metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­chlorido(1,10-phenanthroline-κ2N,N′)platinum(IV) monohydrate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea, and bDepartment of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 13 January 2009; accepted 22 January 2009; online 28 January 2009)

In the title complex, [PtCl4(C12H8N2)]·H2O, the Pt4+ ion is six-coordinated in a distorted octa­hedral environment by two N atoms of a 1,10-phenanthroline ligand and by four Cl atoms. As a result of the different trans effects of the N and Cl atoms, the Pt—Cl bonds trans to the N atom are slightly shorter than those trans to the Cl atom. The compound displays inter­molecular ππ inter­actions between the six-membered rings, with a centroid–centroid distance of 3.834 Å. There are also weak intra­molecular C—H⋯Cl hydrogen bonds. According to the IR spectrum, solvent water was present in the crystal, but owing to the high thermal motion of the uncoordinated O atom, the H atoms could not be detected.

Related literature

For details of some other Pt–phenanthroline complexes, see: Buse et al. (1977[Buse, K. D., Keller, H. J. & Pritzkow, H. (1977). Inorg. Chem. 16, 1072-1076.]); Fanizzi et al. (1996[Fanizzi, F. P., Natile, G., Lanfranchi, M., Tiripicchio, A., Laschi, F. & Zanello, P. (1996). Inorg. Chem. 35, 3173-3182.]). For related Pt–bipyridine complexes, see: Hambley (1986[Hambley, T. W. (1986). Acta Cryst. C42, 49-51.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905-m906.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl4(C12H8N2)]·H2O

  • Mr = 535.11

  • Orthorhombic, P b c a

  • a = 14.8481 (19) Å

  • b = 12.4079 (16) Å

  • c = 17.379 (2) Å

  • V = 3201.8 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 9.43 mm−1

  • T = 293 (2) K

  • 0.25 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.418, Tmax = 0.568

  • 18465 measured reflections

  • 3521 independent reflections

  • 2414 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.141

  • S = 1.02

  • 3521 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 1.41 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl2 0.93 2.72 3.298 (10) 121
C10—H10⋯Cl1 0.93 2.74 3.306 (10) 121

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title compound, [PtCl4(C12H8N2)].H2O, contains a neutral PtIV complex and a water molecule (Fig. 1 and 2). In the complex, the Pt4+ ion is six-coordinated in a distorted octahedral environment by two N atoms of the 1,10-phenanthroline ligand and four Cl atoms. The main contribution to the distortion is the tight N1—Pt1—N2 chelate angle (80.1 (2)°), which result in non-linear trans axes (<Cl1—Pt1—N1 = 174.0 (2)°, <Cl2—Pt1—N2 = 173.9 (2)° and <Cl3—Pt1—Cl4 = 176.84 (10)°). As a result of the different trans effects of the N and Cl atoms, the Pt—Cl bonds trans to the N atom (lengths: 2.317 (3) and 2.320 (2) Å) are slightly shorter than bond lengths to mutually trans Cl atoms (lengths: 2.343 (3) and 2.335 (3) Å). The compound displays intermolecular π-π interactions between six-membered rings, with a shortest centroid-centroid distance of 3.834 Å and with a dihedral angle between the ring planes of 1.48°. There are also weak intramolecular C—H···Cl hydrogen bonds (Table 1). According to the IR spectrum, water was present in the crystal.

Related literature top

For related literature, see: Buse et al. (1977); Fanizzi et al. (1996); Hambley (1986); Hojjat Kashani et al. (2008). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see··· For related structures, see···; etc. Please revise this section as indicated.

Experimental top

To a solution of K2PtCl6 (0.3002 g, 0.618 mmol) in H2O (20 ml) was added 1,10-phenanthroline (0.1108 g, 0.615 mmol) in MeOH (10 ml), and stirred for 3 h at room temperature. The formed precipitate was separated by filtration and washed with water and MeOH and dried under vacuum, to give a yellow powder (0.1655 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH2Cl2 solution. IR (KBr): 3424 cm-1 (broad).

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. Due to the high thermal motion of the oxygen atom of the solvent H2O molecule, the H atoms could neither be located from Fourier difference maps, nor added geometrically.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound.
Tetrachlorido(1,10-phenanthroline-κ2N,N')platinum(IV) monohydrate top
Crystal data top
[PtCl4(C12H8N2)]·H2OF(000) = 2000
Mr = 535.11Dx = 2.220 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 943 reflections
a = 14.8481 (19) Åθ = 3.2–23.2°
b = 12.4079 (16) ŵ = 9.43 mm1
c = 17.379 (2) ÅT = 293 K
V = 3201.8 (7) Å3Stick, yellow
Z = 80.25 × 0.08 × 0.06 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3521 independent reflections
Radiation source: fine-focus sealed tube2414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 27.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1818
Tmin = 0.418, Tmax = 0.568k = 1115
18465 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0738P)2 + 11.9979P]
where P = (Fo2 + 2Fc2)/3
3521 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 1.41 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[PtCl4(C12H8N2)]·H2OV = 3201.8 (7) Å3
Mr = 535.11Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.8481 (19) ŵ = 9.43 mm1
b = 12.4079 (16) ÅT = 293 K
c = 17.379 (2) Å0.25 × 0.08 × 0.06 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3521 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2414 reflections with I > 2σ(I)
Tmin = 0.418, Tmax = 0.568Rint = 0.047
18465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0738P)2 + 11.9979P]
where P = (Fo2 + 2Fc2)/3
3521 reflectionsΔρmax = 1.41 e Å3
181 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.12471 (3)0.29079 (3)0.18568 (2)0.04495 (16)
Cl10.27151 (18)0.3484 (2)0.20445 (16)0.0580 (7)
Cl20.15722 (18)0.12006 (19)0.23250 (16)0.0549 (6)
Cl30.16047 (19)0.23631 (19)0.06024 (15)0.0537 (6)
Cl40.0833 (2)0.3517 (2)0.30779 (14)0.0568 (6)
N10.0092 (5)0.2536 (6)0.1619 (4)0.0364 (16)
N20.0815 (5)0.4383 (5)0.1425 (4)0.0368 (16)
C10.0512 (7)0.1599 (7)0.1735 (5)0.045 (2)
H10.01930.10160.19320.054*
C20.1400 (7)0.1490 (8)0.1567 (7)0.051 (2)
H20.16900.08450.16790.062*
C30.1871 (7)0.2308 (8)0.1239 (6)0.052 (3)
H30.24710.22040.11050.062*
C40.1462 (6)0.3308 (7)0.1100 (6)0.041 (2)
C50.1870 (6)0.4213 (8)0.0779 (6)0.048 (2)
H50.24720.41770.06330.058*
C60.1405 (6)0.5157 (8)0.0675 (5)0.048 (2)
H60.16970.57380.04480.058*
C70.0491 (6)0.5276 (7)0.0901 (5)0.039 (2)
C80.0011 (6)0.6212 (7)0.0837 (6)0.047 (2)
H80.02490.68320.06340.057*
C90.0879 (8)0.6221 (7)0.1068 (6)0.056 (3)
H90.12130.68530.10280.067*
C100.1284 (6)0.5293 (7)0.1368 (6)0.047 (2)
H100.18820.53110.15260.057*
C110.0064 (6)0.4363 (6)0.1212 (5)0.0369 (19)
C120.0537 (6)0.3380 (7)0.1308 (5)0.0361 (19)
O10.0973 (14)0.4296 (19)0.4629 (12)0.258 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0506 (3)0.0368 (2)0.0475 (3)0.00031 (15)0.00128 (17)0.00387 (15)
Cl10.0537 (14)0.0544 (15)0.0658 (17)0.0055 (11)0.0089 (12)0.0134 (12)
Cl20.0589 (14)0.0404 (12)0.0653 (17)0.0065 (11)0.0036 (12)0.0105 (11)
Cl30.0648 (15)0.0489 (13)0.0475 (15)0.0084 (11)0.0064 (12)0.0002 (11)
Cl40.0744 (17)0.0486 (14)0.0473 (15)0.0025 (12)0.0074 (12)0.0021 (11)
N10.036 (4)0.036 (4)0.037 (4)0.001 (3)0.002 (3)0.006 (3)
N20.043 (4)0.024 (3)0.044 (4)0.001 (3)0.000 (3)0.004 (3)
C10.053 (6)0.030 (5)0.053 (6)0.002 (4)0.003 (5)0.002 (4)
C20.056 (6)0.037 (5)0.062 (7)0.008 (4)0.008 (5)0.001 (5)
C30.041 (5)0.058 (6)0.056 (6)0.012 (4)0.006 (5)0.017 (5)
C40.041 (5)0.042 (5)0.040 (5)0.007 (4)0.002 (4)0.011 (4)
C50.040 (5)0.056 (6)0.048 (6)0.010 (4)0.003 (4)0.008 (5)
C60.058 (6)0.050 (6)0.037 (5)0.017 (4)0.001 (4)0.001 (4)
C70.054 (5)0.036 (5)0.027 (4)0.010 (4)0.006 (4)0.004 (3)
C80.062 (6)0.032 (5)0.048 (6)0.013 (4)0.002 (5)0.003 (4)
C90.084 (7)0.025 (4)0.059 (7)0.003 (5)0.010 (6)0.000 (4)
C100.053 (5)0.039 (5)0.050 (6)0.002 (4)0.002 (5)0.002 (4)
C110.048 (5)0.032 (4)0.030 (5)0.002 (4)0.007 (4)0.006 (4)
C120.044 (5)0.032 (4)0.032 (5)0.006 (4)0.006 (4)0.005 (3)
O10.33 (3)0.29 (3)0.151 (17)0.06 (2)0.028 (17)0.043 (17)
Geometric parameters (Å, º) top
Pt1—N22.080 (7)C3—H30.9300
Pt1—N12.083 (7)C4—C51.393 (13)
Pt1—Cl12.317 (3)C4—C121.424 (12)
Pt1—Cl22.320 (2)C5—C61.372 (13)
Pt1—Cl42.335 (3)C5—H50.9300
Pt1—Cl32.343 (3)C6—C71.421 (13)
N1—C11.335 (11)C6—H60.9300
N1—C121.351 (11)C7—C81.384 (13)
N2—C101.330 (11)C7—C111.405 (11)
N2—C111.357 (11)C8—C91.351 (14)
C1—C21.357 (13)C8—H80.9300
C1—H10.9300C9—C101.400 (14)
C2—C31.358 (14)C9—H90.9300
C2—H20.9300C10—H100.9300
C3—C41.402 (13)C11—C121.417 (12)
N2—Pt1—N180.1 (3)C4—C3—H3119.7
N2—Pt1—Cl194.0 (2)C5—C4—C3126.5 (8)
N1—Pt1—Cl1174.0 (2)C5—C4—C12118.0 (8)
N2—Pt1—Cl2173.9 (2)C3—C4—C12115.5 (8)
N1—Pt1—Cl293.8 (2)C6—C5—C4121.5 (9)
Cl1—Pt1—Cl292.10 (9)C6—C5—H5119.2
N2—Pt1—Cl487.8 (2)C4—C5—H5119.2
N1—Pt1—Cl490.0 (2)C5—C6—C7122.2 (8)
Cl1—Pt1—Cl491.14 (10)C5—C6—H6118.9
Cl2—Pt1—Cl491.81 (10)C7—C6—H6118.9
N2—Pt1—Cl389.3 (2)C8—C7—C11117.7 (8)
N1—Pt1—Cl388.2 (2)C8—C7—C6125.4 (8)
Cl1—Pt1—Cl390.39 (10)C11—C7—C6117.0 (8)
Cl2—Pt1—Cl390.90 (9)C9—C8—C7119.8 (9)
Cl4—Pt1—Cl3176.84 (10)C9—C8—H8120.1
C1—N1—C12120.5 (8)C7—C8—H8120.1
C1—N1—Pt1127.5 (6)C8—C9—C10120.9 (9)
C12—N1—Pt1112.0 (6)C8—C9—H9119.5
C10—N2—C11120.0 (7)C10—C9—H9119.5
C10—N2—Pt1127.7 (6)N2—C10—C9120.0 (9)
C11—N2—Pt1112.3 (5)N2—C10—H10120.0
N1—C1—C2120.5 (9)C9—C10—H10120.0
N1—C1—H1119.7N2—C11—C7121.6 (8)
C2—C1—H1119.7N2—C11—C12117.4 (7)
C1—C2—C3121.1 (9)C7—C11—C12121.0 (8)
C1—C2—H2119.5N1—C12—C11118.2 (8)
C3—C2—H2119.5N1—C12—C4121.6 (8)
C2—C3—C4120.7 (9)C11—C12—C4120.2 (8)
C2—C3—H3119.7
N2—Pt1—N1—C1179.4 (8)C11—C7—C8—C90.1 (13)
Cl2—Pt1—N1—C10.2 (8)C6—C7—C8—C9179.5 (9)
Cl4—Pt1—N1—C191.6 (7)C7—C8—C9—C100.6 (15)
Cl3—Pt1—N1—C191.0 (7)C11—N2—C10—C91.7 (14)
N2—Pt1—N1—C121.2 (6)Pt1—N2—C10—C9179.3 (7)
Cl2—Pt1—N1—C12179.2 (5)C8—C9—C10—N20.2 (15)
Cl4—Pt1—N1—C1289.0 (5)C10—N2—C11—C72.5 (13)
Cl3—Pt1—N1—C1288.4 (5)Pt1—N2—C11—C7179.6 (6)
N1—Pt1—N2—C10177.2 (8)C10—N2—C11—C12178.2 (8)
Cl1—Pt1—N2—C104.2 (8)Pt1—N2—C11—C120.3 (9)
Cl4—Pt1—N2—C1086.8 (8)C8—C7—C11—N21.7 (12)
Cl3—Pt1—N2—C1094.6 (8)C6—C7—C11—N2178.0 (8)
N1—Pt1—N2—C110.5 (6)C8—C7—C11—C12179.0 (8)
Cl1—Pt1—N2—C11178.1 (6)C6—C7—C11—C121.3 (12)
Cl4—Pt1—N2—C1190.9 (6)C1—N1—C12—C11178.7 (8)
Cl3—Pt1—N2—C1187.7 (6)Pt1—N1—C12—C111.8 (9)
C12—N1—C1—C22.3 (13)C1—N1—C12—C40.6 (12)
Pt1—N1—C1—C2178.3 (7)Pt1—N1—C12—C4180.0 (6)
N1—C1—C2—C33.7 (16)N2—C11—C12—N11.4 (12)
C1—C2—C3—C43.2 (16)C7—C11—C12—N1179.2 (7)
C2—C3—C4—C5179.0 (10)N2—C11—C12—C4179.6 (8)
C2—C3—C4—C121.4 (14)C7—C11—C12—C41.0 (12)
C3—C4—C5—C6179.5 (9)C5—C4—C12—N1179.7 (8)
C12—C4—C5—C61.0 (14)C3—C4—C12—N10.1 (12)
C4—C5—C6—C71.4 (15)C5—C4—C12—C112.2 (13)
C5—C6—C7—C8177.8 (9)C3—C4—C12—C11178.2 (8)
C5—C6—C7—C112.6 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.932.723.298 (10)121
C10—H10···Cl10.932.743.306 (10)121

Experimental details

Crystal data
Chemical formula[PtCl4(C12H8N2)]·H2O
Mr535.11
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.8481 (19), 12.4079 (16), 17.379 (2)
V3)3201.8 (7)
Z8
Radiation typeMo Kα
µ (mm1)9.43
Crystal size (mm)0.25 × 0.08 × 0.06
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.418, 0.568
No. of measured, independent and
observed [I > 2σ(I)] reflections
18465, 3521, 2414
Rint0.047
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.141, 1.02
No. of reflections3521
No. of parameters181
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0738P)2 + 11.9979P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.41, 0.56

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.932.723.298 (10)121.2
C10—H10···Cl10.932.743.306 (10)120.6
 

Acknowledgements

This work was supported by a Korea Research Foundation grant funded by the Korean Government (MOEHRD) (grant No. KRF-2007-412-J02001).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuse, K. D., Keller, H. J. & Pritzkow, H. (1977). Inorg. Chem. 16, 1072–1076.  CSD CrossRef CAS Web of Science Google Scholar
First citationFanizzi, F. P., Natile, G., Lanfranchi, M., Tiripicchio, A., Laschi, F. & Zanello, P. (1996). Inorg. Chem. 35, 3173–3182.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHambley, T. W. (1986). Acta Cryst. C42, 49–51.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds