metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-{1,8-Bis[(R)-α-methyl­benz­yl]-1,3,6,8,10,13-hexa­aza­cyclo­tetra­deca­ne}di­thio­cyanato­nickel(II)

aDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, and bDepartment of Chemistry Education, Kyungpook National University, Daegu 702-701, Republic of Korea
*Correspondence e-mail: minks@knu.ac.kr

(Received 22 December 2008; accepted 22 January 2009; online 28 January 2009)

The title compound, [Ni(NCS)2(C24H38N6)], is a thio­cyanate-coordinated aza­macrocyclic nickel(II) complex. There are two independent mol­ecules in the asymmetric unit and their bond lengths and angles are similar. Both Ni atoms have a tetra­gonally distorted octa­hedral geometry, in which the NiII ion is coordinated by the four secondary N atoms of the aza­macrocyclic ligand and by two N atoms of the thio­cyanate ions. The average equatorial Ni—N bond lengths are shorter than the average axial Ni—N bond lengths [2.071 (1) and 2.115 (2) Å, respectively]. N—H⋯S hydrogen-bonding inter­actions between a secondary amine N atom and the adjacent thio­cyanate ion leads to a polymeric chain along [100].

Related literature

For general background, see: Banerjee & Zubieta (2004[Banerjee, S. R. & Zubieta, J. (2004). Acta Cryst. C60, m208-m209.]); Du et al. (2003[Du, G., Ellern, A. & Woo, L. K. (2003). Inorg. Chem. 42, 873-877.]); Gao et al. (2005[Gao, J., Reibenspies, J. H., Zingaro, R. A., Woolley, F. R., Martell, A. E. & Clearfield, A. (2005). Inorg. Chem. 44, 232-241.]); Han et al. (2008[Han, J. H., Cha, M. J., Kim, B. G., Kim, S. K. & Min, K. S. (2008). Inorg. Chem. Commun. 11, 745-748.]); Katsuki et al. (2000[Katsuki, I., Matsumoto, N. & Kojima, M. (2000). Inorg. Chem. 39, 3350-3354.]); Lehn (1995[Lehn, J.-M. (1995). In Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH.]); Leonard et al. (2007[Leonard, J. P., Jensen, P., McCabe, T., O'Brien, J. E., Peacock, R. D., Kruger, P. E. & Gunnlaugsson, T. (2007). J. Am. Chem. Soc. 129, 10986-10987.]); Stølevik & Postmyr (1997[Stølevik, R. & Postmyr, L. (1997). J. Mol. Struct. 403, 207-211.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C24H38N6)]

  • Mr = 585.47

  • Orthorhombic, P 21 21 21

  • a = 8.5313 (5) Å

  • b = 15.3141 (10) Å

  • c = 44.004 (3) Å

  • V = 5749.1 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 173 (2) K

  • 0.36 × 0.17 × 0.16 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.679, Tmax = 0.873

  • 43415 measured reflections

  • 14300 independent reflections

  • 8093 reflections with I > 2σ(I)

  • Rint = 0.103

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.149

  • S = 1.04

  • 14300 reflections

  • 668 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.93 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: −0.004 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯S1i 0.93 2.82 3.439 (4) 125
N6—H6⋯S2ii 0.93 2.71 3.347 (4) 127
N11—H11⋯S3ii 0.93 2.89 3.614 (5) 136
N14—H14⋯S4i 0.93 2.66 3.418 (4) 139
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chiral complexes have attracted considerable attention in chemistry and material science because of their potential applications for molecular recognition, catalysis, and separation (Lehn, 1995; Katsuki et al., 2000). Very recently lanthanide metal complexes with chiral ligands have been studied in the self-assembly of luminescent materials (Leonard et al., 2007). However, the study of chiral macrocyclic metal complexes has been limited due to the difficulty of preparation, although these complexes can be utilized as chiral building blocks (Du et al., 2003; Gao et al., 2005). Here, we report the synthesis and crystal structure of the nickel(II) azamacrocyclic chiral complex, trans-dithiocyanato(1,8-di(R-α-methylbenzyl)- 1,3,6,8,10,13-hexaazacyclotetradecane)nickel(II), with two thiocyanate ions axially.

In the title compound, the coordination geometry around the nickel(II) ion is a tetragonally distorted octahedron in which the nickel(II) ion is coordinated to the four secondary N atoms of the azamacrocyclic ligand in a square-planar fashion and two N atoms from the thiocyanate ions at the axial positions as shown in Figure 1. The average Ni—Neq and Ni—Nax bond distances are 2.071 (1) and 2.115 (2) Å, respectively. The former is slightly less than the latter, which can be attributed to the Jahn-Teller distortion of the nickel(II) ion and/or the ring contraction of the azamacrocyclic ligand. In the coordinated thiocyanate ions, the average N—C and C—S bond distances are 1.166 (3) and 1.621 (3) Å, respectively. The former is very similar to a CN triple bond length, while the latter is slightly shorter than the normal CS single bond distance (Stølevik & Postmyr, 1997; Banerjee & Zubieta, 2004). The pendant arms of the azamacrocyclic ligand have chiral carbon atoms (R type). All thiocyanate ions binding nickel(II) ions axially are involved in N—H···S hydrogen bonding interactions (Table 1), which give rise to one-dimensional polymeric chains propagating along the a axis (Figure 2). The shortest Ni···Ni intrachain separation within the hydrogen-bonded one-dimensional polymer is 8.531 (1) Å and is about 5% longer than the shortest interchain Ni···Ni distance of 8.166 (1) Å.

Related literature top

For related literature, see: Banerjee & Zubieta (2004); Du et al. (2003); Gao et al. (2005); Han et al. (2008); Katsuki et al. (2000); Lehn (1995); Leonard et al. (2007); Stølevik & Postmyr (1997).

Experimental top

The title compound is prepared as follows: To an MeCN solution (10 ml) of [Ni(C24H38N6)](ClO4)2 (0.10 g, 0.15 mmol) (Han et al., 2008) was added dropwise an aqueous solution (10 ml) containing NaSCN (0.024 g, 0.30 mmol) at ambient temperature. The color of the solution changed from yellow to pale pink. The mixture was stirred for 30 min during which time a pink precipitate formed which was collected by filtration, washed with MeCN and water, and dried in air. Single crystals of the title compound suitable for X-ray crystallography were grown by layering of the MeCN solution of [Ni(C24H38N6)](ClO4)2 on the aqueous solution of NaSCN within one week.

Refinement top

All H atoms in the title compound were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.99–1.00 (open chain H atoms) Å and N—H distance of 0.93 Å, and with Uiso(H) values of 1.2 times the equivalent anisotropic displacement parameters of the parent C and N atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the molecular title compound with atomic numbering scheme and ellipsoids at 40% probability.
[Figure 2] Fig. 2. Perspective view of the title compound showing a one-dimensional chain formed by N—H···S hydrogen bonding interactions.
trans-{1,8-Bis[(R)-α-methylbenzyl]-1,3,6,8,10,13- hexaazacyclotetradecane}dithiocyanatonickel(II) top
Crystal data top
[Ni(NCS)2(C24H38N6)]F(000) = 2480
Mr = 585.47Dx = 1.353 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6933 reflections
a = 8.5313 (5) Åθ = 2.6–22.8°
b = 15.3141 (10) ŵ = 0.85 mm1
c = 44.004 (3) ÅT = 173 K
V = 5749.1 (6) Å3Block, violet
Z = 80.36 × 0.17 × 0.16 mm
Data collection top
Siemens SMART CCD
diffractometer
14300 independent reflections
Radiation source: fine-focus sealed tube8093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
ϕ and ω scansθmax = 28.4°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.679, Tmax = 0.873k = 2020
43415 measured reflectionsl = 5843
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0358P)2 + 2.5654P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
14300 reflectionsΔρmax = 0.81 e Å3
668 parametersΔρmin = 0.93 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (17)
Crystal data top
[Ni(NCS)2(C24H38N6)]V = 5749.1 (6) Å3
Mr = 585.47Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 8.5313 (5) ŵ = 0.85 mm1
b = 15.3141 (10) ÅT = 173 K
c = 44.004 (3) Å0.36 × 0.17 × 0.16 mm
Data collection top
Siemens SMART CCD
diffractometer
14300 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
8093 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 0.873Rint = 0.103
43415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.149Δρmax = 0.81 e Å3
S = 1.04Δρmin = 0.93 e Å3
14300 reflectionsAbsolute structure: Flack (1983)
668 parametersAbsolute structure parameter: 0.004 (17)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.42128 (7)0.26127 (4)0.137939 (15)0.02628 (15)
N10.2552 (5)0.2772 (3)0.20285 (10)0.0322 (11)
N20.4025 (5)0.3641 (3)0.16856 (10)0.0304 (10)
H20.31180.39480.16380.037*
N30.5759 (5)0.3415 (2)0.11490 (10)0.0282 (10)
H30.67700.32290.11940.034*
N40.5705 (5)0.2512 (3)0.06892 (10)0.0365 (10)
N50.4383 (5)0.1595 (3)0.10661 (10)0.0335 (11)
H50.52980.12880.11090.040*
N60.2683 (5)0.1803 (3)0.16088 (10)0.0280 (10)
H60.16720.19800.15590.034*
N70.2264 (5)0.3164 (3)0.11474 (11)0.0375 (12)
N80.6143 (5)0.2084 (3)0.16108 (11)0.0349 (11)
S10.04603 (16)0.41163 (10)0.10308 (4)0.0439 (4)
S20.89623 (17)0.13257 (10)0.17838 (4)0.0454 (4)
C10.3884 (6)0.3352 (3)0.20038 (12)0.0312 (13)
H1A0.37360.38630.21380.037*
H1B0.48510.30440.20670.037*
C20.5377 (6)0.4218 (3)0.16175 (12)0.0319 (13)
H2A0.51970.48040.17060.038*
H2B0.63430.39730.17080.038*
C30.5565 (6)0.4290 (3)0.12744 (13)0.0352 (14)
H3A0.64930.46520.12250.042*
H3B0.46280.45720.11850.042*
C40.5554 (7)0.3370 (4)0.08118 (12)0.0359 (14)
H4A0.63430.37530.07150.043*
H4B0.45040.36000.07590.043*
C50.4477 (7)0.1893 (4)0.07469 (13)0.0402 (15)
H5A0.34620.21600.06900.048*
H5B0.46390.13780.06150.048*
C60.3048 (6)0.1014 (3)0.11345 (14)0.0364 (14)
H6A0.20680.12620.10500.044*
H6B0.32200.04320.10420.044*
C70.2918 (6)0.0930 (4)0.14761 (14)0.0394 (15)
H7A0.38860.06650.15590.047*
H7B0.20240.05470.15290.047*
C80.2837 (6)0.1871 (4)0.19439 (14)0.0367 (14)
H8A0.39020.16920.20080.044*
H8B0.20670.14840.20450.044*
C90.1478 (6)0.2927 (4)0.22812 (13)0.0335 (13)
H9A0.06050.24950.22610.040*
C100.0759 (6)0.3830 (3)0.22447 (12)0.0306 (12)
C110.0020 (6)0.4024 (4)0.19683 (13)0.0341 (13)
H11A0.00720.35940.18130.041*
C120.0705 (7)0.4831 (4)0.19227 (14)0.0420 (14)
H12A0.12300.49530.17370.050*
C130.0628 (7)0.5459 (4)0.21461 (15)0.0455 (16)
H13A0.11010.60130.21140.055*
C140.0131 (7)0.5287 (4)0.24141 (15)0.0467 (17)
H14A0.01770.57250.25670.056*
C150.0835 (7)0.4479 (4)0.24657 (13)0.0383 (13)
H15A0.13670.43720.26520.046*
C160.2242 (6)0.2766 (4)0.25908 (13)0.0438 (16)
H16A0.27420.21900.25920.066*
H16B0.30340.32170.26290.066*
H16C0.14400.27900.27500.066*
C170.7257 (6)0.2194 (4)0.05969 (13)0.0384 (14)
H17A0.79100.27280.05640.046*
C180.7153 (6)0.1745 (4)0.02895 (13)0.0363 (14)
C190.6286 (7)0.2120 (4)0.00594 (14)0.0474 (17)
H19A0.57390.26490.00970.057*
C200.6200 (8)0.1737 (5)0.02239 (15)0.0557 (18)
H20A0.56320.20180.03820.067*
C210.6924 (9)0.0955 (5)0.02797 (17)0.068 (2)
H21A0.68340.06790.04720.082*
C220.7772 (11)0.0585 (6)0.00542 (19)0.086 (3)
H22A0.82880.00450.00900.104*
C230.7900 (9)0.0976 (5)0.02252 (16)0.065 (2)
H230.85230.07070.03780.078*
C240.8099 (7)0.1669 (4)0.08374 (14)0.0486 (17)
H24A0.80770.19880.10310.073*
H24B0.75780.11040.08620.073*
H24C0.91890.15760.07750.073*
C250.1125 (6)0.3557 (3)0.11025 (12)0.0292 (12)
C260.7334 (6)0.1772 (3)0.16823 (12)0.0286 (12)
Ni20.09613 (7)0.75727 (4)0.112058 (15)0.02774 (16)
N90.1996 (6)0.7839 (3)0.18264 (10)0.0353 (11)
N100.0978 (5)0.8651 (3)0.14084 (10)0.0315 (10)
H100.19380.89310.13850.038*
N110.0348 (5)0.8330 (3)0.08278 (10)0.0340 (11)
H110.13970.81870.08570.041*
N120.0131 (5)0.7279 (3)0.04078 (11)0.0395 (12)
N130.1034 (5)0.6485 (3)0.08377 (10)0.0362 (11)
H130.01210.61660.08700.043*
N140.2280 (5)0.6848 (3)0.14172 (10)0.0286 (10)
H140.33120.70400.14020.034*
N150.3111 (5)0.8075 (3)0.09316 (12)0.0441 (13)
N160.1144 (5)0.7100 (3)0.13003 (11)0.0363 (11)
S30.57566 (18)0.91335 (11)0.09892 (4)0.0505 (4)
S40.38600 (18)0.66232 (11)0.16098 (4)0.0537 (5)
C270.0798 (6)0.8436 (4)0.17323 (12)0.0342 (13)
H27A0.02450.81710.17670.041*
H27B0.08640.89770.18550.041*
C280.0249 (6)0.9231 (4)0.12818 (14)0.0388 (15)
H28A0.12980.90190.13440.047*
H28B0.01110.98310.13610.047*
C290.0124 (6)0.9235 (3)0.09346 (14)0.0388 (15)
H29A0.09190.94540.08710.047*
H29B0.09360.96210.08460.047*
C300.0025 (7)0.8179 (4)0.05011 (13)0.0423 (15)
H30A0.11140.83730.04620.051*
H30B0.06800.85440.03750.051*
C310.1116 (7)0.6700 (4)0.05131 (12)0.0398 (14)
H31A0.10730.61510.03950.048*
H31B0.21390.69800.04710.048*
C320.2367 (6)0.5964 (4)0.09557 (14)0.0399 (15)
H32A0.23270.53620.08740.048*
H32B0.33750.62330.08950.048*
C330.2220 (6)0.5949 (4)0.13008 (13)0.0355 (14)
H33A0.30860.56020.13890.043*
H33B0.12160.56730.13600.043*
C340.1791 (7)0.6952 (4)0.17348 (13)0.0369 (14)
H34A0.24260.65650.18670.044*
H34B0.06760.67830.17570.044*
C350.2490 (6)0.8016 (4)0.21473 (13)0.0380 (14)
H350.15260.81550.22670.046*
C360.3563 (6)0.8813 (3)0.21594 (13)0.0309 (13)
C370.3497 (6)0.9361 (4)0.24072 (13)0.0365 (14)
H370.27360.92640.25610.044*
C380.4543 (7)1.0059 (4)0.24333 (14)0.0435 (16)
H380.45001.04330.26050.052*
C390.5631 (7)1.0203 (4)0.22100 (15)0.0439 (15)
H390.63401.06790.22280.053*
C400.5708 (7)0.9666 (3)0.19603 (14)0.0398 (14)
H400.64740.97680.18080.048*
C410.4667 (6)0.8977 (4)0.19312 (13)0.0374 (14)
H410.47030.86150.17560.045*
C420.3315 (7)0.7254 (4)0.23042 (14)0.0487 (17)
H42A0.26070.67510.23120.073*
H42B0.42600.70970.21900.073*
H42C0.36090.74250.25110.073*
C430.1719 (6)0.6900 (4)0.04258 (14)0.0384 (15)
H430.19530.67510.06420.046*
C440.1845 (7)0.6076 (4)0.02341 (13)0.0386 (14)
C450.2708 (9)0.5376 (5)0.03401 (16)0.064 (2)
H450.31260.53890.05400.077*
C460.2966 (11)0.4656 (5)0.01568 (19)0.086 (3)
H460.35940.41890.02300.103*
C470.2330 (6)0.4605 (3)0.01289 (11)0.063 (2)
H470.24970.41070.02540.075*
C480.1452 (6)0.5289 (3)0.02279 (11)0.0493 (17)
H480.09830.52580.04230.059*
C490.1221 (7)0.6025 (4)0.00538 (14)0.0467 (16)
H490.06290.64990.01330.056*
C500.2954 (7)0.7538 (5)0.03109 (15)0.0561 (18)
H50A0.29730.80540.04420.084*
H50B0.26990.77140.01030.084*
H50C0.39850.72550.03140.084*
C510.4230 (7)0.8509 (4)0.09556 (13)0.0372 (13)
C520.2301 (6)0.6896 (3)0.14247 (13)0.0314 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0199 (3)0.0276 (3)0.0314 (4)0.0002 (3)0.0008 (3)0.0027 (3)
N10.025 (2)0.038 (3)0.034 (3)0.008 (2)0.006 (2)0.009 (2)
N20.026 (2)0.033 (2)0.032 (3)0.003 (2)0.003 (2)0.005 (2)
N30.023 (2)0.028 (2)0.034 (3)0.0013 (19)0.003 (2)0.0027 (19)
N40.029 (2)0.045 (3)0.035 (3)0.007 (2)0.006 (2)0.011 (2)
N50.026 (2)0.031 (2)0.043 (3)0.002 (2)0.003 (2)0.010 (2)
N60.020 (2)0.026 (2)0.038 (3)0.0015 (18)0.003 (2)0.000 (2)
N70.028 (2)0.045 (3)0.039 (3)0.004 (2)0.003 (2)0.002 (2)
N80.029 (2)0.036 (3)0.039 (3)0.003 (2)0.000 (2)0.004 (2)
S10.0275 (7)0.0465 (9)0.0578 (11)0.0074 (6)0.0065 (7)0.0032 (8)
S20.0241 (7)0.0555 (10)0.0565 (11)0.0053 (7)0.0048 (7)0.0050 (8)
C10.028 (3)0.035 (3)0.031 (3)0.012 (2)0.001 (3)0.006 (2)
C20.037 (3)0.023 (3)0.035 (3)0.010 (2)0.001 (3)0.009 (2)
C30.036 (3)0.023 (3)0.046 (4)0.004 (2)0.014 (3)0.000 (2)
C40.037 (3)0.041 (3)0.030 (3)0.008 (3)0.003 (3)0.002 (3)
C50.034 (3)0.049 (4)0.037 (4)0.002 (3)0.001 (3)0.021 (3)
C60.027 (3)0.025 (3)0.057 (4)0.008 (2)0.006 (3)0.021 (3)
C70.030 (3)0.025 (3)0.064 (4)0.002 (2)0.007 (3)0.010 (3)
C80.027 (3)0.036 (3)0.047 (4)0.001 (2)0.002 (3)0.011 (3)
C90.029 (3)0.039 (3)0.033 (3)0.002 (2)0.002 (3)0.007 (3)
C100.026 (3)0.042 (3)0.024 (3)0.004 (3)0.000 (3)0.002 (2)
C110.034 (3)0.041 (3)0.027 (3)0.002 (3)0.001 (3)0.003 (3)
C120.035 (3)0.050 (4)0.041 (4)0.003 (3)0.001 (3)0.003 (3)
C130.039 (3)0.041 (3)0.056 (4)0.004 (3)0.011 (3)0.006 (3)
C140.044 (4)0.046 (4)0.050 (5)0.003 (3)0.004 (3)0.013 (3)
C150.030 (3)0.052 (4)0.032 (3)0.010 (3)0.000 (3)0.006 (3)
C160.035 (3)0.059 (4)0.037 (4)0.011 (3)0.001 (3)0.006 (3)
C170.029 (3)0.049 (4)0.036 (3)0.002 (3)0.000 (3)0.001 (3)
C180.035 (3)0.041 (3)0.033 (3)0.002 (3)0.009 (3)0.008 (3)
C190.056 (4)0.048 (4)0.038 (4)0.009 (3)0.008 (3)0.010 (3)
C200.050 (4)0.077 (5)0.040 (4)0.005 (4)0.010 (3)0.007 (4)
C210.078 (5)0.084 (6)0.041 (4)0.005 (5)0.005 (4)0.024 (4)
C220.114 (7)0.086 (6)0.058 (5)0.055 (6)0.011 (5)0.033 (5)
C230.079 (5)0.075 (5)0.040 (4)0.033 (4)0.013 (4)0.017 (4)
C240.042 (3)0.068 (5)0.035 (4)0.015 (3)0.004 (3)0.015 (3)
C250.028 (3)0.027 (3)0.032 (3)0.002 (2)0.005 (3)0.000 (2)
C260.028 (3)0.028 (3)0.030 (3)0.003 (2)0.003 (2)0.002 (2)
Ni20.0234 (3)0.0315 (4)0.0284 (4)0.0006 (3)0.0012 (3)0.0009 (3)
N90.049 (3)0.034 (3)0.023 (3)0.002 (2)0.001 (2)0.001 (2)
N100.029 (2)0.029 (2)0.037 (3)0.000 (2)0.005 (2)0.001 (2)
N110.024 (2)0.037 (3)0.041 (3)0.0031 (19)0.010 (2)0.001 (2)
N120.038 (3)0.042 (3)0.038 (3)0.004 (2)0.004 (2)0.009 (2)
N130.032 (2)0.037 (3)0.040 (3)0.005 (2)0.006 (2)0.005 (2)
N140.027 (2)0.026 (2)0.033 (3)0.0014 (18)0.007 (2)0.001 (2)
N150.030 (3)0.059 (3)0.043 (3)0.008 (2)0.004 (2)0.001 (3)
N160.031 (2)0.039 (3)0.039 (3)0.005 (2)0.002 (2)0.000 (2)
S30.0303 (8)0.0555 (10)0.0658 (12)0.0068 (8)0.0041 (8)0.0032 (9)
S40.0299 (8)0.0550 (10)0.0761 (13)0.0029 (7)0.0103 (8)0.0162 (9)
C270.029 (3)0.042 (3)0.032 (3)0.005 (3)0.004 (3)0.005 (3)
C280.034 (3)0.028 (3)0.054 (4)0.001 (2)0.006 (3)0.009 (3)
C290.034 (3)0.028 (3)0.054 (4)0.002 (2)0.010 (3)0.004 (3)
C300.040 (3)0.053 (4)0.034 (4)0.004 (3)0.001 (3)0.010 (3)
C310.040 (3)0.051 (4)0.029 (3)0.002 (3)0.001 (3)0.005 (3)
C320.033 (3)0.039 (3)0.048 (4)0.012 (3)0.008 (3)0.014 (3)
C330.034 (3)0.035 (3)0.037 (4)0.004 (3)0.005 (3)0.001 (3)
C340.035 (3)0.047 (4)0.029 (3)0.005 (3)0.006 (3)0.000 (3)
C350.036 (3)0.052 (4)0.026 (3)0.001 (3)0.004 (3)0.003 (3)
C360.028 (3)0.033 (3)0.032 (3)0.000 (2)0.007 (3)0.005 (3)
C370.034 (3)0.045 (4)0.031 (3)0.001 (3)0.003 (3)0.003 (3)
C380.052 (4)0.037 (3)0.041 (4)0.009 (3)0.016 (3)0.004 (3)
C390.040 (3)0.035 (3)0.057 (4)0.001 (3)0.013 (3)0.003 (3)
C400.035 (3)0.038 (3)0.046 (4)0.008 (3)0.001 (3)0.010 (3)
C410.040 (3)0.040 (3)0.032 (3)0.008 (3)0.003 (3)0.003 (3)
C420.061 (4)0.048 (4)0.036 (4)0.019 (3)0.017 (3)0.010 (3)
C430.034 (3)0.056 (4)0.024 (3)0.002 (3)0.003 (3)0.005 (3)
C440.040 (3)0.048 (4)0.028 (3)0.005 (3)0.005 (3)0.004 (3)
C450.099 (6)0.057 (5)0.036 (4)0.020 (4)0.021 (4)0.002 (4)
C460.149 (8)0.053 (5)0.057 (5)0.039 (5)0.031 (6)0.000 (4)
C470.087 (6)0.050 (4)0.051 (5)0.006 (4)0.015 (4)0.015 (4)
C480.059 (4)0.055 (4)0.034 (4)0.006 (3)0.004 (3)0.005 (3)
C490.048 (4)0.055 (4)0.037 (4)0.014 (3)0.002 (3)0.004 (3)
C500.046 (3)0.055 (4)0.067 (5)0.011 (4)0.019 (3)0.014 (4)
C510.030 (3)0.047 (3)0.035 (3)0.002 (3)0.000 (3)0.003 (3)
C520.028 (3)0.025 (3)0.042 (4)0.001 (2)0.003 (3)0.001 (3)
Geometric parameters (Å, º) top
Ni1—N62.064 (4)Ni2—N142.049 (4)
Ni1—N32.068 (4)Ni2—N112.063 (4)
Ni1—N22.079 (4)Ni2—N132.080 (4)
Ni1—N52.086 (4)Ni2—N102.081 (4)
Ni1—N82.098 (5)Ni2—N162.092 (4)
Ni1—N72.126 (5)Ni2—N152.156 (5)
N1—C11.446 (6)N9—C341.429 (7)
N1—C81.449 (7)N9—C271.432 (7)
N1—C91.460 (7)N9—C351.498 (7)
N2—C11.473 (6)N10—C271.471 (7)
N2—C21.484 (6)N10—C281.482 (7)
N2—H20.9300N10—H100.9300
N3—C31.459 (6)N11—C291.476 (7)
N3—C41.496 (6)N11—C301.491 (7)
N3—H30.9300N11—H110.9300
N4—C41.426 (7)N12—C301.446 (7)
N4—C51.436 (7)N12—C311.460 (7)
N4—C171.468 (6)N12—C431.475 (7)
N5—C61.477 (6)N13—C311.467 (7)
N5—C51.479 (7)N13—C321.484 (7)
N5—H50.9300N13—H130.9300
N6—C71.473 (7)N14—C341.467 (7)
N6—C81.484 (7)N14—C331.470 (7)
N6—H60.9300N14—H140.9300
N7—C251.160 (6)N15—C511.168 (7)
N8—C261.167 (6)N16—C521.171 (6)
S1—C251.632 (5)S3—C511.623 (6)
S2—C261.611 (6)S4—C521.615 (6)
C1—H1A0.9900C27—H27A0.9900
C1—H1B0.9900C27—H27B0.9900
C2—C31.522 (7)C28—C291.531 (8)
C2—H2A0.9900C28—H28A0.9900
C2—H2B0.9900C28—H28B0.9900
C3—H3A0.9900C29—H29A0.9900
C3—H3B0.9900C29—H29B0.9900
C4—H4A0.9900C30—H30A0.9900
C4—H4B0.9900C30—H30B0.9900
C5—H5A0.9900C31—H31A0.9900
C5—H5B0.9900C31—H31B0.9900
C6—C71.513 (8)C32—C331.524 (8)
C6—H6A0.9900C32—H32A0.9900
C6—H6B0.9900C32—H32B0.9900
C7—H7A0.9900C33—H33A0.9900
C7—H7B0.9900C33—H33B0.9900
C8—H8A0.9900C34—H34A0.9900
C8—H8B0.9900C34—H34B0.9900
C9—C101.521 (8)C35—C361.527 (8)
C9—C161.530 (7)C35—C421.528 (8)
C9—H9A1.0000C35—H351.0000
C10—C151.393 (7)C36—C371.377 (8)
C10—C111.418 (7)C36—C411.399 (7)
C11—C121.382 (8)C37—C381.397 (8)
C11—H11A0.9500C37—H370.9500
C12—C131.377 (8)C38—C391.370 (8)
C12—H12A0.9500C38—H380.9500
C13—C141.370 (9)C39—C401.374 (8)
C13—H13A0.9500C39—H390.9500
C14—C151.394 (8)C40—C411.385 (7)
C14—H14A0.9500C40—H400.9500
C15—H15A0.9500C41—H410.9500
C16—H16A0.9800C42—H42A0.9800
C16—H16B0.9800C42—H42B0.9800
C16—H16C0.9800C42—H42C0.9800
C17—C241.511 (8)C43—C441.523 (8)
C17—C181.521 (8)C43—C501.523 (8)
C17—H17A1.0000C43—H431.0000
C18—C231.368 (9)C44—C491.376 (8)
C18—C191.379 (8)C44—C451.381 (9)
C19—C201.380 (8)C45—C461.383 (10)
C19—H19A0.9500C45—H450.9500
C20—C211.369 (9)C46—C471.371 (9)
C20—H20A0.9500C46—H460.9500
C21—C221.352 (10)C47—C481.3592
C21—H21A0.9500C47—H470.9500
C22—C231.372 (10)C48—C491.377
C22—H22A0.9500C48—H480.9500
C23—H230.9500C49—H490.9500
C24—H24A0.9800C50—H50A0.9800
C24—H24B0.9800C50—H50B0.9800
C24—H24C0.9800C50—H50C0.9800
N6—Ni1—N3179.51 (18)N14—Ni2—N11178.53 (18)
N6—Ni1—N295.11 (17)N14—Ni2—N1386.07 (17)
N3—Ni1—N285.24 (16)N11—Ni2—N1395.32 (18)
N6—Ni1—N585.33 (17)N14—Ni2—N1092.18 (17)
N3—Ni1—N594.32 (16)N11—Ni2—N1086.42 (17)
N2—Ni1—N5178.97 (18)N13—Ni2—N10177.78 (18)
N6—Ni1—N891.56 (17)N14—Ni2—N1692.49 (18)
N3—Ni1—N888.08 (17)N11—Ni2—N1688.03 (17)
N2—Ni1—N892.18 (18)N13—Ni2—N1688.56 (18)
N5—Ni1—N888.74 (18)N10—Ni2—N1692.88 (18)
N6—Ni1—N788.78 (17)N14—Ni2—N1588.38 (18)
N3—Ni1—N791.58 (17)N11—Ni2—N1591.09 (19)
N2—Ni1—N787.14 (18)N13—Ni2—N1591.70 (19)
N5—Ni1—N791.94 (18)N10—Ni2—N1586.89 (19)
N8—Ni1—N7179.3 (2)N16—Ni2—N15179.1 (2)
C1—N1—C8115.7 (4)C34—N9—C27116.0 (5)
C1—N1—C9116.7 (4)C34—N9—C35118.1 (4)
C8—N1—C9117.1 (4)C27—N9—C35111.0 (4)
C1—N2—C2115.8 (4)C27—N10—C28115.1 (4)
C1—N2—Ni1113.2 (3)C27—N10—Ni2114.3 (3)
C2—N2—Ni1105.1 (3)C28—N10—Ni2104.0 (3)
C1—N2—H2107.5C27—N10—H10107.7
C2—N2—H2107.5C28—N10—H10107.7
Ni1—N2—H2107.5Ni2—N10—H10107.7
C3—N3—C4113.8 (4)C29—N11—C30115.2 (5)
C3—N3—Ni1106.7 (3)C29—N11—Ni2105.0 (3)
C4—N3—Ni1112.6 (3)C30—N11—Ni2113.5 (3)
C3—N3—H3107.8C29—N11—H11107.6
C4—N3—H3107.8C30—N11—H11107.6
Ni1—N3—H3107.8Ni2—N11—H11107.6
C4—N4—C5118.4 (4)C30—N12—C31114.9 (5)
C4—N4—C17119.4 (5)C30—N12—C43116.4 (5)
C5—N4—C17119.2 (5)C31—N12—C43114.5 (5)
C6—N5—C5114.9 (4)C31—N13—C32115.1 (4)
C6—N5—Ni1105.2 (3)C31—N13—Ni2113.8 (3)
C5—N5—Ni1113.6 (3)C32—N13—Ni2104.2 (3)
C6—N5—H5107.6C31—N13—H13107.8
C5—N5—H5107.6C32—N13—H13107.8
Ni1—N5—H5107.6Ni2—N13—H13107.8
C7—N6—C8116.5 (4)C34—N14—C33115.0 (4)
C7—N6—Ni1105.4 (3)C34—N14—Ni2113.1 (3)
C8—N6—Ni1112.8 (3)C33—N14—Ni2105.4 (3)
C7—N6—H6107.2C34—N14—H14107.7
C8—N6—H6107.2C33—N14—H14107.7
Ni1—N6—H6107.2Ni2—N14—H14107.7
C25—N7—Ni1160.6 (5)C51—N15—Ni2149.8 (5)
C26—N8—Ni1166.6 (4)C52—N16—Ni2173.1 (5)
N1—C1—N2108.7 (4)N9—C27—N10110.4 (4)
N1—C1—H1A110.0N9—C27—H27A109.6
N2—C1—H1A110.0N10—C27—H27A109.6
N1—C1—H1B110.0N9—C27—H27B109.6
N2—C1—H1B110.0N10—C27—H27B109.6
H1A—C1—H1B108.3H27A—C27—H27B108.1
N2—C2—C3109.0 (4)N10—C28—C29109.2 (4)
N2—C2—H2A109.9N10—C28—H28A109.8
C3—C2—H2A109.9C29—C28—H28A109.8
N2—C2—H2B109.9N10—C28—H28B109.8
C3—C2—H2B109.9C29—C28—H28B109.8
H2A—C2—H2B108.3H28A—C28—H28B108.3
N3—C3—C2108.7 (4)N11—C29—C28107.7 (4)
N3—C3—H3A110.0N11—C29—H29A110.2
C2—C3—H3A110.0C28—C29—H29A110.2
N3—C3—H3B110.0N11—C29—H29B110.2
C2—C3—H3B110.0C28—C29—H29B110.2
H3A—C3—H3B108.3H29A—C29—H29B108.5
N4—C4—N3114.0 (4)N12—C30—N11113.7 (5)
N4—C4—H4A108.8N12—C30—H30A108.8
N3—C4—H4A108.8N11—C30—H30A108.8
N4—C4—H4B108.8N12—C30—H30B108.8
N3—C4—H4B108.8N11—C30—H30B108.8
H4A—C4—H4B107.6H30A—C30—H30B107.7
N4—C5—N5114.3 (4)N12—C31—N13114.2 (5)
N4—C5—H5A108.7N12—C31—H31A108.7
N5—C5—H5A108.7N13—C31—H31A108.7
N4—C5—H5B108.7N12—C31—H31B108.7
N5—C5—H5B108.7N13—C31—H31B108.7
H5A—C5—H5B107.6H31A—C31—H31B107.6
N5—C6—C7108.1 (4)N13—C32—C33107.1 (4)
N5—C6—H6A110.1N13—C32—H32A110.3
C7—C6—H6A110.1C33—C32—H32A110.3
N5—C6—H6B110.1N13—C32—H32B110.3
C7—C6—H6B110.1C33—C32—H32B110.3
H6A—C6—H6B108.4H32A—C32—H32B108.6
N6—C7—C6109.1 (5)N14—C33—C32109.3 (5)
N6—C7—H7A109.9N14—C33—H33A109.8
C6—C7—H7A109.9C32—C33—H33A109.8
N6—C7—H7B109.9N14—C33—H33B109.8
C6—C7—H7B109.9C32—C33—H33B109.8
H7A—C7—H7B108.3H33A—C33—H33B108.3
N1—C8—N6107.9 (4)N9—C34—N14109.7 (5)
N1—C8—H8A110.1N9—C34—H34A109.7
N6—C8—H8A110.1N14—C34—H34A109.7
N1—C8—H8B110.1N9—C34—H34B109.7
N6—C8—H8B110.1N14—C34—H34B109.7
H8A—C8—H8B108.4H34A—C34—H34B108.2
N1—C9—C10108.7 (4)N9—C35—C36110.2 (5)
N1—C9—C16112.6 (4)N9—C35—C42114.7 (5)
C10—C9—C16114.3 (5)C36—C35—C42108.6 (4)
N1—C9—H9A106.9N9—C35—H35107.7
C10—C9—H9A106.9C36—C35—H35107.7
C16—C9—H9A106.9C42—C35—H35107.7
C15—C10—C11118.1 (5)C37—C36—C41119.1 (5)
C15—C10—C9123.8 (5)C37—C36—C35119.4 (5)
C11—C10—C9118.0 (5)C41—C36—C35121.5 (5)
C12—C11—C10120.7 (5)C36—C37—C38120.3 (6)
C12—C11—H11A119.7C36—C37—H37119.8
C10—C11—H11A119.7C38—C37—H37119.8
C13—C12—C11120.1 (6)C39—C38—C37119.8 (6)
C13—C12—H12A120.0C39—C38—H38120.1
C11—C12—H12A120.0C37—C38—H38120.1
C14—C13—C12120.2 (6)C38—C39—C40120.6 (6)
C14—C13—H13A119.9C38—C39—H39119.7
C12—C13—H13A119.9C40—C39—H39119.7
C13—C14—C15120.9 (6)C39—C40—C41120.0 (6)
C13—C14—H14A119.5C39—C40—H40120.0
C15—C14—H14A119.5C41—C40—H40120.0
C10—C15—C14120.0 (5)C40—C41—C36120.1 (6)
C10—C15—H15A120.0C40—C41—H41119.9
C14—C15—H15A120.0C36—C41—H41119.9
C9—C16—H16A109.5C35—C42—H42A109.5
C9—C16—H16B109.5C35—C42—H42B109.5
H16A—C16—H16B109.5H42A—C42—H42B109.5
C9—C16—H16C109.5C35—C42—H42C109.5
H16A—C16—H16C109.5H42A—C42—H42C109.5
H16B—C16—H16C109.5H42B—C42—H42C109.5
N4—C17—C24114.3 (5)N12—C43—C44111.2 (5)
N4—C17—C18110.1 (4)N12—C43—C50111.5 (5)
C24—C17—C18114.2 (5)C44—C43—C50107.4 (5)
N4—C17—H17A105.8N12—C43—H43108.9
C24—C17—H17A105.8C44—C43—H43108.9
C18—C17—H17A105.8C50—C43—H43108.9
C23—C18—C19117.2 (6)C49—C44—C45118.2 (6)
C23—C18—C17123.1 (6)C49—C44—C43121.9 (6)
C19—C18—C17119.7 (5)C45—C44—C43119.6 (6)
C18—C19—C20121.0 (6)C44—C45—C46120.4 (6)
C18—C19—H19A119.5C44—C45—H45119.8
C20—C19—H19A119.5C46—C45—H45119.8
C21—C20—C19120.6 (6)C47—C46—C45121.2 (7)
C21—C20—H20A119.7C47—C46—H46119.4
C19—C20—H20A119.7C45—C46—H46119.4
C22—C21—C20118.4 (7)C48—C47—C46117.9
C22—C21—H21A120.8C48—C47—H47121.1
C20—C21—H21A120.8C46—C47—H47121.1
C21—C22—C23121.2 (7)C47—C48—C49122.1
C21—C22—H22A119.4C47—C48—H48119.0
C23—C22—H22A119.4C49—C48—H48119.0
C18—C23—C22121.6 (7)C44—C49—C48120.2
C18—C23—H23119.2C44—C49—H49119.9
C22—C23—H23119.2C48—C49—H49119.9
C17—C24—H24A109.5C43—C50—H50A109.5
C17—C24—H24B109.5C43—C50—H50B109.5
H24A—C24—H24B109.5H50A—C50—H50B109.5
C17—C24—H24C109.5C43—C50—H50C109.5
H24A—C24—H24C109.5H50A—C50—H50C109.5
H24B—C24—H24C109.5H50B—C50—H50C109.5
N7—C25—S1178.6 (5)N15—C51—S3178.5 (6)
N8—C26—S2179.0 (6)N16—C52—S4177.5 (5)
N6—Ni1—N2—C136.9 (4)C17—C18—C19—C20178.5 (6)
N3—Ni1—N2—C1142.8 (3)C17—C18—C23—C22179.6 (7)
N8—Ni1—N2—C154.9 (3)N14—Ni2—N10—C2740.1 (4)
N7—Ni1—N2—C1125.4 (4)N11—Ni2—N10—C27140.3 (4)
N6—Ni1—N2—C2164.1 (3)N16—Ni2—N10—C2752.5 (4)
N3—Ni1—N2—C215.5 (3)N15—Ni2—N10—C27128.4 (4)
N8—Ni1—N2—C272.4 (3)N14—Ni2—N10—C28166.5 (3)
N7—Ni1—N2—C2107.4 (3)N11—Ni2—N10—C2814.0 (3)
N2—Ni1—N3—C314.0 (3)N16—Ni2—N10—C2873.9 (3)
N5—Ni1—N3—C3165.1 (3)N15—Ni2—N10—C28105.3 (3)
N8—Ni1—N3—C3106.3 (4)N13—Ni2—N11—C29162.0 (3)
N7—Ni1—N3—C373.0 (3)N10—Ni2—N11—C2916.6 (3)
N2—Ni1—N3—C4139.6 (3)N16—Ni2—N11—C29109.7 (4)
N5—Ni1—N3—C439.5 (3)N15—Ni2—N11—C2970.2 (4)
N8—Ni1—N3—C4128.1 (3)N13—Ni2—N11—C3035.3 (4)
N7—Ni1—N3—C452.6 (3)N10—Ni2—N11—C30143.3 (4)
N6—Ni1—N5—C615.2 (3)N16—Ni2—N11—C30123.7 (4)
N3—Ni1—N5—C6165.2 (3)N15—Ni2—N11—C3056.5 (4)
N8—Ni1—N5—C6106.9 (3)N14—Ni2—N13—C31144.5 (4)
N7—Ni1—N5—C673.4 (4)N11—Ni2—N13—C3135.0 (4)
N6—Ni1—N5—C5141.7 (4)N16—Ni2—N13—C31122.9 (4)
N3—Ni1—N5—C538.6 (4)N15—Ni2—N13—C3156.2 (4)
N8—Ni1—N5—C5126.6 (4)N14—Ni2—N13—C3218.3 (3)
N7—Ni1—N5—C553.1 (4)N11—Ni2—N13—C32161.2 (3)
N2—Ni1—N6—C7166.0 (3)N16—Ni2—N13—C32110.9 (4)
N5—Ni1—N6—C715.0 (3)N15—Ni2—N13—C3269.9 (4)
N8—Ni1—N6—C773.6 (3)N13—Ni2—N14—C34138.9 (4)
N7—Ni1—N6—C7107.0 (4)N10—Ni2—N14—C3442.4 (4)
N2—Ni1—N6—C837.9 (4)N16—Ni2—N14—C3450.5 (4)
N5—Ni1—N6—C8143.1 (4)N15—Ni2—N14—C34129.3 (4)
N8—Ni1—N6—C854.5 (4)N13—Ni2—N14—C3312.4 (3)
N7—Ni1—N6—C8124.9 (4)N10—Ni2—N14—C33168.9 (3)
N2—Ni1—N7—C2525.3 (13)N16—Ni2—N14—C3376.0 (3)
N5—Ni1—N7—C25155.2 (13)N15—Ni2—N14—C33104.2 (3)
N6—Ni1—N8—C26129.0 (18)N14—Ni2—N15—C5169.8 (9)
N3—Ni1—N8—C2650.7 (18)N11—Ni2—N15—C51108.9 (9)
N2—Ni1—N8—C26135.8 (18)N13—Ni2—N15—C51155.8 (9)
N5—Ni1—N8—C2643.7 (18)N10—Ni2—N15—C5122.5 (9)
C8—N1—C1—N282.6 (6)C34—N9—C27—N1076.2 (6)
C9—N1—C1—N2133.4 (5)C35—N9—C27—N10145.2 (4)
C2—N2—C1—N1177.8 (4)C28—N10—C27—N9177.0 (4)
Ni1—N2—C1—N156.3 (5)Ni2—N10—C27—N956.7 (5)
C1—N2—C2—C3167.5 (4)C27—N10—C28—C29167.7 (4)
Ni1—N2—C2—C341.8 (5)Ni2—N10—C28—C2941.9 (5)
C4—N3—C3—C2165.5 (4)C30—N11—C29—C28169.2 (4)
Ni1—N3—C3—C240.6 (5)Ni2—N11—C29—C2843.6 (5)
N2—C2—C3—N357.1 (6)N10—C28—C29—N1159.9 (5)
C5—N4—C4—N371.6 (6)C31—N12—C30—N1174.2 (6)
C17—N4—C4—N388.8 (6)C43—N12—C30—N1163.5 (7)
C3—N3—C4—N4178.6 (4)C29—N11—C30—N12177.1 (4)
Ni1—N3—C4—N456.9 (5)Ni2—N11—C30—N1256.0 (6)
C4—N4—C5—N569.9 (6)C30—N12—C31—N1373.8 (6)
C17—N4—C5—N590.6 (6)C43—N12—C31—N1364.8 (6)
C6—N5—C5—N4175.2 (4)C32—N13—C31—N12174.8 (4)
Ni1—N5—C5—N454.0 (5)Ni2—N13—C31—N1254.6 (6)
C5—N5—C6—C7167.9 (4)C31—N13—C32—C33170.1 (5)
Ni1—N5—C6—C742.2 (5)Ni2—N13—C32—C3344.7 (5)
C8—N6—C7—C6168.6 (4)C34—N14—C33—C32166.4 (4)
Ni1—N6—C7—C642.7 (5)Ni2—N14—C33—C3241.1 (5)
N5—C6—C7—N659.0 (5)N13—C32—C33—N1459.9 (6)
C1—N1—C8—N683.6 (6)C27—N9—C34—N1479.7 (6)
C9—N1—C8—N6132.5 (4)C35—N9—C34—N14144.8 (4)
C7—N6—C8—N1179.5 (4)C33—N14—C34—N9176.3 (4)
Ni1—N6—C8—N158.4 (5)Ni2—N14—C34—N962.5 (5)
C1—N1—C9—C1062.3 (6)C34—N9—C35—C36145.4 (5)
C8—N1—C9—C10154.2 (5)C27—N9—C35—C3677.0 (5)
C1—N1—C9—C1665.5 (6)C34—N9—C35—C4222.5 (7)
C8—N1—C9—C1678.0 (6)C27—N9—C35—C42160.0 (5)
N1—C9—C10—C15124.0 (5)N9—C35—C36—C37145.6 (5)
C16—C9—C10—C152.8 (8)C42—C35—C36—C3787.9 (6)
N1—C9—C10—C1155.3 (6)N9—C35—C36—C4137.5 (7)
C16—C9—C10—C11177.9 (5)C42—C35—C36—C4188.9 (6)
C15—C10—C11—C121.0 (8)C35—C36—C37—C38175.5 (5)
C9—C10—C11—C12179.6 (5)C36—C37—C38—C390.5 (8)
C10—C11—C12—C130.4 (8)C37—C38—C39—C400.2 (8)
C11—C12—C13—C140.2 (9)C38—C39—C40—C410.7 (9)
C12—C13—C14—C150.0 (9)C39—C40—C41—C361.6 (8)
C11—C10—C15—C141.2 (8)C37—C36—C41—C402.0 (8)
C9—C10—C15—C14179.5 (5)C35—C36—C41—C40174.9 (5)
C13—C14—C15—C100.7 (9)C30—N12—C43—C44162.1 (5)
C4—N4—C17—C2494.8 (6)C31—N12—C43—C4459.9 (6)
C5—N4—C17—C2465.5 (7)C30—N12—C43—C5042.4 (7)
C4—N4—C17—C18135.1 (5)C31—N12—C43—C50179.7 (5)
C5—N4—C17—C1864.6 (7)N12—C43—C44—C4943.5 (8)
N4—C17—C18—C23137.0 (6)C50—C43—C44—C4978.6 (7)
C24—C17—C18—C236.8 (9)N12—C43—C44—C45141.4 (6)
N4—C17—C18—C1943.7 (7)C50—C43—C44—C4596.5 (7)
C24—C17—C18—C19173.9 (5)C43—C44—C45—C46173.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S1i0.932.823.439 (4)125
N6—H6···S2ii0.932.713.347 (4)127
N11—H11···S3ii0.932.893.614 (5)136
N14—H14···S4i0.932.663.418 (4)139
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C24H38N6)]
Mr585.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)8.5313 (5), 15.3141 (10), 44.004 (3)
V3)5749.1 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.36 × 0.17 × 0.16
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.679, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
43415, 14300, 8093
Rint0.103
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.149, 1.04
No. of reflections14300
No. of parameters668
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.93
Absolute structureFlack (1983)
Absolute structure parameter0.004 (17)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S1i0.932.823.439 (4)125
N6—H6···S2ii0.932.713.347 (4)127
N11—H11···S3ii0.932.893.614 (5)136
N14—H14···S4i0.932.663.418 (4)139
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

This work was partially supported by the Korea Research Foundation Grant funded by the Korean government (MOEHRD, Basic Research Promotion Fund; grant No. KRF-2007-331-C00144). The authors acknowledge the Korea Basic Science Institute for the X-ray data collections.

References

First citationBanerjee, S. R. & Zubieta, J. (2004). Acta Cryst. C60, m208–m209.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDu, G., Ellern, A. & Woo, L. K. (2003). Inorg. Chem. 42, 873–877.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, J., Reibenspies, J. H., Zingaro, R. A., Woolley, F. R., Martell, A. E. & Clearfield, A. (2005). Inorg. Chem. 44, 232–241.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHan, J. H., Cha, M. J., Kim, B. G., Kim, S. K. & Min, K. S. (2008). Inorg. Chem. Commun. 11, 745–748.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatsuki, I., Matsumoto, N. & Kojima, M. (2000). Inorg. Chem. 39, 3350–3354.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLehn, J.-M. (1995). In Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH.  Google Scholar
First citationLeonard, J. P., Jensen, P., McCabe, T., O'Brien, J. E., Peacock, R. D., Kruger, P. E. & Gunnlaugsson, T. (2007). J. Am. Chem. Soc. 129, 10986–10987.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationStølevik, R. & Postmyr, L. (1997). J. Mol. Struct. 403, 207–211.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds