organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Norfloxacin sesquihydrate

aBirla Institute of Technology, Department of Pharmaceutical Sciences, Mesra, Ranchi 835 215, India, and bGVK Biosciences Private Limited, S-1, Phase-1 Technocrats Industrial Estate, Balanagar, Hyderabad 500 037, India
*Correspondence e-mail: sarma@gvkbio.com

(Received 20 November 2008; accepted 7 January 2009; online 14 January 2009)

In the crystal structure of the title compound [systematic name: 1-ethyl-6-fluoro-4-oxo-7-(piperazin-4-ium-1-yl)-1,4-dihydro­quinoline-3-carboxyl­ate sesquihydrate], C16H18FN3O3·1.42H2O, N—H⋯O and O—H⋯O hydrogen bonds assemble the mol­ecules in a two-dimensional layered corrugated sheet structure parallel to the b axis. The water mol­ecules are disordered [occupancies 0.741 (11) and 0.259 (11)].

Related literature

For related structures, see: Yuasa et al. (1982[Yuasa, R., Imai, J., Morikawa, H., Kusajima, H., Uchida, H. & Irikura, T. (1982). Yakugaku Zasshi, 102, 469-476.]); Windholz et al. (1983[Windholz, M., Budavari, S., Blumetti, R. F. & Otterbein, E. S. (1983). Editors. The Merck Index, 10th ed. Rahway, NJ, USA: Merck and Co. Inc.]); Katdare et al. (1986[Katdare, A. V., Ryan, J. A., Bavitz, J. F., Erb, D. M. & Guillory, J. K. (1986). Mikrochim. Acta Wien III, 90, 1-12.]); Šuštar et al. (1993[Šuštar, B., Bukovec, N. & Bukovec, P. (1993). J. Therm. Anal. 40, 475-481.]); Florence et al. (2000[Florence, A. J., Kennedy, A. R., Shankland, N., Wright, E. & Al-Rubayi, A. (2000). Acta Cryst. C56, 1372-1373.]); Barbas et al. (2006[Barbas, R., Martí, F., Prohens, R. & Puigjaner, C. (2006). Cryst. Growth Des. 6, 1463-1467.]); Basavoju et al. (2006[Basavoju, S., Boström, D. & Velaga, S. P. (2006). Cryst. Growth Des. 6, 2699-2708.]); Barbas et al. (2007[Barbas, R., Prohens, R. & Puigjaner, C. (2007). J. Therm. Anal. Calorim. 89, 687-692.]); Chongcharoen et al. (2008[Chongcharoen, W., Byrn, S. R. & Sutanthavibul, N. (2008). J. Pharm. Sci. 97, 473-489.])

[Scheme 1]

Experimental

Crystal data
  • C16H18FN3O3·1.42H2O

  • Mr = 344.12

  • Monoclinic, P 21 /c

  • a = 8.8434 (18) Å

  • b = 22.312 (5) Å

  • c = 8.7564 (18) Å

  • β = 109.35 (3)°

  • V = 1630.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 16819 measured reflections

  • 3228 independent reflections

  • 2553 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.218

  • S = 1.03

  • 3228 reflections

  • 253 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O4A 0.90 1.88 (1) 2.741 160
N3—H3A⋯O4B 0.90 2.10 (1) 2.952 157
N3—H3B⋯O2i 0.90 1.99 2.777 (4) 145
N3—H3B⋯O3i 0.90 2.15 2.793 (4) 128
O4B—H4B⋯O1ii 0.912 (7) 2.02 (7) 2.793 141
O4A—H4A⋯O2iii 0.933 (10) 1.90 (9) 2.811 165
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Norfloxacin (NF) is a broad spectrum 4-fluoroquinolone antibacterial used in the treatment of urinary tract infections. As part of our interest in polymorphs and hydrates of NF, we have investigated the crystal structure of NF sesquihydrate, (I) (Fig. 1). NF molecule is zwitterionic and the N3 nitrogen is protonated similar to the reported structure of dihydrate (Florence et al., 2000) and anhydrous zwitterion (Barbas et al., 2007). The molecules are linked via N—H···O and O—H···O hydrogen bonds, forming two-dimensional corrugated sheets parallel to b axis. These sheets are linked together by the water molecules which act as acceptors of H atoms, assembling the molecules in an infinite two-dimensional network (Fig. 2).

Related literature top

For related structures, see: Yuasa et al. (1982); Windholz et al. (1983); Katdare et al. (1986); Šuštar et al. (1993); Florence et al. (2000); Barbas et al. (2006); Basavoju et al. (2006); Barbas et al. (2007); Chongcharoen et al. (2008)

Experimental top

The title compound was prepared from anhydrous form as reported by Katdare et al.,(1986). It was then dissolved in Acetonitrile on water bath and allowed to cool in sealed flask. Pale yellow colored block like crystals suitable for x-ray analysis appeared after two days.

Refinement top

The lattice water molecules are disordered. The O4 oxygen is disordered over two sites, O4A and O4B, with occupancies of 0.741 and 0.259 respectively. The O5 oxygen atom has a occupancy of 0.423. Due to disorder the hydrogen atoms on O5 oxygen could not be located. All H atoms were located from difference Fourier synthesis. Those bonded to O atoms were then refined independently and isotropically, whilst those attached to C and N atoms were placed in geometrically calculated positions and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C), N—H = 0.90 Å, C—H distance restraints of 0.93, 0.96 and 0.97 Å for aromatic, methylene and methyl groups, respectively.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. Labels for Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. The packing of (I), showing the corrugated sheet layers of molecules parallel to b axis and water molecules connected by N—H···O and O—H···O hydrogen bonds (dashed lines).
1-ethyl-6-fluoro-4-oxo-7-(piperazin-4-ium-1-yl)-1,4-dihydroquinoline-3- carboxylate sesquihydrate top
Crystal data top
C16H18FN3O3·1.42H2OF(000) = 725.5
Mr = 344.12Dx = 1.402 Mg m3
Monoclinic, P21/cMelting point: 492.5(3) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.8434 (18) ÅCell parameters from 3228 reflections
b = 22.312 (5) Åθ = 1.8–26.1°
c = 8.7564 (18) ŵ = 0.11 mm1
β = 109.35 (3)°T = 298 K
V = 1630.2 (7) Å3Block, pale yellow
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2553 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 26.1°, θmin = 1.8°
ϕ and ω scansh = 1010
16819 measured reflectionsk = 2727
3228 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1124P)2 + 1.8021P]
where P = (Fo2 + 2Fc2)/3
3228 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H18FN3O3·1.42H2OV = 1630.2 (7) Å3
Mr = 344.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8434 (18) ŵ = 0.11 mm1
b = 22.312 (5) ÅT = 298 K
c = 8.7564 (18) Å0.20 × 0.20 × 0.10 mm
β = 109.35 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2553 reflections with I > 2σ(I)
16819 measured reflectionsRint = 0.044
3228 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.218H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.37 e Å3
3228 reflectionsΔρmin = 0.26 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.2851 (2)0.73405 (8)0.1027 (2)0.0442 (5)
C90.5896 (4)0.69034 (13)0.4775 (4)0.0313 (7)
H90.63400.65630.53650.038*
N10.7787 (3)0.75248 (11)0.6815 (3)0.0313 (6)
C80.4641 (3)0.68388 (13)0.3326 (4)0.0302 (7)
C100.6513 (4)0.74655 (12)0.5373 (4)0.0282 (6)
N20.4098 (3)0.62818 (11)0.2644 (3)0.0338 (6)
C60.4554 (4)0.79261 (13)0.3075 (4)0.0304 (7)
H60.40790.82650.24980.037*
C70.4011 (4)0.73759 (13)0.2506 (4)0.0312 (7)
C40.6462 (4)0.85899 (13)0.5062 (4)0.0313 (7)
C10.8307 (4)0.80766 (13)0.7354 (4)0.0327 (7)
H10.91280.81010.83440.039*
C20.7747 (4)0.86019 (13)0.6590 (4)0.0315 (7)
O10.9214 (3)0.91437 (11)0.8908 (3)0.0543 (7)
O30.5884 (3)0.90336 (10)0.4227 (3)0.0509 (7)
O20.8443 (3)0.96306 (11)0.6594 (3)0.0563 (8)
C50.5828 (3)0.79879 (12)0.4528 (3)0.0278 (6)
C30.8524 (4)0.91709 (13)0.7418 (4)0.0330 (7)
C140.4966 (4)0.57470 (13)0.3422 (4)0.0378 (8)
H14A0.46220.56330.43250.045*
H14B0.61050.58320.38380.045*
N30.2914 (3)0.51183 (11)0.1476 (3)0.0382 (7)
H3A0.25280.49720.22320.046*
H3B0.27620.48400.06970.046*
C150.8690 (4)0.70072 (14)0.7748 (4)0.0391 (8)
H15A0.90770.71090.88900.047*
H15B0.79720.66670.76070.047*
C120.2026 (4)0.56722 (14)0.0767 (4)0.0427 (8)
H12A0.08840.55890.03670.051*
H12B0.23440.58030.01380.051*
C110.2368 (4)0.61614 (14)0.2023 (4)0.0381 (8)
H11A0.17960.65230.15450.046*
H11B0.20020.60390.29040.046*
C130.4652 (4)0.52396 (14)0.2223 (4)0.0393 (8)
H13A0.50990.53390.13810.047*
H13B0.51860.48810.27670.047*
C161.0069 (5)0.6835 (2)0.7236 (5)0.0635 (12)
H16A0.96840.67010.61320.095*
H16B1.06560.65170.79160.095*
H16C1.07580.71750.73270.095*
O4A0.1091 (6)0.4638 (2)0.3166 (6)0.0616 (18)0.741 (11)
O50.2349 (14)0.5705 (7)0.6166 (16)0.076 (3)0.423 (6)
O4B0.1742 (14)0.4991 (6)0.4249 (17)0.059 (5)0.259 (11)
H4B0.134 (8)0.463 (3)0.440 (8)0.13 (2)*
H4A0.020 (11)0.489 (4)0.282 (10)0.19 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0476 (11)0.0359 (10)0.0394 (11)0.0060 (8)0.0016 (9)0.0039 (8)
C90.0353 (16)0.0209 (14)0.0396 (17)0.0036 (12)0.0149 (13)0.0037 (12)
N10.0330 (14)0.0235 (12)0.0355 (14)0.0007 (10)0.0086 (11)0.0014 (10)
C80.0312 (15)0.0244 (15)0.0392 (17)0.0002 (12)0.0170 (13)0.0039 (12)
C100.0320 (15)0.0221 (14)0.0342 (16)0.0016 (11)0.0160 (13)0.0018 (12)
N20.0301 (14)0.0221 (13)0.0485 (16)0.0002 (10)0.0118 (12)0.0066 (11)
C60.0339 (16)0.0232 (14)0.0351 (16)0.0020 (12)0.0128 (13)0.0033 (12)
C70.0298 (15)0.0320 (16)0.0313 (16)0.0018 (12)0.0094 (12)0.0039 (12)
C40.0355 (16)0.0229 (14)0.0350 (16)0.0020 (12)0.0112 (13)0.0017 (12)
C10.0321 (16)0.0328 (16)0.0314 (16)0.0006 (13)0.0082 (12)0.0010 (13)
C20.0330 (16)0.0275 (15)0.0348 (16)0.0018 (12)0.0123 (13)0.0026 (12)
O10.0660 (17)0.0436 (15)0.0409 (14)0.0094 (12)0.0010 (12)0.0095 (11)
O30.0640 (17)0.0217 (11)0.0489 (15)0.0043 (11)0.0056 (12)0.0063 (10)
O20.0724 (18)0.0306 (13)0.0495 (15)0.0186 (12)0.0017 (13)0.0018 (11)
C50.0313 (15)0.0228 (14)0.0314 (15)0.0014 (11)0.0134 (12)0.0009 (11)
C30.0289 (15)0.0274 (16)0.0406 (18)0.0006 (12)0.0086 (13)0.0054 (13)
C140.0335 (16)0.0258 (15)0.051 (2)0.0005 (13)0.0106 (14)0.0029 (14)
N30.0458 (16)0.0211 (13)0.0436 (16)0.0045 (11)0.0093 (13)0.0048 (11)
C150.0448 (19)0.0286 (17)0.0395 (18)0.0020 (14)0.0080 (14)0.0079 (13)
C120.0379 (18)0.0264 (16)0.054 (2)0.0032 (13)0.0015 (15)0.0004 (14)
C110.0303 (17)0.0266 (16)0.056 (2)0.0009 (12)0.0121 (14)0.0022 (14)
C130.0409 (18)0.0226 (15)0.054 (2)0.0026 (13)0.0153 (15)0.0055 (14)
C160.060 (3)0.063 (3)0.072 (3)0.025 (2)0.029 (2)0.021 (2)
O4A0.061 (3)0.058 (3)0.071 (3)0.020 (2)0.031 (2)0.024 (3)
O50.048 (6)0.101 (10)0.066 (8)0.015 (6)0.003 (5)0.015 (7)
O4B0.052 (7)0.060 (9)0.071 (10)0.007 (6)0.030 (6)0.038 (8)
Geometric parameters (Å, º) top
F1—C71.361 (3)C14—C131.506 (4)
C9—C81.389 (4)C14—H14A0.9700
C9—C101.398 (4)C14—H14B0.9700
C9—H90.9300N3—C131.483 (4)
N1—C11.344 (4)N3—C121.485 (4)
N1—C101.392 (4)N3—H3A0.9000
N1—C151.486 (4)N3—H3B0.9000
C8—N21.393 (4)C15—C161.483 (5)
C8—C71.413 (4)C15—H15A0.9700
C10—C51.406 (4)C15—H15B0.9700
N2—C141.459 (4)C12—C111.507 (5)
N2—C111.469 (4)C12—H12A0.9700
C6—C71.352 (4)C12—H12B0.9700
C6—C51.399 (4)C11—H11A0.9700
C6—H60.9300C11—H11B0.9700
C4—O31.236 (4)C13—H13A0.9700
C4—C21.441 (4)C13—H13B0.9700
C4—C51.471 (4)C16—H16A0.9600
C1—C21.359 (4)C16—H16B0.9600
C1—H10.9300C16—H16C0.9600
C2—C31.510 (4)O4A—H4B1.03 (7)
O1—C31.245 (4)O4A—H4A0.93 (10)
O2—C31.242 (4)O4B—H4B0.91 (7)
C8—C9—C10122.0 (3)C13—C14—H14B109.7
C8—C9—H9119.0H14A—C14—H14B108.2
C10—C9—H9119.0C13—N3—C12111.1 (2)
C1—N1—C10119.0 (2)C13—N3—H3A109.4
C1—N1—C15117.4 (3)C12—N3—H3A109.4
C10—N1—C15123.4 (2)C13—N3—H3B109.4
C9—C8—N2122.8 (3)C12—N3—H3B109.4
C9—C8—C7115.9 (3)H3A—N3—H3B108.0
N2—C8—C7121.1 (3)C16—C15—N1112.4 (3)
N1—C10—C9121.6 (3)C16—C15—H15A109.1
N1—C10—C5118.5 (2)N1—C15—H15A109.1
C9—C10—C5120.0 (3)C16—C15—H15B109.1
C8—N2—C14118.4 (3)N1—C15—H15B109.1
C8—N2—C11119.4 (2)H15A—C15—H15B107.9
C14—N2—C11110.2 (2)N3—C12—C11110.3 (3)
C7—C6—C5120.4 (3)N3—C12—H12A109.6
C7—C6—H6119.8C11—C12—H12A109.6
C5—C6—H6119.8N3—C12—H12B109.6
C6—C7—F1117.9 (3)C11—C12—H12B109.6
C6—C7—C8123.4 (3)H12A—C12—H12B108.1
F1—C7—C8118.7 (3)N2—C11—C12109.6 (3)
O3—C4—C2125.4 (3)N2—C11—H11A109.7
O3—C4—C5120.3 (3)C12—C11—H11A109.7
C2—C4—C5114.4 (3)N2—C11—H11B109.7
N1—C1—C2126.2 (3)C12—C11—H11B109.7
N1—C1—H1116.9H11A—C11—H11B108.2
C2—C1—H1116.9N3—C13—C14111.6 (3)
C1—C2—C4119.2 (3)N3—C13—H13A109.3
C1—C2—C3117.1 (3)C14—C13—H13A109.3
C4—C2—C3123.7 (3)N3—C13—H13B109.3
C6—C5—C10118.3 (3)C14—C13—H13B109.3
C6—C5—C4119.1 (3)H13A—C13—H13B108.0
C10—C5—C4122.5 (3)C15—C16—H16A109.5
O2—C3—O1124.3 (3)C15—C16—H16B109.5
O2—C3—C2119.1 (3)H16A—C16—H16B109.5
O1—C3—C2116.7 (3)C15—C16—H16C109.5
N2—C14—C13110.0 (3)H16A—C16—H16C109.5
N2—C14—H14A109.7H16B—C16—H16C109.5
C13—C14—H14A109.7H4B—O4A—H4A102 (6)
N2—C14—H14B109.7
C10—C9—C8—N2174.5 (3)C5—C4—C2—C3176.7 (3)
C10—C9—C8—C70.8 (4)C7—C6—C5—C100.3 (4)
C1—N1—C10—C9178.4 (3)C7—C6—C5—C4176.0 (3)
C15—N1—C10—C96.1 (4)N1—C10—C5—C6179.7 (3)
C1—N1—C10—C50.5 (4)C9—C10—C5—C61.4 (4)
C15—N1—C10—C5175.0 (3)N1—C10—C5—C43.5 (4)
C8—C9—C10—N1179.1 (3)C9—C10—C5—C4177.6 (3)
C8—C9—C10—C52.0 (4)O3—C4—C5—C60.7 (4)
C9—C8—N2—C144.8 (4)C2—C4—C5—C6178.6 (3)
C7—C8—N2—C14170.3 (3)O3—C4—C5—C10175.5 (3)
C9—C8—N2—C11134.2 (3)C2—C4—C5—C105.2 (4)
C7—C8—N2—C1150.7 (4)C1—C2—C3—O2157.3 (3)
C5—C6—C7—F1175.1 (3)C4—C2—C3—O222.9 (5)
C5—C6—C7—C81.6 (5)C1—C2—C3—O122.6 (4)
C9—C8—C7—C61.0 (4)C4—C2—C3—O1157.2 (3)
N2—C8—C7—C6176.4 (3)C8—N2—C14—C13157.6 (3)
C9—C8—C7—F1175.7 (3)C11—N2—C14—C1359.9 (3)
N2—C8—C7—F10.3 (4)C1—N1—C15—C1686.4 (4)
C10—N1—C1—C22.7 (5)C10—N1—C15—C1689.2 (4)
C15—N1—C1—C2173.1 (3)C13—N3—C12—C1154.6 (4)
N1—C1—C2—C40.7 (5)C8—N2—C11—C12156.3 (3)
N1—C1—C2—C3179.5 (3)C14—N2—C11—C1261.6 (3)
O3—C4—C2—C1177.6 (3)N3—C12—C11—N258.6 (4)
C5—C4—C2—C13.1 (4)C12—N3—C13—C1453.4 (4)
O3—C4—C2—C32.5 (5)N2—C14—C13—N355.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4A0.901.88 (1)2.741160
N3—H3A···O4B0.902.10 (1)2.952157
N3—H3B···O2i0.901.992.777 (4)145
N3—H3B···O3i0.902.152.793 (4)128
O4B—H4B···O1ii0.912 (7)2.02 (7)2.793141
O4A—H4A···O2iii0.933 (10)1.90 (9)2.811165
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H18FN3O3·1.42H2O
Mr344.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.8434 (18), 22.312 (5), 8.7564 (18)
β (°) 109.35 (3)
V3)1630.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16819, 3228, 2553
Rint0.044
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.218, 1.03
No. of reflections3228
No. of parameters253
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.26

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4A0.9001.878 (4)2.741160
N3—H3A···O4B0.9002.102 (3)2.952157
N3—H3B···O2i0.9001.9902.777 (4)145
N3—H3B···O3i0.9002.15002.793 (4)128
O4B—H4B···O1ii0.912 (7)2.02 (7)2.793141
O4A—H4A···O2iii0.933 (10)1.90 (9)2.811165
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x1, y+3/2, z1/2.
 

Acknowledgements

NVR thanks the Birla Institute of Technology for financial support. NVR also thanks Jagadeesh Babu and Professor Ashwini Nangia, University of Hyderabad, for help in X-ray diffraction.

References

First citationBarbas, R., Martí, F., Prohens, R. & Puigjaner, C. (2006). Cryst. Growth Des. 6, 1463–1467.  Web of Science CrossRef CAS Google Scholar
First citationBarbas, R., Prohens, R. & Puigjaner, C. (2007). J. Therm. Anal. Calorim. 89, 687–692.  Web of Science CSD CrossRef CAS Google Scholar
First citationBasavoju, S., Boström, D. & Velaga, S. P. (2006). Cryst. Growth Des. 6, 2699–2708.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.  Google Scholar
First citationChongcharoen, W., Byrn, S. R. & Sutanthavibul, N. (2008). J. Pharm. Sci. 97, 473–489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Kennedy, A. R., Shankland, N., Wright, E. & Al-Rubayi, A. (2000). Acta Cryst. C56, 1372–1373.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKatdare, A. V., Ryan, J. A., Bavitz, J. F., Erb, D. M. & Guillory, J. K. (1986). Mikrochim. Acta Wien III, 90, 1–12.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŠuštar, B., Bukovec, N. & Bukovec, P. (1993). J. Therm. Anal. 40, 475–481.  Google Scholar
First citationWindholz, M., Budavari, S., Blumetti, R. F. & Otterbein, E. S. (1983). Editors. The Merck Index, 10th ed. Rahway, NJ, USA: Merck and Co. Inc.  Google Scholar
First citationYuasa, R., Imai, J., Morikawa, H., Kusajima, H., Uchida, H. & Irikura, T. (1982). Yakugaku Zasshi, 102, 469–476.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds