metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromidobis(tri­phenyl­arsine)palladium(II)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: leokirsten@gmail.com

(Received 24 November 2008; accepted 15 January 2009; online 23 January 2009)

In the title compound, [PdBr2(C18H15As)2], the PdII ion resides on a centre of symmetry and is coordinated by two As atoms [Pd—As = 2.4184 (3) Å] and two Br anions [Pd—Br = 2.4196 (3) Å] in a slightly distorted square-planar geometry [As—Pd—Br = 90.12 (1)°]. The crystal packing exhibits weak inter­molecular C—H⋯Br inter­actions.

Related literature

For similar palladium structures containing triphenyl­phosphine and bromido moieties, see: Crawforth et al. (2005[Crawforth, C. M., Burling, S., Fairlamb, I. J. S., Kapdi, A. R., Taylor, R. J. K. & Whitwood, A. C. (2005). Tetrahedron, 61, 9736-9751.]); Stark & Whitmire (1997[Stark, J. L. & Whitmire, K. H. (1997). Priv. Commun. 34, 9700007.]); Rodriguez et al. (2007[Rodriguez, N., de Arellano, C. R., Asensio, G. & Medio-Simon, M. (2007). Chem. Eur. J. 13, 4223-4229.]). For the crystal structures of related bromido arsine complexes, see: Singh et al. (1999[Singh, A. K., Amburose, C. V., Kraemer, T. S. & Jasinski, J. P. (1999). J. Organomet. Chem. 592, 251-257.]); Phadnis et al. (2003a[Phadnis, P. P., Jain, V. K., Klein, A., Schurr, T. & Kaim, W. (2003a). New J. Chem. 27, 1584-1591.],b[Phadnis, P. P., Jain, V. K., Klein, A., Weber, M. & Kaim, W. (2003b). Inorg. Chim. Acta, 346, 119-128.]).

[Scheme 1]

Experimental

Crystal data
  • [PdBr2(C18H15As)2]

  • Mr = 878.66

  • Monoclinic, P 21 /n

  • a = 9.3754 (11) Å

  • b = 19.545 (3) Å

  • c = 9.8151 (13) Å

  • β = 112.798 (3)°

  • V = 1658.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.97 mm−1

  • T = 100 (2) K

  • 0.32 × 0.23 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.264, Tmax = 0.408

  • 18511 measured reflections

  • 3619 independent reflections

  • 3245 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.043

  • S = 1.04

  • 3619 reflections

  • 187 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Bri 0.95 2.90 3.807 (3) 160
C25—H25⋯Brii 0.95 2.98 3.914 (3) 168
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker 2004[Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Palladium complexes containing phosphine and bromo derivatives have been investigated in the past (Crawforth et al., 2005; Stark et al., 1997; Rodriguez et al., 2007). The effect of phosphine substitution by arsine moieties in these complexes have received limited attention. Up to date the structures of only a few bromo arsine complexes have been characterized (Singh et al., 1999; Phadnis et al., 2003a; Phadnis et al., 2003b).

The title compound, (I), crystallizes in the P21/n space group with the Pd atom on a centre of symmetry (0.5, 0.5, 0.5). A staggered conformation of the two triphenyl arsine fragments is supported by the Br—Pd—As—Cn torsion angles of -98.07 (6)° (Cn=C11), 146.61 (7)° (Cn=C21) and 22.87 (7)° (Cn=C31), respectively. A weak intermolecular interaction is observed between the bromo moiety and the hydrogen atoms of the triphenylarsine ligand (Table 2).

Related literature top

For similar palladium structures containing triphenylphosphine and bromo moieties, see: Crawforth et al. (2005); Stark & Whitmire (1997); Rodriguez et al. (2007). For the crystal structures of related bromo arsine complexes, see: Singh et al. (1999); Phadnis et al. (2003a,b).

Experimental top

The title compound was synthesized by the addition of AsPh3 (17 mg, 0.0059 mmol) to an acetone solution (15 cm3) of Pd(Br)2(COD) (10 mg, 0.027 mmol). Crystals suitable for diffraction were obtained by slow evaporation of the reaction mixture (yield 15 mg, 64%).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(parent).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: (i) 1-x, 1-y, 1-z]. Hydrogen atoms have been omitted for clarity.
Dibromidobis(triphenylarsine)palladium(II) top
Crystal data top
[PdBr2(C18H15As)2]F(000) = 856
Mr = 878.66Dx = 1.760 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8105 reflections
a = 9.3754 (11) Åθ = 2.5–28.3°
b = 19.545 (3) ŵ = 4.97 mm1
c = 9.8151 (13) ÅT = 100 K
β = 112.798 (3)°Cuboid, orange
V = 1658.1 (4) Å30.32 × 0.23 × 0.18 mm
Z = 2
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
3619 independent reflections
Radiation source: fine-focus sealed tube3245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 512 pixels mm-1θmax = 27.0°, θmin = 2.1°
ϕ and ω scansh = 1011
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 2324
Tmin = 0.264, Tmax = 0.408l = 1211
18511 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0179P)2 + 0.8574P]
where P = (Fo2 + 2Fc2)/3
3619 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.50 e Å3
8 restraintsΔρmin = 0.34 e Å3
Crystal data top
[PdBr2(C18H15As)2]V = 1658.1 (4) Å3
Mr = 878.66Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.3754 (11) ŵ = 4.97 mm1
b = 19.545 (3) ÅT = 100 K
c = 9.8151 (13) Å0.32 × 0.23 × 0.18 mm
β = 112.798 (3)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
3619 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3245 reflections with I > 2σ(I)
Tmin = 0.264, Tmax = 0.408Rint = 0.028
18511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0198 restraints
wR(F2) = 0.043H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
3619 reflectionsΔρmin = 0.34 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.50000.50000.50000.01115 (5)
As0.47028 (2)0.402209 (10)0.63768 (2)0.01207 (5)
C110.5474 (2)0.32083 (11)0.5777 (2)0.0159 (4)
C120.6082 (3)0.26633 (13)0.6727 (3)0.0326 (6)
H120.61780.26900.77250.039*
C130.6551 (3)0.20769 (14)0.6211 (3)0.0433 (7)
H130.69800.17050.68650.052*
C140.6401 (3)0.20317 (14)0.4774 (3)0.0415 (7)
H140.67160.16280.44280.050*
C150.5795 (3)0.25703 (15)0.3832 (3)0.0409 (7)
H150.56890.25390.28310.049*
C160.5337 (2)0.31601 (12)0.4331 (2)0.0251 (5)
H160.49280.35330.36740.030*
C210.2577 (2)0.37831 (11)0.6001 (2)0.0165 (4)
C220.2010 (2)0.31345 (12)0.5546 (2)0.0210 (5)
H220.26660.27920.54190.025*
C230.0471 (3)0.29836 (14)0.5275 (2)0.0300 (6)
H230.00670.25420.49360.036*
C240.0461 (3)0.34754 (15)0.5498 (3)0.0343 (6)
H240.15000.33670.53420.041*
C250.0092 (3)0.41231 (15)0.5943 (3)0.0359 (6)
H250.05640.44600.60920.043*
C260.1618 (3)0.42845 (13)0.6177 (3)0.0269 (5)
H260.19980.47350.64540.032*
C310.5682 (2)0.40056 (11)0.8519 (2)0.0181 (4)
C320.4806 (3)0.40942 (11)0.9370 (2)0.0250 (5)
H320.37190.41590.89000.030*
C330.5505 (3)0.40885 (13)1.0895 (3)0.0357 (6)
H330.48990.41511.14690.043*
C340.7067 (4)0.39928 (14)1.1579 (3)0.0411 (7)
H340.75400.39821.26280.049*
C350.7966 (3)0.39115 (14)1.0751 (3)0.0397 (7)
H350.90520.38501.12330.048*
C360.7278 (3)0.39204 (13)0.9216 (3)0.0288 (5)
H360.78910.38690.86460.035*
Br0.73567 (2)0.531376 (11)0.70471 (2)0.01978 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.01348 (10)0.00966 (11)0.01033 (10)0.00012 (8)0.00462 (8)0.00050 (8)
As0.01394 (9)0.01108 (11)0.01179 (10)0.00054 (7)0.00563 (7)0.00151 (8)
C110.0129 (9)0.0133 (11)0.0210 (10)0.0004 (8)0.0059 (8)0.0019 (8)
C120.0415 (13)0.0221 (13)0.0324 (13)0.0100 (11)0.0123 (11)0.0061 (10)
C130.0366 (14)0.0201 (14)0.0622 (19)0.0120 (11)0.0070 (13)0.0035 (13)
C140.0289 (13)0.0295 (16)0.0652 (19)0.0042 (11)0.0171 (13)0.0202 (14)
C150.0450 (15)0.0405 (17)0.0433 (16)0.0013 (13)0.0236 (13)0.0184 (13)
C160.0283 (11)0.0247 (13)0.0247 (12)0.0017 (10)0.0129 (9)0.0042 (10)
C210.0147 (9)0.0209 (11)0.0150 (10)0.0005 (8)0.0068 (7)0.0053 (8)
C220.0227 (10)0.0250 (13)0.0178 (10)0.0031 (9)0.0103 (8)0.0015 (9)
C230.0256 (11)0.0405 (16)0.0227 (12)0.0133 (11)0.0079 (9)0.0030 (10)
C240.0190 (11)0.0521 (18)0.0313 (13)0.0023 (11)0.0094 (10)0.0178 (12)
C250.0258 (12)0.0480 (18)0.0398 (14)0.0205 (12)0.0192 (11)0.0218 (13)
C260.0267 (11)0.0240 (13)0.0342 (13)0.0056 (10)0.0163 (10)0.0084 (10)
C310.0271 (10)0.0127 (11)0.0124 (10)0.0017 (8)0.0053 (8)0.0016 (8)
C320.0399 (13)0.0180 (12)0.0194 (11)0.0010 (10)0.0141 (10)0.0016 (9)
C330.0635 (17)0.0268 (14)0.0209 (12)0.0001 (12)0.0209 (12)0.0006 (10)
C340.0724 (19)0.0254 (14)0.0150 (11)0.0048 (13)0.0054 (12)0.0019 (10)
C350.0384 (14)0.0359 (16)0.0276 (13)0.0009 (12)0.0061 (11)0.0058 (11)
C360.0268 (11)0.0312 (14)0.0227 (12)0.0019 (10)0.0036 (9)0.0056 (10)
Br0.01837 (10)0.02032 (12)0.01603 (10)0.00379 (8)0.00159 (8)0.00096 (8)
Geometric parameters (Å, º) top
Pd—Asi2.4184 (3)C22—C231.394 (3)
Pd—As2.4184 (3)C22—H220.9500
Pd—Br2.4196 (3)C23—C241.372 (4)
Pd—Bri2.4196 (3)C23—H230.9500
As—C111.931 (2)C24—C251.374 (4)
As—C211.9383 (19)C24—H240.9500
As—C311.942 (2)C25—C261.395 (3)
C11—C161.378 (3)C25—H250.9500
C11—C121.385 (3)C26—H260.9500
C12—C131.391 (4)C31—C321.391 (3)
C12—H120.9500C31—C361.393 (3)
C13—C141.365 (4)C32—C331.382 (3)
C13—H130.9500C32—H320.9500
C14—C151.371 (4)C33—C341.367 (4)
C14—H140.9500C33—H330.9500
C15—C161.384 (3)C34—C351.389 (4)
C15—H150.9500C34—H340.9500
C16—H160.9500C35—C361.390 (3)
C21—C221.380 (3)C35—H350.9500
C21—C261.385 (3)C36—H360.9500
Asi—Pd—As180.000 (6)C21—C22—C23119.8 (2)
Asi—Pd—Br89.876 (10)C21—C22—H22120.1
As—Pd—Br90.124 (10)C23—C22—H22120.1
Asi—Pd—Bri90.124 (10)C24—C23—C22119.8 (2)
As—Pd—Bri89.876 (10)C24—C23—H23120.1
Br—Pd—Bri180.0C22—C23—H23120.1
C11—As—C21102.85 (9)C23—C24—C25120.8 (2)
C11—As—C31103.93 (9)C23—C24—H24119.6
C21—As—C31102.82 (8)C25—C24—H24119.6
C11—As—Pd110.05 (6)C24—C25—C26119.8 (2)
C21—As—Pd114.63 (6)C24—C25—H25120.1
C31—As—Pd120.65 (6)C26—C25—H25120.1
C16—C11—C12119.4 (2)C21—C26—C25119.6 (2)
C16—C11—As118.30 (16)C21—C26—H26120.2
C12—C11—As122.23 (17)C25—C26—H26120.2
C11—C12—C13119.6 (2)C32—C31—C36119.5 (2)
C11—C12—H12120.2C32—C31—As120.45 (16)
C13—C12—H12120.2C36—C31—As120.05 (16)
C14—C13—C12120.6 (3)C33—C32—C31120.4 (2)
C14—C13—H13119.7C33—C32—H32119.8
C12—C13—H13119.7C31—C32—H32119.8
C13—C14—C15119.8 (2)C34—C33—C32120.1 (2)
C13—C14—H14120.1C34—C33—H33119.9
C15—C14—H14120.1C32—C33—H33119.9
C14—C15—C16120.3 (2)C33—C34—C35120.4 (2)
C14—C15—H15119.8C33—C34—H34119.8
C16—C15—H15119.8C35—C34—H34119.8
C11—C16—C15120.2 (2)C34—C35—C36120.1 (2)
C11—C16—H16119.9C34—C35—H35120.0
C15—C16—H16119.9C36—C35—H35120.0
C22—C21—C26120.19 (19)C35—C36—C31119.5 (2)
C22—C21—As121.45 (16)C35—C36—H36120.2
C26—C21—As118.35 (17)C31—C36—H36120.2
Br—Pd—As—C1198.07 (6)C31—As—C21—C2678.50 (18)
Bri—Pd—As—C1181.93 (6)Pd—As—C21—C2654.30 (17)
Br—Pd—As—C21146.61 (7)C26—C21—C22—C230.5 (3)
Bri—Pd—As—C2133.39 (7)As—C21—C22—C23179.43 (15)
Br—Pd—As—C3122.87 (7)C21—C22—C23—C241.7 (3)
Bri—Pd—As—C31157.13 (7)C22—C23—C24—C252.0 (3)
C21—As—C11—C1690.26 (17)C23—C24—C25—C260.2 (4)
C31—As—C11—C16162.82 (16)C22—C21—C26—C252.3 (3)
Pd—As—C11—C1632.31 (17)As—C21—C26—C25178.68 (17)
C21—As—C11—C1286.42 (19)C24—C25—C26—C212.0 (4)
C31—As—C11—C1220.5 (2)C11—As—C31—C32130.34 (18)
Pd—As—C11—C12151.01 (17)C21—As—C31—C3223.4 (2)
C16—C11—C12—C130.3 (3)Pd—As—C31—C32105.78 (17)
As—C11—C12—C13176.92 (19)C11—As—C31—C3651.1 (2)
C11—C12—C13—C140.8 (4)C21—As—C31—C36158.07 (18)
C12—C13—C14—C150.5 (4)Pd—As—C31—C3672.76 (19)
C13—C14—C15—C160.1 (4)C36—C31—C32—C330.9 (3)
C12—C11—C16—C150.4 (3)As—C31—C32—C33179.42 (18)
As—C11—C16—C15176.38 (18)C31—C32—C33—C340.3 (4)
C14—C15—C16—C110.6 (4)C32—C33—C34—C351.0 (4)
C11—As—C21—C225.24 (18)C33—C34—C35—C360.6 (4)
C31—As—C21—C22102.53 (17)C34—C35—C36—C310.5 (4)
Pd—As—C21—C22124.67 (15)C32—C31—C36—C351.3 (4)
C11—As—C21—C26173.72 (16)As—C31—C36—C35179.81 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Brii0.952.903.807 (3)160
C25—H25···Briii0.952.983.914 (3)168
Symmetry codes: (ii) x+3/2, y1/2, z+3/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[PdBr2(C18H15As)2]
Mr878.66
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.3754 (11), 19.545 (3), 9.8151 (13)
β (°) 112.798 (3)
V3)1658.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)4.97
Crystal size (mm)0.32 × 0.23 × 0.18
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.264, 0.408
No. of measured, independent and
observed [I > 2σ(I)] reflections
18511, 3619, 3245
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.043, 1.04
No. of reflections3619
No. of parameters187
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.34

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Bri0.952.903.807 (3)160.2
C25—H25···Brii0.952.983.914 (3)167.9
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x1, y, z.
 

Acknowledgements

Financial assistance from Professor A. Roodt and the University of the Free State is gratefully acknowledged. Part of this material is based on work supported by the South African National Research Foundation (NRF) under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrawforth, C. M., Burling, S., Fairlamb, I. J. S., Kapdi, A. R., Taylor, R. J. K. & Whitwood, A. C. (2005). Tetrahedron, 61, 9736–9751.  Web of Science CSD CrossRef CAS Google Scholar
First citationPhadnis, P. P., Jain, V. K., Klein, A., Schurr, T. & Kaim, W. (2003a). New J. Chem. 27, 1584–1591.  Web of Science CSD CrossRef CAS Google Scholar
First citationPhadnis, P. P., Jain, V. K., Klein, A., Weber, M. & Kaim, W. (2003b). Inorg. Chim. Acta, 346, 119–128.  Web of Science CSD CrossRef CAS Google Scholar
First citationRodriguez, N., de Arellano, C. R., Asensio, G. & Medio-Simon, M. (2007). Chem. Eur. J. 13, 4223–4229.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, A. K., Amburose, C. V., Kraemer, T. S. & Jasinski, J. P. (1999). J. Organomet. Chem. 592, 251–257.  Web of Science CSD CrossRef CAS Google Scholar
First citationStark, J. L. & Whitmire, K. H. (1997). Priv. Commun. 34, 9700007.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds