organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl 3-(2-methyl-1-phenyl­sulfonyl-1H-indol-3-yl)but-2-enoate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 24 December 2008; accepted 23 January 2009; online 31 January 2009)

In the title compound, C20H19NO4S, the indole ring system is planar [r.m.s. deviation = 0.023 (2) Å]. The sulfonyl-bound phenyl ring is almost perpendicular to the indole ring system [dihedral angle = 86.75 (7)°]. The ester group is almost planar (r.m.s. deviation = 0.030 Å) and is oriented at an angle of 62.53 (5)° with respect to the indole ring system. Mol­ecules are linked into a two-dimensional network parallel to the ab plane by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the biological activities of indole and its derivatives, see: Chandrakantha et al. (1992[Chandrakantha, T. N., Puttaraja, & Nethaji, M. (1992). Acta Cryst. C48, 60-62.]); Rodriguez et al. (1985[Rodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813-3823.]). For related literature For the configuration at the S atom, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). For the N atom hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19NO4S

  • Mr = 369.42

  • Monoclinic, P 21 /c

  • a = 8.9498 (3) Å

  • b = 8.8427 (2) Å

  • c = 23.2836 (7) Å

  • β = 97.085 (1)°

  • V = 1828.60 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 (2) K

  • 0.25 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.957, Tmax = 0.968

  • 23203 measured reflections

  • 5673 independent reflections

  • 3833 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.137

  • S = 1.01

  • 5673 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.58 3.391 (2) 146
C13—H13⋯O3ii 0.93 2.50 3.277 (2) 141
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Indole and its derivatives have long been known for their chemical and biological activities (Chandrakantha et al., 1992). The indole ring system is present in a number of natural products, many of which are found to possess pharmacological properties like anti-microbial, anti-inflammatory and anti-implantation activities (Rodriguez et al., 1985).

Due to Thorpe–Ignold effect (Bassindale, 1984), bond angles around atom S1 show significant deviation from ideal tetrahedral value, with significant deviations in angles O1—S1—O2 [120.37 (9)°] and N1—S1—C10 [104.96 (6)°]. The indole ring system is essentially planar. The sum of the bond angles around atom N1 (355.9°) indicates sp2 hybridization (Beddoes et al., 1986). The sulfonyl bound phenyl ring is oriented almost perpendicular to the indole ring system as can be seen from the dihedral angle of 86.75 (7)°. The ester group attached to the indole ring system adopts an extended conformation which is confirmed by the torsion angles C3—C17—C19—C20 = -177.59 (14)°, C17—C19—C20—O4 = -176.02 (15)° and C19—C20—O4—C21 = -178.62 (15)°.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into a two-dimensional network parallel to the ab plane (Fig. 2).

Related literature top

For the biological activities of indole and its derivatives, see: Chandrakantha et al. (1992); Rodriguez et al. (1985). For related literature, see: Bassindale (1984); Beddoes et al. (1986).

Experimental top

To a stirred suspension of NaH (29 mg, 1.20 mmol, hexane washed) in THF (5 ml), a solution of vinyl indole (0.23 g, 1 mmol) in THF (5 ml) was added and stirred for 30 min at room temperature. To the reaction mixture, a solution of PhSO2Cl (0.21 g, 1.20 mmol) was added and stirring was continued for further 6 h. After the indole was consumed (monitored by TLC), the reaction mixture was quenched with cold diluted HCl (25 ml), extracted with ethyl acetate (2 × 10 ml) and dried (Na2SO4). Removal of solvent followed by recrystallization (MeOH) afforded yellow crystals of the title compound.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 20% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed down the a axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
(E)-Methyl 3-(2-methyl-1-phenylsulfonyl-1H-indol-3-yl)but-2-enoate top
Crystal data top
C20H19NO4SF(000) = 776
Mr = 369.42Dx = 1.342 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5673 reflections
a = 8.9498 (3) Åθ = 2.3–31.0°
b = 8.8427 (2) ŵ = 0.20 mm1
c = 23.2836 (7) ÅT = 293 K
β = 97.085 (1)°Block, yellow
V = 1828.60 (9) Å30.25 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5673 independent reflections
Radiation source: fine-focus sealed tube3833 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 31.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1211
Tmin = 0.957, Tmax = 0.968k = 712
23203 measured reflectionsl = 3233
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.402P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.016
5673 reflectionsΔρmax = 0.30 e Å3
239 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0057 (11)
Crystal data top
C20H19NO4SV = 1828.60 (9) Å3
Mr = 369.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9498 (3) ŵ = 0.20 mm1
b = 8.8427 (2) ÅT = 293 K
c = 23.2836 (7) Å0.25 × 0.20 × 0.16 mm
β = 97.085 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5673 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3833 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.968Rint = 0.026
23203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.01Δρmax = 0.30 e Å3
5673 reflectionsΔρmin = 0.29 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.71830 (17)0.73053 (17)0.13969 (7)0.0461 (3)
C30.85936 (15)0.68775 (16)0.13101 (6)0.0406 (3)
C40.89541 (15)0.54808 (16)0.16149 (6)0.0408 (3)
C50.77241 (15)0.50989 (17)0.19043 (6)0.0430 (3)
C60.77105 (19)0.3804 (2)0.22371 (7)0.0587 (4)
H60.68890.35620.24280.070*
C70.8966 (2)0.2887 (2)0.22744 (8)0.0703 (5)
H70.89830.20010.24900.084*
C81.0202 (2)0.3256 (2)0.19985 (9)0.0682 (5)
H81.10360.26210.20360.082*
C91.02144 (17)0.45440 (19)0.16699 (7)0.0546 (4)
H91.10500.47860.14870.065*
C100.42383 (15)0.44900 (18)0.13523 (7)0.0462 (3)
C110.38591 (18)0.4876 (2)0.07757 (7)0.0550 (4)
H110.39460.58710.06550.066*
C120.3352 (2)0.3766 (2)0.03848 (9)0.0702 (5)
H120.30970.40090.00030.084*
C130.3223 (2)0.2295 (2)0.05676 (10)0.0739 (6)
H130.28700.15530.03020.089*
C140.3607 (2)0.1917 (2)0.11349 (11)0.0720 (5)
H140.35240.09190.12530.086*
C150.41202 (19)0.3013 (2)0.15350 (9)0.0598 (4)
H150.43820.27600.19220.072*
C160.6333 (2)0.8675 (2)0.11697 (10)0.0724 (5)
H16A0.61510.93150.14870.109*
H16B0.53890.83740.09600.109*
H16C0.69110.92180.09160.109*
C170.96483 (16)0.77322 (16)0.09861 (6)0.0430 (3)
C181.0118 (2)0.92731 (19)0.12070 (8)0.0648 (5)
H18A1.11280.92310.14000.097*
H18B0.94520.96090.14740.097*
H18C1.00740.99670.08880.097*
C191.01726 (16)0.70573 (17)0.05409 (7)0.0466 (3)
H190.98200.60900.04440.056*
C201.12631 (18)0.77169 (18)0.01894 (7)0.0497 (4)
C211.2556 (2)0.7283 (2)0.06194 (8)0.0670 (5)
H21A1.20730.79560.09090.101*
H21B1.29380.64190.08040.101*
H21C1.33730.78010.03950.101*
N10.66229 (13)0.62376 (15)0.17753 (5)0.0465 (3)
O10.48023 (16)0.53321 (19)0.24184 (5)0.0801 (4)
O20.40094 (14)0.72716 (15)0.16816 (7)0.0756 (4)
O31.1914 (2)0.88897 (17)0.02638 (7)0.0984 (6)
O41.14823 (13)0.67953 (13)0.02447 (5)0.0583 (3)
S10.48136 (4)0.59233 (5)0.185184 (18)0.05532 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0440 (7)0.0399 (7)0.0552 (8)0.0028 (6)0.0092 (6)0.0070 (6)
C30.0391 (7)0.0365 (7)0.0464 (7)0.0050 (6)0.0066 (5)0.0042 (6)
C40.0347 (6)0.0432 (7)0.0444 (7)0.0066 (6)0.0039 (5)0.0023 (6)
C50.0372 (7)0.0527 (8)0.0390 (7)0.0063 (6)0.0038 (5)0.0022 (6)
C60.0520 (9)0.0750 (12)0.0489 (8)0.0117 (8)0.0058 (7)0.0168 (8)
C70.0648 (11)0.0738 (13)0.0695 (11)0.0025 (10)0.0021 (9)0.0318 (10)
C80.0492 (9)0.0664 (12)0.0872 (13)0.0085 (9)0.0006 (9)0.0222 (10)
C90.0373 (7)0.0568 (10)0.0698 (10)0.0002 (7)0.0074 (7)0.0080 (8)
C100.0295 (6)0.0496 (8)0.0607 (9)0.0002 (6)0.0104 (6)0.0014 (7)
C110.0497 (9)0.0484 (9)0.0661 (10)0.0034 (7)0.0034 (7)0.0018 (7)
C120.0663 (12)0.0699 (12)0.0706 (12)0.0108 (10)0.0063 (9)0.0070 (9)
C130.0593 (11)0.0595 (12)0.0994 (15)0.0112 (9)0.0042 (10)0.0160 (11)
C140.0521 (10)0.0459 (10)0.1173 (17)0.0077 (8)0.0082 (10)0.0056 (10)
C150.0433 (8)0.0582 (10)0.0782 (11)0.0038 (7)0.0079 (8)0.0114 (9)
C160.0593 (11)0.0506 (10)0.1084 (16)0.0094 (8)0.0149 (10)0.0063 (10)
C170.0406 (7)0.0369 (7)0.0511 (8)0.0059 (6)0.0045 (6)0.0012 (6)
C180.0794 (12)0.0473 (9)0.0714 (11)0.0209 (9)0.0234 (9)0.0137 (8)
C190.0461 (8)0.0376 (7)0.0576 (8)0.0109 (6)0.0119 (6)0.0019 (6)
C200.0513 (8)0.0421 (8)0.0574 (9)0.0096 (7)0.0139 (7)0.0024 (7)
C210.0692 (11)0.0700 (12)0.0673 (11)0.0114 (9)0.0306 (9)0.0010 (9)
N10.0389 (6)0.0512 (7)0.0510 (7)0.0031 (5)0.0118 (5)0.0068 (5)
O10.0728 (8)0.1164 (12)0.0584 (7)0.0149 (8)0.0369 (6)0.0148 (7)
O20.0534 (7)0.0642 (8)0.1135 (11)0.0126 (6)0.0278 (7)0.0269 (8)
O30.1299 (14)0.0687 (9)0.1106 (12)0.0562 (9)0.0702 (10)0.0333 (8)
O40.0646 (7)0.0522 (7)0.0626 (7)0.0135 (6)0.0255 (5)0.0074 (5)
S10.0418 (2)0.0660 (3)0.0624 (3)0.00185 (18)0.02337 (17)0.01782 (19)
Geometric parameters (Å, º) top
C2—C31.357 (2)C13—H130.93
C2—N11.4241 (19)C14—C151.383 (3)
C2—C161.493 (2)C14—H140.93
C3—C41.441 (2)C15—H150.93
C3—C171.4857 (19)C16—H16A0.96
C4—C91.393 (2)C16—H16B0.96
C4—C51.4012 (19)C16—H16C0.96
C5—C61.383 (2)C17—C191.331 (2)
C5—N11.415 (2)C17—C181.498 (2)
C6—C71.380 (3)C18—H18A0.96
C6—H60.93C18—H18B0.96
C7—C81.385 (3)C18—H18C0.96
C7—H70.93C19—C201.470 (2)
C8—C91.373 (2)C19—H190.93
C8—H80.93C20—O31.1915 (19)
C9—H90.93C20—O41.3315 (19)
C10—C151.381 (2)C21—O41.4415 (19)
C10—C111.386 (2)C21—H21A0.96
C10—S11.7540 (16)C21—H21B0.96
C11—C121.377 (3)C21—H21C0.96
C11—H110.93N1—S11.6740 (12)
C12—C131.378 (3)O1—S11.4202 (14)
C12—H120.93O2—S11.4234 (14)
C13—C141.365 (3)
C3—C2—N1108.20 (13)C10—C15—H15120.4
C3—C2—C16128.09 (15)C14—C15—H15120.4
N1—C2—C16123.67 (14)C2—C16—H16A109.5
C2—C3—C4108.77 (12)C2—C16—H16B109.5
C2—C3—C17126.51 (13)H16A—C16—H16B109.5
C4—C3—C17124.64 (12)C2—C16—H16C109.5
C9—C4—C5119.20 (14)H16A—C16—H16C109.5
C9—C4—C3133.22 (14)H16B—C16—H16C109.5
C5—C4—C3107.57 (13)C19—C17—C3118.34 (13)
C6—C5—C4122.05 (14)C19—C17—C18124.36 (14)
C6—C5—N1130.83 (13)C3—C17—C18117.20 (13)
C4—C5—N1107.12 (13)C17—C18—H18A109.5
C7—C6—C5117.28 (15)C17—C18—H18B109.5
C7—C6—H6121.4H18A—C18—H18B109.5
C5—C6—H6121.4C17—C18—H18C109.5
C6—C7—C8121.55 (17)H18A—C18—H18C109.5
C6—C7—H7119.2H18B—C18—H18C109.5
C8—C7—H7119.2C17—C19—C20125.32 (14)
C9—C8—C7121.06 (17)C17—C19—H19117.3
C9—C8—H8119.5C20—C19—H19117.3
C7—C8—H8119.5O3—C20—O4121.87 (14)
C8—C9—C4118.85 (15)O3—C20—C19127.63 (15)
C8—C9—H9120.6O4—C20—C19110.48 (13)
C4—C9—H9120.6O4—C21—H21A109.5
C15—C10—C11120.80 (16)O4—C21—H21B109.5
C15—C10—S1120.41 (13)H21A—C21—H21B109.5
C11—C10—S1118.76 (12)O4—C21—H21C109.5
C12—C11—C10119.07 (17)H21A—C21—H21C109.5
C12—C11—H11120.5H21B—C21—H21C109.5
C10—C11—H11120.5C5—N1—C2108.30 (11)
C11—C12—C13120.15 (19)C5—N1—S1121.12 (10)
C11—C12—H12119.9C2—N1—S1126.50 (11)
C13—C12—H12119.9C20—O4—C21116.60 (13)
C14—C13—C12120.61 (19)O1—S1—O2120.37 (9)
C14—C13—H13119.7O1—S1—N1106.13 (7)
C12—C13—H13119.7O2—S1—N1107.09 (8)
C13—C14—C15120.24 (18)O1—S1—C10108.35 (9)
C13—C14—H14119.9O2—S1—C10108.88 (8)
C15—C14—H14119.9N1—S1—C10104.96 (6)
C10—C15—C14119.12 (18)
N1—C2—C3—C42.26 (16)C2—C3—C17—C1860.7 (2)
C16—C2—C3—C4179.74 (16)C4—C3—C17—C18115.44 (17)
N1—C2—C3—C17174.38 (13)C3—C17—C19—C20177.59 (14)
C16—C2—C3—C173.1 (3)C18—C17—C19—C201.3 (3)
C2—C3—C4—C9179.15 (16)C17—C19—C20—O35.1 (3)
C17—C3—C4—C94.1 (3)C17—C19—C20—O4176.02 (15)
C2—C3—C4—C51.70 (16)C6—C5—N1—C2178.24 (16)
C17—C3—C4—C5175.01 (13)C4—C5—N1—C20.92 (15)
C9—C4—C5—C61.0 (2)C6—C5—N1—S119.6 (2)
C3—C4—C5—C6179.68 (14)C4—C5—N1—S1159.59 (10)
C9—C4—C5—N1179.72 (13)C3—C2—N1—C52.00 (16)
C3—C4—C5—N10.44 (15)C16—C2—N1—C5179.62 (15)
C4—C5—C6—C70.1 (2)C3—C2—N1—S1159.21 (11)
N1—C5—C6—C7178.98 (16)C16—C2—N1—S123.2 (2)
C5—C6—C7—C81.0 (3)O3—C20—O4—C210.4 (3)
C6—C7—C8—C90.9 (3)C19—C20—O4—C21178.62 (15)
C7—C8—C9—C40.3 (3)C5—N1—S1—O150.95 (13)
C5—C4—C9—C81.2 (2)C2—N1—S1—O1154.49 (13)
C3—C4—C9—C8179.75 (17)C5—N1—S1—O2179.29 (11)
C15—C10—C11—C120.4 (2)C2—N1—S1—O224.73 (14)
S1—C10—C11—C12177.57 (14)C5—N1—S1—C1063.66 (12)
C10—C11—C12—C130.2 (3)C2—N1—S1—C1090.89 (13)
C11—C12—C13—C140.6 (3)C15—C10—S1—O111.22 (15)
C12—C13—C14—C150.6 (3)C11—C10—S1—O1166.71 (12)
C11—C10—C15—C140.4 (2)C15—C10—S1—O2143.79 (13)
S1—C10—C15—C14177.49 (13)C11—C10—S1—O234.14 (14)
C13—C14—C15—C100.1 (3)C15—C10—S1—N1101.83 (13)
C2—C3—C17—C19122.74 (17)C11—C10—S1—N180.24 (13)
C4—C3—C17—C1961.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.583.391 (2)146
C13—H13···O3ii0.932.503.277 (2)141
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC20H19NO4S
Mr369.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.9498 (3), 8.8427 (2), 23.2836 (7)
β (°) 97.085 (1)
V3)1828.60 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.25 × 0.20 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.957, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
23203, 5673, 3833
Rint0.026
(sin θ/λ)max1)0.724
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.137, 1.01
No. of reflections5673
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.583.391 (2)146
C13—H13···O3ii0.932.503.277 (2)141
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y1, z.
 

Acknowledgements

TK thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection.

References

First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrakantha, T. N., Puttaraja, & Nethaji, M. (1992). Acta Cryst. C48, 60–62.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813–3823.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds