)C4—C51.393 (4)
Cl2—C131.739 (3)C5—C61.390 (3)
O1—C71.279 (3)C5—H5A0.93
O1—Cu1iii2.0075 (17)C6—C71.490 (3)
O2—C71.246 (3)C8—C91.502 (3)
O2—Cu1iv1.9501 (17)C9—C101.388 (3)
O3—N11.221 (3)C9—C141.400 (3)
O4—N11.236 (3)C10—C111.382 (3)
O5—C81.263 (3)C11—C121.388 (4)
O6—C81.262 (3)C11—H11A0.93
O6—Cu1i1.9459 (16)C12—C131.380 (4)
O7—N21.223 (3)C12—H12A0.93
O8—N21.220 (3)C13—C141.383 (3)
N1—C11.466 (3)C14—H14A0.93
N2—C101.472 (3)
O5—Cu1—O6i170.11 (7)C4—C3—H3A120.3
O5—Cu1—O2ii88.98 (7)C3—C4—C5121.7 (2)
O6i—Cu1—O2ii90.41 (7)C3—C4—Cl1119.2 (2)
O5—Cu1—O1iii90.80 (7)C5—C4—Cl1119.1 (2)
O6i—Cu1—O1iii88.11 (7)C6—C5—C4119.3 (2)
O2ii—Cu1—O1iii170.10 (6)C6—C5—H5A120.3
O5—Cu1—O197.86 (7)C4—C5—H5A120.3
O6i—Cu1—O191.67 (6)C5—C6—C1118.1 (2)
O2ii—Cu1—O1108.91 (7)C5—C6—C7117.9 (2)
O1iii—Cu1—O180.92 (7)C1—C6—C7123.9 (2)
O5—Cu1—Cu1i85.61 (5)O2—C7—O1125.4 (2)
O6i—Cu1—Cu1i84.53 (5)O2—C7—C6118.2 (2)
O2ii—Cu1—Cu1i90.98 (5)O1—C7—C6116.31 (19)
O1iii—Cu1—Cu1i79.14 (5)O6—C8—O5126.5 (2)
O1—Cu1—Cu1i159.80 (5)O6—C8—C9116.6 (2)
C7—O1—Cu1iii127.17 (15)O5—C8—C9116.8 (2)
C7—O1—Cu1133.75 (15)C10—C9—C14117.8 (2)
Cu1iii—O1—Cu199.07 (7)C10—C9—C8123.8 (2)
C7—O2—Cu1iv117.23 (15)C14—C9—C8118.4 (2)
C8—O5—Cu1120.91 (15)C11—C10—C9122.9 (2)
C8—O6—Cu1i121.94 (15)C11—C10—N2115.9 (2)
O3—N1—O4123.8 (2)C9—C10—N2121.1 (2)
O3—N1—C1118.2 (2)C10—C11—C12118.8 (2)
O4—N1—C1118.0 (2)C10—C11—H11A120.6
O8—N2—O7124.6 (2)C12—C11—H11A120.6
O8—N2—C10118.2 (2)C13—C12—C11119.0 (2)
O7—N2—C10117.1 (2)C13—C12—H12A120.5
C2—C1—C6122.5 (2)C11—C12—H12A120.5
C2—C1—N1118.5 (2)C12—C13—C14122.2 (2)
C6—C1—N1119.0 (2)C12—C13—Cl2119.5 (2)
C3—C2—C1118.9 (2)C14—C13—Cl2118.3 (2)
C3—C2—H2A120.6C13—C14—C9119.3 (2)
C1—C2—H2A120.6C13—C14—H14A120.4
C2—C3—C4119.5 (3)C9—C14—H14A120.4
C2—C3—H3A120.3
O5—Cu1—O1—C789.7 (2)Cu1iii—O1—C7—O24.5 (3)
O6i—Cu1—O1—C792.9 (2)Cu1—O1—C7—O2174.59 (15)
O2ii—Cu1—O1—C71.9 (2)Cu1iii—O1—C7—C6179.81 (14)
O1iii—Cu1—O1—C7179.3 (2)Cu1—O1—C7—C60.7 (3)
Cu1i—Cu1—O1—C7171.52 (14)C5—C6—C7—O276.9 (3)
O5—Cu1—O1—Cu1iii89.55 (8)C1—C6—C7—O2107.4 (3)
O6i—Cu1—O1—Cu1iii87.82 (8)C5—C6—C7—O198.7 (2)
O2ii—Cu1—O1—Cu1iii178.83 (6)C1—C6—C7—O177.0 (3)
O1iii—Cu1—O1—Cu1iii0.000 (2)Cu1i—O6—C8—O58.8 (3)
Cu1i—Cu1—O1—Cu1iii9.18 (17)Cu1i—O6—C8—C9171.10 (15)
O2ii—Cu1—O5—C888.27 (18)Cu1—O5—C8—O67.7 (3)
O1iii—Cu1—O5—C881.83 (18)Cu1—O5—C8—C9172.23 (15)
O1—Cu1—O5—C8162.78 (18)O6—C8—C9—C10160.5 (2)
Cu1i—Cu1—O5—C82.79 (17)O5—C8—C9—C1019.5 (4)
O3—N1—C1—C2167.1 (2)O6—C8—C9—C1420.7 (3)
O4—N1—C1—C211.5 (3)O5—C8—C9—C14159.4 (2)
O3—N1—C1—C611.7 (3)C14—C9—C10—C111.9 (4)
O4—N1—C1—C6169.6 (2)C8—C9—C10—C11177.0 (2)
C6—C1—C2—C30.8 (4)C14—C9—C10—N2174.1 (2)
N1—C1—C2—C3177.9 (2)C8—C9—C10—N27.1 (4)
C1—C2—C3—C40.6 (4)O8—N2—C10—C1164.3 (3)
C2—C3—C4—C51.5 (4)O7—N2—C10—C11112.1 (3)
C2—C3—C4—Cl1177.4 (2)O8—N2—C10—C9119.4 (3)
C3—C4—C5—C60.8 (4)O7—N2—C10—C964.1 (3)
Cl1—C4—C5—C6178.02 (18)C9—C10—C11—C122.3 (4)
C4—C5—C6—C10.6 (3)N2—C10—C11—C12173.9 (2)
C4—C5—C6—C7175.3 (2)C10—C11—C12—C130.6 (4)
C2—C1—C6—C51.5 (3)C11—C12—C13—C141.5 (4)
N1—C1—C6—C5177.3 (2)C11—C12—C13—Cl2178.9 (2)
C2—C1—C6—C7174.2 (2)C12—C13—C14—C91.8 (4)
N1—C1—C6—C77.0 (3)Cl2—C13—C14—C9178.53 (19)
Cu1iv—O2—C7—O13.4 (3)C10—C9—C14—C130.2 (4)
Cu1iv—O2—C7—C6178.60 (15)C8—C9—C14—C13179.1 (2)
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4v0.932.443.254 (3)146
C11—H11A···O8vi0.932.463.384 (3)172
C14—H14A···O4i0.932.543.417 (3)156
Symmetry codes: (i) x, y, z+1; (v) x, y+1, z+1; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C7H3ClNO4)4]
Mr929.30
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.0353 (1), 11.8001 (3), 13.8595 (3)
α, β, γ (°)84.539 (2), 85.553 (1), 85.610 (2)
V3)815.30 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.47 × 0.21 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.498, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
11613, 4656, 3994
Rint0.034
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.116, 1.10
No. of reflections4656
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 1.04

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
Cu1—O51.942 (2)Cu1—O1iii2.008 (2)
Cu1—O6i1.946 (2)Cu1—O12.165 (2)
Cu1—O2ii1.950 (2)
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4iv0.932.443.254 (3)146
C11—H11A···O8v0.932.463.384 (3)172
C14—H14A···O4i0.932.543.417 (3)156
Symmetry codes: (i) x, y, z+1; (iv) x, y+1, z+1; (v) x+1, y, z.
 

Footnotes

On sabbatical leave at Universiti Sains Malaysia.

Acknowledgements

HKF thanks the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkins Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBalaraman, S., Venugopal, R., Palanisamy, U. M., Helen, S. & Mallayan, P. (2006). J. Inorg. Biochem. 100, 316–330.  Web of Science CSD CrossRef PubMed Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKabbani, A. T., Zaworotko, M. J., Abourahma, H., Walsh, R. D. B. & Hammud, H. H. (2004). J. Chem. Crystallogr. 11, 749–756.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStachová, P., Valigura, D., Koman, M., Melník, M., Korabik, M., Mrozińki, J. & Glowiak, T. (2004). Polyhedron, 23, 1303–1308.  Google Scholar
First citationTomoya, H., Yuko, K., Eriko, E., Takashi, S., Hidekazu, A., Makoto, C., Pitchumony, T. S. & Mallayan, P. (2005). J. Inorg. Biochem. 99, 1205–1219.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m211-m212
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds