organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2,3,6,7,8-Hexa­hydro­cinnolino[5,4,3-cde]cinnoline

aCollege of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, People's Republic of China
*Correspondence e-mail: haowenjuanxz@126.com

(Received 23 December 2008; accepted 27 December 2008; online 8 January 2009)

The title compound, C12H12N4, was synthesized by the reaction of hydrazine hydrate and 9-methyl-3,4,6,7-tetra­hydro-2H-xanthene-1,8(5H,9H)-dione in ethanol. In the crystal, the mol­ecule lies across an inversion centre. The pyridazine rings are coplanar and the C6 rings adopt envelope conformations.

Related literature

For the biological properties of cinnoline and its derivatives, see: Abdelrazek et al. (2006[Abdelrazek, F. M., Metz, P., Metwally, N. H. & El-Mahrouky, S. F. (2006). Arch. Pharm. 339, 456-460.]); Gomtsyan et al. (2005[Gomtsyan, A. et al. (2005). Med. Chem. 48, 744-752.]); Inoue et al. (1993[Inoue, S., Yasaki, A., Mochizuki, H., Tutsumi, H., Murata, M. & Sakane, K. (1993). Japanese Patent No. 05213951.]); Lewgowd & Stanczak (2007[Lewgowd, W. & Stanczak, A. (2007). Arch. Pharm. 340, 65-80.]); Lewgowd et al. (2005[Lewgowd, W., Stanczak, A., Ochocki, Z., Krajewska, U. & Rozalski, M. (2005). Acta Pol. Pharm. 62, 105-110.]); Singh et al. (2003[Singh, S. K., Ruchelman, A. L., Zhou, N., Li, T.-K., Liu, An., Liu, L. F. & Lavoie, E. J. (2003). Med. Chem. Res. 12, 1-12.]); Stefanska et al. (2003[Stefanska, B., Arciemiuk, M., Bontemps-Gracz, M. M., Dzieduszycka, M., Kupiec, A., Martelli, S. & Borowski, E. (2003). Bioorg. Med. Chem. 11, 561-572.]); Tutsumi et al. (1992[Tutsumi, H., Terasawa, T., Barret, D., Mutata, M., Sakane, K., Yazaki, A. & Inoue, S. (1992). Japanese Patent No. 9215584; Chem. Abstr. 118, 254944w.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N4

  • Mr = 212.26

  • Monoclinic, P 21 /c

  • a = 9.698 (5) Å

  • b = 5.875 (3) Å

  • c = 10.023 (5) Å

  • β = 117.314 (6)°

  • V = 507.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.55 × 0.41 × 0.09 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.953, Tmax = 0.992

  • 2508 measured reflections

  • 890 independent reflections

  • 575 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.123

  • S = 1.01

  • 890 reflections

  • 97 parameters

  • All H-atom parameters refined

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is well known that six-membered nitrogen-containing heterocycles are abundant in numerous natural products that exhibit important biological properties. For example, cinnolines and their derivatives exhibit a diverse range of biological properties (Lewgowd & Stanczak, 2007) such as molluscicidal activity (Abdelrazek et al., 2006), cytotoxic activity (Lewgowd et al., 2005), transient receptor potential vanilloid 1 (TRPV1) receptor antagonists (Gomtsyan et al., 2005), and topoisomerase I (TOP1)-targeting activity and cytotoxicity (Singh et al., 2003). They also acted as anticancer agents active on a multidrug resistant cell line (Stefanska et al., 2003). They can also be used as bactericides in pharmaceutical industry (Inoue et al., 1993; Tutsumi et al.,1992). The chemistry of cinnolines has received much attention based on the above facts.

The title molecule lies across an inversion centre (Fig. 1). The two pyridazine rings (C1/C2/C2A/C3A/N2/N1 and C1A/C2A/C2/C3/N2A/N1A) are conjugated and are coplanar. The two cyclohexene rings (C1—C6 and C1A—C6A) adopt envelope conformations, with atoms C5 and C5A deviate from the C1/C2/C3/C4/C6 and C1A/C2A/C3A/C4A/C6A planes by 0.656 (3) and 0.656 (3) Å, respectively.

A view of the crystal packing is shown in Fig.2.

Related literature top

For the biological properties of cinnoline and their derivatives, see: Abdelrazek et al. (2006); Gomtsyan et al. (2005); Inoue et al. (1993); Lewgowd & Stanczak (2007); Lewgowd et al. (2005); Singh et al. (2003); Stefanska et al. (2003); Tutsumi et al. (1992).

Experimental top

The title compound was prepared by the reaction of 3,4,6,7-tetrahydro -9-methyl-2H-xanthene-1,8(5H,9H)-dione (2 mmol) and hydrazine hydrate 80% (8 mmol) in ethanol (8 ml) stirring at 353 K (yield 84%; m.p. 543–544 K). Single crystals suitable for X-ray diffraction were obtained from an ethanol solution by slow evaporation.

Refinement top

All H atoms were located in a difference Fourier map and refined freely [C-H = 0.95 (2)-1.04 (2) Å].

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Atoms labelled with the suffix A are generated by the symmetry operation (1-x, -y, 1-z).
[Figure 2] Fig. 2. Molecular packing in the title compound, viewed approximately along the a axis.
1,2,3,6,7,8-Hexahydrocinnolino[5,4,3-cde]cinnoline top
Crystal data top
C12H12N4F(000) = 224
Mr = 212.26Dx = 1.389 Mg m3
Monoclinic, P21/cMelting point = 543–544 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.698 (5) ÅCell parameters from 734 reflections
b = 5.875 (3) Åθ = 2.4–26.3°
c = 10.023 (5) ŵ = 0.09 mm1
β = 117.314 (6)°T = 298 K
V = 507.4 (4) Å3Plate, colourless
Z = 20.55 × 0.41 × 0.09 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
890 independent reflections
Radiation source: fine-focus sealed tube575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.953, Tmax = 0.992k = 66
2508 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0655P)2 + 0.0552P]
where P = (Fo2 + 2Fc2)/3
890 reflections(Δ/σ)max = 0.001
97 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C12H12N4V = 507.4 (4) Å3
Mr = 212.26Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.698 (5) ŵ = 0.09 mm1
b = 5.875 (3) ÅT = 298 K
c = 10.023 (5) Å0.55 × 0.41 × 0.09 mm
β = 117.314 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
890 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
575 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.992Rint = 0.028
2508 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.123All H-atom parameters refined
S = 1.01Δρmax = 0.16 e Å3
890 reflectionsΔρmin = 0.15 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7159 (2)0.2597 (3)0.65617 (19)0.0547 (6)
N20.5861 (2)0.3398 (3)0.66438 (18)0.0555 (6)
C10.7050 (2)0.0820 (4)0.5729 (2)0.0466 (6)
C20.56377 (19)0.0384 (3)0.49395 (18)0.0390 (5)
C30.5474 (2)0.2352 (3)0.4062 (2)0.0450 (5)
C40.6864 (3)0.3211 (5)0.3949 (3)0.0581 (7)
C50.8354 (3)0.2567 (4)0.5326 (3)0.0647 (7)
C60.8445 (3)0.0004 (4)0.5597 (3)0.0621 (7)
H10.682 (2)0.250 (4)0.305 (3)0.065 (6)*
H20.678 (2)0.487 (4)0.382 (2)0.076 (7)*
H30.930 (3)0.308 (4)0.522 (3)0.086 (8)*
H40.839 (3)0.340 (4)0.623 (3)0.079 (7)*
H50.846 (2)0.086 (4)0.470 (2)0.072 (7)*
H60.936 (3)0.039 (4)0.649 (3)0.081 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0567 (12)0.0508 (12)0.0500 (10)0.0164 (9)0.0187 (9)0.0061 (8)
N20.0652 (12)0.0458 (11)0.0474 (11)0.0115 (9)0.0189 (9)0.0086 (8)
C10.0501 (12)0.0467 (12)0.0395 (10)0.0102 (10)0.0175 (9)0.0019 (10)
C20.0445 (11)0.0386 (11)0.0306 (9)0.0072 (8)0.0146 (8)0.0029 (8)
C30.0574 (13)0.0386 (12)0.0351 (10)0.0051 (10)0.0178 (9)0.0010 (9)
C40.0737 (17)0.0505 (15)0.0555 (14)0.0061 (12)0.0344 (13)0.0027 (12)
C50.0595 (15)0.0680 (17)0.0681 (16)0.0087 (13)0.0306 (13)0.0101 (13)
C60.0484 (14)0.0707 (18)0.0650 (16)0.0111 (11)0.0242 (13)0.0033 (12)
Geometric parameters (Å, º) top
N1—C11.310 (3)C4—C51.518 (3)
N1—N21.381 (2)C4—H10.98 (2)
N2—C3i1.309 (3)C4—H20.98 (2)
C1—C21.417 (3)C5—C61.526 (3)
C1—C61.499 (3)C5—H31.01 (2)
C2—C2i1.373 (3)C5—H41.01 (2)
C2—C31.417 (3)C6—H51.04 (2)
C3—N2i1.309 (3)C6—H60.95 (2)
C3—C41.492 (3)
C1—N1—N2120.01 (17)C5—C4—H2111.0 (13)
C3i—N2—N1120.67 (18)H1—C4—H2109.4 (18)
N1—C1—C2121.89 (19)C4—C5—C6111.2 (2)
N1—C1—C6120.07 (18)C4—C5—H3111.1 (13)
C2—C1—C6118.0 (2)C6—C5—H3109.2 (14)
C2i—C2—C3118.3 (2)C4—C5—H4108.6 (14)
C2i—C2—C1117.8 (2)C6—C5—H4110.1 (13)
C3—C2—C1123.94 (17)H3—C5—H4106.5 (19)
N2i—C3—C2121.33 (19)C1—C6—C5110.70 (19)
N2i—C3—C4120.3 (2)C1—C6—H5107.1 (12)
C2—C3—C4118.39 (18)C5—C6—H5110.5 (12)
C3—C4—C5111.3 (2)C1—C6—H6109.2 (14)
C3—C4—H1105.8 (12)C5—C6—H6111.1 (15)
C5—C4—H1110.6 (12)H5—C6—H6108.2 (19)
C3—C4—H2108.6 (13)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H12N4
Mr212.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.698 (5), 5.875 (3), 10.023 (5)
β (°) 117.314 (6)
V3)507.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.55 × 0.41 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.953, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
2508, 890, 575
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.123, 1.01
No. of reflections890
No. of parameters97
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationAbdelrazek, F. M., Metz, P., Metwally, N. H. & El-Mahrouky, S. F. (2006). Arch. Pharm. 339, 456–460.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGomtsyan, A. et al. (2005). Med. Chem. 48, 744–752.  Web of Science CrossRef CAS Google Scholar
First citationInoue, S., Yasaki, A., Mochizuki, H., Tutsumi, H., Murata, M. & Sakane, K. (1993). Japanese Patent No. 05213951.  Google Scholar
First citationLewgowd, W. & Stanczak, A. (2007). Arch. Pharm. 340, 65–80.  Web of Science CrossRef CAS Google Scholar
First citationLewgowd, W., Stanczak, A., Ochocki, Z., Krajewska, U. & Rozalski, M. (2005). Acta Pol. Pharm. 62, 105–110.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S. K., Ruchelman, A. L., Zhou, N., Li, T.-K., Liu, An., Liu, L. F. & Lavoie, E. J. (2003). Med. Chem. Res. 12, 1–12.  CAS Google Scholar
First citationStefanska, B., Arciemiuk, M., Bontemps-Gracz, M. M., Dzieduszycka, M., Kupiec, A., Martelli, S. & Borowski, E. (2003). Bioorg. Med. Chem. 11, 561–572.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTutsumi, H., Terasawa, T., Barret, D., Mutata, M., Sakane, K., Yazaki, A. & Inoue, S. (1992). Japanese Patent No. 9215584; Chem. Abstr. 118, 254944w.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds