organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(4-Methyl­benzo­yl)hydrazono]­propionic acid monohydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 21 January 2009; accepted 24 January 2009; online 31 January 2009)

In the title compound, C11H12N2O3·H2O, the water mol­ecule is a hydrogen-bond donor to the double-bond amide and the carbonyl O atoms of two acid mol­ecules; it is also a hydrogen-bond acceptor to the acid –OH and amide –NH– groups. These hydrogen-bonding inter­actions give rise to a layer structure, with the layers parallel to the ab plane.

Related literature

The deprotonated anion of 2-aroylhydrazonopropionic acid furnishes a number of metal complexes; see, for example: Wu, Chen et al. (2006[Wu, W.-T., Chen, F.-Y., He, S.-Y., Hu, H.-M., Yang, M.-L. & Wang, Y.-Y. (2006). Chin. J. Chem. 24, 711-713.]); Liu et al. (2007[Liu, F., Wu, W.-T., Zhang, W.-P., Chen, F.-Y. & He, S.-Y. (2007). Acta Cryst. E63, m2450-m2451.]); Wu & Zeng (2007[Wu, W.-P., Zeng, F.-C. & Wu, Y. (2007). Acta Cryst. E63, m2664.]); Wu et al. (2006a[Wu, W.-T., He, S.-Y., Hu, H.-M., Yang, M.-L., Wang, Y.-Y. & Shi, Q.-Z. (2006a). J. Coord. Chem. 59, 1785-1791.],b[Wu, W.-T., He, S.-Y., Hu, H.-M., Yang, M.-L., Wang, Y.-Y. & Shi, Q.-Z. (2006b). J. Coord. Chem. 60, 125-130.]); Yang et al. (2004[Yang, R., He, S.-Y., Wu, W.-T., Wen, Z.-Y., Shi, Q.-Z. & Wang, D.-Q. (2004). Acta Chim. Sin. 62, 2040-2044.]); Yin & Chen (2006[Yin, H.-D. & Chen, S.-W. (2006). Inorg. Chim. Acta, 359, 3330-3338.]); Zhai et al. (2007[Zhai, J., Yin, H., Li, F. & Wang, D. (2007). Acta Cryst. E63, m3066.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2O3·H2O

  • Mr = 238.24

  • Monoclinic, P 21

  • a = 6.8464 (1) Å

  • b = 11.9753 (2) Å

  • c = 7.0005 (1) Å

  • β = 102.169 (1)°

  • V = 561.06 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 5272 measured reflections

  • 1335 independent reflections

  • 1211 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.02

  • 1335 reflections

  • 172 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: 1126 Friedel pairs were merged

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1W 0.83 (2) 2.03 (2) 2.777 (2) 149 (3)
O1W—H11⋯O3 0.84 (2) 1.97 (2) 2.794 (2) 165 (4)
O1W—H12⋯O2i 0.84 (2) 2.00 (1) 2.829 (2) 168 (3)
N2—H2⋯O1Wii 0.87 (2) 2.35 (1) 3.210 (2) 168 (3)
Symmetry codes: (i) [-x+3, y-{\script{1\over 2}}, -z+2]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

The deprotonated anion of 2-aroylhydrazonopropionic acid furnishes a number of metal complexes; see, for example: Wu, Chen et al. (2006); Liu et al. (2007); Wu & Zeng (2007); Wu et al. (2006a,b); Yang et al. (2004); Yin & Chen (2006); Zhai et al. (2007).

Experimental top

4-Toluihydrazide (1 g, 0.007 mol) and pyruvic acid (0.6 g, 0.007 mol) were dissolved in methanol (30 ml). The solution was heated for 3 h; slow evaporation of the solvent gave colorless crystals.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.93–0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The methyl H atoms were rotated to fit the electron density.

The oxygen- and nitrogen-bound H atoms were located in a difference Fourier map, and were refined with distance restraints [N—H 0.88 (2) and O—H 0.84 (2) Å]; their temperature factors were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoids plot (Barbour, 2001) of the title compound at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
2-[(4-Methylbenzoyl)hydrazono]propionic acid monohydrate top
Crystal data top
C11H12N2O3·H2OF(000) = 252
Mr = 238.24Dx = 1.410 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1743 reflections
a = 6.8464 (1) Åθ = 3.0–26.9°
b = 11.9753 (2) ŵ = 0.11 mm1
c = 7.0005 (1) ÅT = 100 K
β = 102.169 (1)°Irregular block, colourless
V = 561.06 (2) Å30.20 × 0.10 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
1211 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
ω scansh = 88
5272 measured reflectionsk = 1415
1335 independent reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.0248P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
1335 reflectionsΔρmax = 0.19 e Å3
172 parametersΔρmin = 0.16 e Å3
5 restraintsAbsolute structure: 1126 Friedel pairs were merged
Primary atom site location: structure-invariant direct methods
Crystal data top
C11H12N2O3·H2OV = 561.06 (2) Å3
Mr = 238.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.8464 (1) ŵ = 0.11 mm1
b = 11.9753 (2) ÅT = 100 K
c = 7.0005 (1) Å0.20 × 0.10 × 0.10 mm
β = 102.169 (1)°
Data collection top
Bruker SMART APEX
diffractometer
1211 reflections with I > 2σ(I)
5272 measured reflectionsRint = 0.029
1335 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0305 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.19 e Å3
1335 reflectionsΔρmin = 0.16 e Å3
172 parametersAbsolute structure: 1126 Friedel pairs were merged
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.4450 (2)0.99988 (13)0.8798 (3)0.0255 (4)
O21.2160 (2)1.13156 (13)0.8463 (2)0.0269 (4)
O31.2831 (2)0.64501 (13)0.7200 (2)0.0260 (4)
O1W1.6032 (2)0.78718 (13)0.8663 (3)0.0251 (4)
N11.1624 (2)0.84748 (15)0.7821 (3)0.0192 (4)
N21.0279 (3)0.76060 (15)0.7458 (3)0.0202 (4)
C11.2584 (3)1.03349 (18)0.8395 (3)0.0204 (5)
C21.0961 (3)0.94692 (18)0.7861 (3)0.0183 (4)
C30.8847 (3)0.98625 (18)0.7447 (3)0.0232 (5)
H3A0.81310.94120.66860.035*
H3B0.84000.99510.86510.035*
H3C0.87541.05680.67770.035*
C41.1067 (3)0.65752 (18)0.7236 (3)0.0198 (4)
C50.9684 (3)0.56054 (18)0.7054 (3)0.0178 (4)
C60.7608 (3)0.5709 (2)0.6510 (3)0.0218 (4)
H60.70180.64220.61920.026*
C70.6408 (3)0.47675 (19)0.6437 (3)0.0231 (5)
H70.49980.48450.60670.028*
C80.7226 (3)0.37199 (18)0.6891 (3)0.0214 (5)
C90.9315 (3)0.3617 (2)0.7379 (3)0.0221 (5)
H9A0.99040.29010.76590.026*
C101.0524 (3)0.45480 (19)0.7457 (3)0.0202 (4)
H101.19360.44670.77870.024*
C110.5927 (3)0.27036 (19)0.6870 (4)0.0288 (5)
H11A0.61570.24110.79850.043*
H11B0.45420.29240.66890.043*
H11C0.60710.22110.58150.043*
H111.496 (3)0.755 (3)0.813 (5)0.059 (10)*
H121.653 (4)0.748 (2)0.963 (3)0.052 (10)*
H11.445 (5)0.9307 (9)0.867 (5)0.056 (11)*
H20.906 (2)0.773 (2)0.761 (4)0.031 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0193 (8)0.0198 (9)0.0371 (10)0.0029 (6)0.0049 (7)0.0031 (7)
O20.0234 (7)0.0182 (8)0.0384 (9)0.0001 (6)0.0047 (7)0.0028 (7)
O30.0171 (7)0.0206 (8)0.0416 (9)0.0005 (6)0.0094 (6)0.0039 (7)
O1W0.0205 (7)0.0208 (8)0.0331 (10)0.0018 (6)0.0036 (7)0.0028 (7)
N10.0186 (9)0.0171 (9)0.0218 (9)0.0017 (7)0.0042 (7)0.0008 (7)
N20.0139 (8)0.0165 (9)0.0301 (10)0.0001 (7)0.0048 (7)0.0012 (7)
C10.0198 (10)0.0212 (11)0.0202 (11)0.0033 (8)0.0043 (8)0.0013 (8)
C20.0167 (9)0.0179 (10)0.0209 (10)0.0012 (8)0.0054 (8)0.0004 (8)
C30.0174 (10)0.0189 (11)0.0329 (13)0.0007 (8)0.0044 (9)0.0033 (9)
C40.0200 (10)0.0186 (10)0.0207 (10)0.0004 (8)0.0041 (8)0.0004 (9)
C50.0170 (10)0.0169 (10)0.0201 (10)0.0010 (8)0.0049 (8)0.0013 (8)
C60.0205 (10)0.0204 (10)0.0240 (11)0.0024 (9)0.0036 (8)0.0003 (9)
C70.0159 (10)0.0238 (11)0.0289 (12)0.0017 (9)0.0034 (8)0.0049 (9)
C80.0225 (11)0.0216 (11)0.0211 (11)0.0046 (9)0.0068 (8)0.0057 (9)
C90.0260 (11)0.0154 (10)0.0254 (11)0.0042 (9)0.0067 (9)0.0005 (8)
C100.0160 (9)0.0214 (11)0.0226 (11)0.0021 (8)0.0030 (8)0.0004 (9)
C110.0282 (11)0.0228 (12)0.0370 (14)0.0050 (10)0.0110 (10)0.0044 (10)
Geometric parameters (Å, º) top
O1—C11.312 (3)C4—C51.487 (3)
O1—H10.83 (2)C5—C101.395 (3)
O2—C11.213 (3)C5—C61.397 (3)
O3—C41.222 (2)C6—C71.390 (3)
O1W—H110.84 (2)C6—H60.9500
O1W—H120.82 (2)C7—C81.383 (3)
N1—C21.277 (3)C7—H70.9500
N1—N21.377 (2)C8—C91.404 (3)
N2—C41.369 (3)C8—C111.506 (3)
N2—H20.87 (2)C9—C101.383 (3)
C1—C21.508 (3)C9—H9A0.9500
C2—C31.491 (3)C10—H100.9500
C3—H3A0.8400C11—H11A0.8400
C3—H3B0.9620C11—H11B0.9663
C3—H3C0.9620C11—H11C0.9662
C1—O1—H1108 (2)C6—C5—C4123.14 (19)
H11—O1W—H12106 (3)C7—C6—C5119.8 (2)
C2—N1—N2118.80 (17)C7—C6—H6120.1
C4—N2—N1116.00 (17)C5—C6—H6120.1
C4—N2—H2124.9 (19)C8—C7—C6121.34 (19)
N1—N2—H2118.1 (19)C8—C7—H7119.3
O2—C1—O1121.2 (2)C6—C7—H7119.3
O2—C1—C2120.35 (19)C7—C8—C9118.5 (2)
O1—C1—C2118.40 (18)C7—C8—C11121.41 (19)
N1—C2—C3128.72 (19)C9—C8—C11120.1 (2)
N1—C2—C1113.55 (17)C10—C9—C8120.6 (2)
C3—C2—C1117.73 (19)C10—C9—H9A119.7
C2—C3—H3A109.5C8—C9—H9A119.7
C2—C3—H3B109.9C9—C10—C5120.40 (18)
H3A—C3—H3B112.0C9—C10—H10119.8
C2—C3—H3C109.5C5—C10—H10119.8
H3A—C3—H3C106.6C8—C11—H11A109.5
H3B—C3—H3C109.3C8—C11—H11B110.0
O3—C4—N2121.82 (19)H11A—C11—H11B102.8
O3—C4—C5121.12 (19)C8—C11—H11C110.2
N2—C4—C5117.06 (17)H11A—C11—H11C115.2
C10—C5—C6119.3 (2)H11B—C11—H11C108.8
C10—C5—C4117.61 (17)
C2—N1—N2—C4173.5 (2)N2—C4—C5—C620.0 (3)
N2—N1—C2—C33.9 (3)C10—C5—C6—C72.0 (3)
N2—N1—C2—C1176.43 (17)C4—C5—C6—C7177.78 (19)
O2—C1—C2—N1179.1 (2)C5—C6—C7—C80.1 (3)
O1—C1—C2—N11.5 (3)C6—C7—C8—C91.8 (3)
O2—C1—C2—C30.6 (3)C6—C7—C8—C11178.2 (2)
O1—C1—C2—C3178.78 (19)C7—C8—C9—C101.8 (3)
N1—N2—C4—O35.9 (3)C11—C8—C9—C10178.2 (2)
N1—N2—C4—C5173.67 (17)C8—C9—C10—C50.1 (3)
O3—C4—C5—C1019.8 (3)C6—C5—C10—C92.0 (3)
N2—C4—C5—C10159.73 (19)C4—C5—C10—C9177.77 (19)
O3—C4—C5—C6160.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1W0.83 (2)2.03 (2)2.777 (2)149 (3)
O1W—H11···O30.84 (2)1.97 (2)2.794 (2)165 (4)
O1W—H12···O2i0.84 (2)2.00 (1)2.829 (2)168 (3)
N2—H2···O1Wii0.87 (2)2.35 (1)3.210 (2)168 (3)
Symmetry codes: (i) x+3, y1/2, z+2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC11H12N2O3·H2O
Mr238.24
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)6.8464 (1), 11.9753 (2), 7.0005 (1)
β (°) 102.169 (1)
V3)561.06 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5272, 1335, 1211
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.02
No. of reflections1335
No. of parameters172
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16
Absolute structure1126 Friedel pairs were merged

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1W0.83 (2)2.03 (2)2.777 (2)149 (3)
O1W—H11···O30.84 (2)1.97 (2)2.794 (2)165 (4)
O1W—H12···O2i0.84 (2)2.00 (1)2.829 (2)168 (3)
N2—H2···O1Wii0.87 (2)2.35 (1)3.210 (2)168 (3)
Symmetry codes: (i) x+3, y1/2, z+2; (ii) x1, y, z.
 

Acknowledgements

The autors thank the University of Malaya (grant Nos. FS339/2008A and PS206/2008A) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, F., Wu, W.-T., Zhang, W.-P., Chen, F.-Y. & He, S.-Y. (2007). Acta Cryst. E63, m2450–m2451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationWu, W.-T., Chen, F.-Y., He, S.-Y., Hu, H.-M., Yang, M.-L. & Wang, Y.-Y. (2006). Chin. J. Chem. 24, 711–713.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, W.-T., He, S.-Y., Hu, H.-M., Yang, M.-L., Wang, Y.-Y. & Shi, Q.-Z. (2006a). J. Coord. Chem. 59, 1785–1791.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, W.-T., He, S.-Y., Hu, H.-M., Yang, M.-L., Wang, Y.-Y. & Shi, Q.-Z. (2006b). J. Coord. Chem. 60, 125–130.  Web of Science CSD CrossRef Google Scholar
First citationWu, W.-P., Zeng, F.-C. & Wu, Y. (2007). Acta Cryst. E63, m2664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, R., He, S.-Y., Wu, W.-T., Wen, Z.-Y., Shi, Q.-Z. & Wang, D.-Q. (2004). Acta Chim. Sin. 62, 2040–2044.  CAS Google Scholar
First citationYin, H.-D. & Chen, S.-W. (2006). Inorg. Chim. Acta, 359, 3330–3338.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhai, J., Yin, H., Li, F. & Wang, D. (2007). Acta Cryst. E63, m3066.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds