organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8,8-Di­ethyl-1,4,5,8-tetra­hydro­naphthalene-1,4,5-trione

aUniversidad Andres Bello, Departamento de Ciencias Químicas, Av Republica 275, Santiago, Chile, bDepartamento de Química Orgánica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile, and cCIMAT, Universidad de Chile, Av. Blanco Encalada 2008, Santiago, Chile
*Correspondence e-mail: raraya@ciq.uchile.cl

(Received 2 December 2008; accepted 14 January 2009; online 17 January 2009)

The title mol­ecule, C14H14O3, contains two fused six-membered carbon rings with keto groups at positions 1, 4 and 5 and a gem-diethyl group at position 8. The mol­ecule is close to planar (maximum deviation = 0.044 Å), with one ethyl group at each side of the mol­ecular plane, with exception of the keto group at position 1 which is slightly deviated from the plane and disordered over two positions one on each side of it (occupancies 0.80/0.20). The packing of the mol­ecule shows weak bonded chains along a through C—H⋯O contacts and two intramolecular C—H⋯O interactions are also present.

Related literature

For the biologically active dimethyl analog, see: Araya-Maturana et al. (2002[Araya-Maturana, R., Delgado-Castro, T., Garate, M., Ferreira, J., Pavani, M., Pessoa-Mahana, H. & Cassels, B. K. (2002). Bioorg. Med. Chem. 10, 3057-3060.]); for its use as a substrate for Diels-Alder cyclo­additions with 2,4-hexa­dienol, see: Araya-Maturana et al. (1999[Araya-Maturana, R., Cassels, B. K., Delgado-Castro, T., Valderrama, J. A. & Weiss-Lopez, B. (1999). Tetrahedron, 55, 637-648.]) and for the synthesis of biologically active compounds, see: Araya-Maturana et al. (2006[Araya-Maturana, R., Cardona, W., Cassels, B. K., Delgado-Castro, T., Soto-Delgado, J., Pessoa-Mahana, H., Weiss-López, B., Pavani, M. & Ferreira, J. (2006). Bioorg. Med. Chem. 14, 4664-4669.]); Mendoza et al. (2005[Mendoza, L., Araya-Maturana, R., Cardona, W., Delgado-Castro, T., García, C., Lagos, C. & Cotoras, M. (2005). J. Agric. Food Chem. 53, 10080-10084.]); Rodríguez et al. (2007[Rodríguez, J., Olea-Azar, C., Cavieres, C., Norambuena, E., Delgado-Castro, T., Soto-Delgado, J. & Araya-Maturana, R. (2007). Bioorg. Med. Chem. 15, 7058-7065.]). For details of the synthesis of the 4,4-dimethyl analog, see: Castro et al. (1983[Castro, C. G., Santos, J. G., Valcarce, J. C. & Valderrama, J. A. (1983). J. Org. Chem. 48, 3026-3029.]); Vega et al. (2008[Vega, A., Ramírez-Rodríguez, O., Martínez-Cifuentes, M., Ibañez, A. & Araya-Maturana, R. (2008). Acta Cryst. E64, o2329.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14O3

  • Mr = 230.25

  • Orthorhombic, P n a 21

  • a = 12.7454 (8) Å

  • b = 10.8015 (7) Å

  • c = 8.8598 (5) Å

  • V = 1219.72 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • 0.49 × 0.48 × 0.46 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.961

  • 6581 measured reflections

  • 2159 independent reflections

  • 2119 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.00

  • 2159 reflections

  • 166 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.27 3.207 (2) 169
C9—H9A⋯O2 0.99 2.40 3.014 (2) 120
C11—H11B⋯O2 0.99 2.39 3.027 (2) 122
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: SMART-NT (Bruker, 2001[Bruker (2001). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 1999[Bruker (1999). SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

Supporting information


Comment top

The title quinone (I) is closely related to its biologically active dimethyl analog 8,8-dimethylnaphtalene-1,4,5(8H)-trione (Araya-Maturana et al. 2002), which has been used as substrate for highly regioselective Diels-Alder cycloadditions with 2,4-hexadienol (Araya-Maturana et al. 1999) and for the synthesis of biologically active compounds (Rodríguez et al. 2007; Araya-Maturana et al. 2006; Mendoza et al. 2005). The 1H-NMR spectrum of the title compound exhibits equivalence of both ethyl groups, evidencing the existence of a symmetry plane in the molecule. It displays a single triplet for both methyl groups but two sextuplets for the methylene protons of the ethyl substituents; with couplings constant of 7.3 Hz and 15.4 Hz for the vecinal and geminal ones respectively. This evidences a rotational restriction for the chains. The non-equivalence of the signals of methylene protons in a non-chiral molecule could be envisoned supposing a rotational constrain exerted by the non bonding electrons of the near carbonyl group, avoiding the rotation of the bond between methylene groups and the quaternary carbon bearing the geminal ethyl groups. This hypotesis based on NMR solution data was tested for the present crystal structure.

The molecule I contains two six membered carbon rings fused, a p-quinone and a dienone core (Scheme 1). The dienone ring is highly planar mainly because of the insaturations in the carbon skeleton, while the quinonic framework displays a slightly distorted boat conformation, with one keto oxygen atom slightly out of the plane of the rest of the ring (see torsion angles). As described in the experimental section, the keto oxygen atom O3 is disordered over two positions of ocuppancy 0.80 and 0.20. placed at opposite sides of the molecular plane. This could be related to the equivalence of the methylene 1H-NMR signals in solution in the following way: the two conformations are probably very close (if not equal) in energy and rapid interconversion occurs in the NMR timescale. The situation is consistent with the observation of two positions for the keto oxygen atom in the crystal strcuture.

The crystal packing of the molecule shows weak bonded zigzag chains along the a cell axis, through C—H···O interactions, as depicted in Figure 2.

Related literature top

For the biologically active dimethyl analog, see: Araya-Maturana et al. (2002); for its use as a substrate for Diels-Alder cycloadditions with 2,4-hexadienol, see: Araya-Maturana et al. (1999) and for the synthesis of biologically active compounds, see: Araya-Maturana et al. (2006); Mendoza et al. (2005); Rodríguez et al. (2007). For details of the synthesis of the 4,4-dimethyl analog, see: Castro et al. (1983); Vega et al. (2008).

Experimental top

Synthesis of I. The title compound was prepared by oxydation of the corresponding hydroquinone B; obtained by rearrangement of the furane parent compound A (Vega et al., 2008); with MnO2 as shown in Fig. 3. This procedure have been previously described for the 4,4-dimethyl analog (Castro et al., 1983). X-ray quality crystals were obtained through recrystallization from benzene.

Spectroscopic Details. 1H and 13C NMR spectra were acquired using a Bruker AVANCE DRX 300 spectrometer operating at 300.13 MHz (1H) or 75.47 MHz (13C). All measurements were carried out at a probe temperature of 300 K. 1HNMR (CDCl3): 0.62(6H, t, J = 7.5 Hz, 2X CH3); 1.70(2H, dq, J1 = 7.5 Hz, J2 = 13.8 Hz, 2X CHH,); 2.52(2H, dq, J1 = 7.5 Hz, J2 = 13.8 Hz, 2X CHH); 6.53(1H, d, J = 10.2 Hz); 6.58(1H, d, J = 10.2 HZ). 13CNMR(CDCl3): 8.42, 31.41, 48.13, 130.77, 132.79, 135.32, 135.57, 152.59, 154.51, 182.46, 183.13, 186.76.

Refinement top

The hydrogen atoms positions were calculated after each cycle of refinement with SHELXL (Bruker,1999) using a riding model for each structure, with C—H distances in the range 0.96 to 1.00 Å. Uiso(H) values were set equal to 1.5Ueq of the parent carbon atom for methyl groups and 1.2Ueq for the others. During the final stages of refinement some disorder on the position of the oxo oxygen atom O3 was evident. It was modelled using two positions labelled i and ii with partial occupation of 0.80 and 0.20 respectively.

Computing details top

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-NT (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure diagramas for I showing numbering scheme. Displacement ellipsoids are at 50% probability level and H atoms are shown as spheres of arbitrary radii. The less occupied disordered position (see experimental) for O3 (ii) was omitted for clarity.
[Figure 2] Fig. 2. Packing structure of I showing weak bonded chains along a.
[Figure 3] Fig. 3. Preparation of the title compound.
8,8-Diethyl-1,4,5,8-tetrahydronaphthalene-1,4,5-trione top
Crystal data top
C14H14O3F(000) = 488
Mr = 230.25Dx = 1.254 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4760 reflections
a = 12.7454 (8) Åθ = 24.9–50.1°
b = 10.8015 (7) ŵ = 0.09 mm1
c = 8.8598 (5) ÅT = 150 K
V = 1219.72 (13) Å3Block, red
Z = 40.49 × 0.48 × 0.46 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2159 independent reflections
Radiation source: fine-focus sealed tube2119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ϕ and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1515
Tmin = 0.958, Tmax = 0.961k = 1212
6581 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.3077P]
where P = (Fo2 + 2Fc2)/3
2159 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.26 e Å3
15 restraintsΔρmin = 0.15 e Å3
Crystal data top
C14H14O3V = 1219.72 (13) Å3
Mr = 230.25Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.7454 (8) ŵ = 0.09 mm1
b = 10.8015 (7) ÅT = 150 K
c = 8.8598 (5) Å0.49 × 0.48 × 0.46 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2159 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2119 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.961Rint = 0.012
6581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03615 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
2159 reflectionsΔρmin = 0.15 e Å3
166 parameters
Special details top

Experimental. 0.3 ° between frames and 10 secs exposure (per frame)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.05513 (10)0.73723 (13)0.2345 (2)0.0588 (5)
C10.12734 (12)0.80829 (16)0.2581 (2)0.0312 (4)
C20.23531 (13)0.76647 (15)0.24985 (19)0.0298 (4)
H20.24950.68280.22400.036*
C30.31458 (12)0.84252 (16)0.2775 (2)0.0298 (4)
H30.38340.80910.27130.036*
C40.30503 (12)0.97639 (16)0.3177 (2)0.0264 (4)
C90.36538 (13)1.04995 (17)0.1926 (2)0.0343 (4)
H9A0.37131.13750.22440.041*
H9B0.43731.01610.18420.041*
C100.31363 (17)1.04521 (19)0.0381 (2)0.0428 (5)
H10A0.30370.95870.00800.064*
H10B0.35851.08710.03580.064*
H10C0.24541.08680.04260.064*
C110.36382 (13)0.99525 (17)0.4703 (2)0.0341 (4)
H11A0.43750.96800.45790.041*
H11B0.36481.08470.49440.041*
C120.31612 (17)0.92627 (19)0.6018 (2)0.0446 (5)
H12A0.24310.95230.61510.067*
H12B0.35590.94460.69380.067*
H12C0.31850.83710.58180.067*
C4A0.19164 (12)1.01751 (15)0.32711 (18)0.0257 (3)
C50.17023 (12)1.15035 (15)0.3703 (2)0.0302 (4)
O20.24055 (10)1.22495 (10)0.38734 (17)0.0391 (3)
C60.05978 (14)1.18870 (18)0.3909 (3)0.0440 (5)
H60.04531.26930.42830.053*
C70.01884 (14)1.11471 (18)0.3592 (3)0.0444 (5)
H70.08871.14210.37590.053*
C80.00040 (15)0.9904 (2)0.2982 (3)0.0515 (6)
O3i0.07253 (14)0.93529 (18)0.2268 (3)0.0604 (6)0.80
O3ii0.0669 (5)0.9189 (6)0.3592 (11)0.063 (2)0.20
C8A0.11022 (12)0.94198 (15)0.2963 (2)0.0304 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0288 (7)0.0394 (7)0.1082 (15)0.0062 (6)0.0007 (8)0.0163 (8)
C10.0240 (8)0.0302 (8)0.0396 (10)0.0027 (7)0.0001 (7)0.0002 (7)
C20.0308 (8)0.0257 (8)0.0329 (10)0.0031 (6)0.0016 (7)0.0017 (7)
C30.0214 (7)0.0342 (8)0.0338 (9)0.0049 (6)0.0014 (7)0.0024 (7)
C40.0215 (7)0.0294 (8)0.0284 (8)0.0011 (6)0.0010 (6)0.0005 (7)
C90.0282 (8)0.0360 (9)0.0388 (10)0.0042 (7)0.0057 (7)0.0027 (7)
C100.0515 (12)0.0436 (11)0.0332 (10)0.0007 (9)0.0069 (9)0.0041 (8)
C110.0287 (8)0.0394 (9)0.0341 (9)0.0005 (7)0.0061 (7)0.0012 (8)
C120.0541 (12)0.0486 (11)0.0311 (10)0.0022 (9)0.0036 (9)0.0016 (9)
C4A0.0235 (7)0.0284 (8)0.0251 (8)0.0014 (6)0.0006 (6)0.0021 (6)
C50.0325 (8)0.0293 (8)0.0288 (8)0.0035 (7)0.0009 (7)0.0004 (7)
O20.0424 (7)0.0303 (6)0.0446 (8)0.0047 (5)0.0031 (6)0.0033 (6)
C60.0392 (10)0.0339 (9)0.0589 (13)0.0110 (8)0.0016 (10)0.0084 (10)
C70.0287 (9)0.0454 (11)0.0591 (12)0.0122 (8)0.0028 (9)0.0022 (9)
C80.0220 (8)0.0379 (9)0.0946 (17)0.0012 (7)0.0008 (10)0.0040 (11)
O3i0.0286 (9)0.0545 (11)0.0980 (17)0.0031 (8)0.0155 (11)0.0103 (12)
O3ii0.016 (3)0.050 (4)0.122 (7)0.006 (3)0.012 (4)0.032 (5)
C8A0.0219 (8)0.0308 (8)0.0385 (9)0.0031 (6)0.0008 (7)0.0020 (7)
Geometric parameters (Å, º) top
O1—C11.217 (2)C11—H11A0.9900
C1—C21.450 (2)C11—H11B0.9900
C1—C8A1.499 (2)C12—H12A0.9800
C2—C31.325 (2)C12—H12B0.9800
C2—H20.9500C12—H12C0.9800
C3—C41.494 (2)C4A—C8A1.348 (2)
C3—H30.9500C4A—C51.510 (2)
C4—C4A1.514 (2)C5—O21.215 (2)
C4—C111.559 (2)C5—C61.479 (2)
C4—C91.566 (2)C6—C71.312 (3)
C9—C101.520 (3)C6—H60.9500
C9—H9A0.9900C7—C81.467 (3)
C9—H9B0.9900C7—H70.9500
C10—H10A0.9800C8—O3i1.264 (3)
C10—H10B0.9800C8—O3ii1.267 (3)
C10—H10C0.9800C8—C8A1.504 (2)
C11—C121.511 (3)
O1—C1—C2120.84 (16)C12—C11—H11B108.7
O1—C1—C8A122.44 (15)C4—C11—H11B108.7
C2—C1—C8A116.72 (14)H11A—C11—H11B107.6
C3—C2—C1121.40 (15)C11—C12—H12A109.5
C3—C2—H2119.3C11—C12—H12B109.5
C1—C2—H2119.3H12A—C12—H12B109.5
C2—C3—C4125.59 (15)C11—C12—H12C109.5
C2—C3—H3117.2H12A—C12—H12C109.5
C4—C3—H3117.2H12B—C12—H12C109.5
C3—C4—C4A112.01 (13)C8A—C4A—C5119.17 (14)
C3—C4—C11107.09 (15)C8A—C4A—C4123.10 (14)
C4A—C4—C11111.88 (13)C5—C4A—C4117.72 (13)
C3—C4—C9106.41 (14)O2—C5—C6120.09 (15)
C4A—C4—C9111.04 (13)O2—C5—C4A121.91 (14)
C11—C4—C9108.14 (13)C6—C5—C4A118.00 (14)
C10—C9—C4114.02 (15)C7—C6—C5122.00 (16)
C10—C9—H9A108.7C7—C6—H6119.0
C4—C9—H9A108.7C5—C6—H6119.0
C10—C9—H9B108.7C6—C7—C8120.96 (16)
C4—C9—H9B108.7C6—C7—H7119.5
H9A—C9—H9B107.6C8—C7—H7119.5
C9—C10—H10A109.5O3i—C8—O3ii56.0 (4)
C9—C10—H10B109.5O3i—C8—C7119.90 (18)
H10A—C10—H10B109.5O3ii—C8—C7107.1 (4)
C9—C10—H10C109.5O3i—C8—C8A120.9 (2)
H10A—C10—H10C109.5O3ii—C8—C8A114.8 (4)
H10B—C10—H10C109.5C7—C8—C8A118.20 (17)
C12—C11—C4114.25 (14)C4A—C8A—C1121.11 (14)
C12—C11—H11A108.7C4A—C8A—C8120.61 (15)
C4—C11—H11A108.7C1—C8A—C8118.27 (15)
O1—C1—C2—C3178.98 (19)C4—C4A—C5—C6175.48 (16)
C8A—C1—C2—C31.2 (2)O2—C5—C6—C7173.1 (2)
C1—C2—C3—C40.7 (3)C4A—C5—C6—C76.5 (3)
C2—C3—C4—C4A1.2 (3)C5—C6—C7—C81.3 (3)
C2—C3—C4—C11124.22 (18)C6—C7—C8—O3i158.7 (3)
C2—C3—C4—C9120.31 (19)C6—C7—C8—O3ii141.2 (5)
C3—C4—C9—C1068.10 (19)C6—C7—C8—C8A9.7 (3)
C4A—C4—C9—C1054.0 (2)C5—C4A—C8A—C1177.87 (16)
C11—C4—C9—C10177.13 (15)C4—C4A—C8A—C13.4 (3)
C3—C4—C11—C1264.03 (18)C5—C4A—C8A—C82.6 (3)
C4A—C4—C11—C1259.1 (2)C4—C4A—C8A—C8176.14 (17)
C9—C4—C11—C12178.34 (15)O1—C1—C8A—C4A177.64 (19)
C3—C4—C4A—C8A2.6 (2)C2—C1—C8A—C4A2.6 (2)
C11—C4—C4A—C8A122.82 (18)O1—C1—C8A—C82.9 (3)
C9—C4—C4A—C8A116.25 (18)C2—C1—C8A—C8176.95 (18)
C3—C4—C4A—C5178.65 (16)O3i—C8—C8A—C4A157.9 (2)
C11—C4—C4A—C558.39 (19)O3ii—C8—C8A—C4A138.3 (5)
C9—C4—C4A—C562.53 (18)C7—C8—C8A—C4A10.3 (3)
C8A—C4A—C5—O2173.95 (17)O3i—C8—C8A—C121.6 (3)
C4—C4A—C5—O24.9 (2)O3ii—C8—C8A—C142.2 (5)
C8A—C4A—C5—C65.7 (3)C7—C8—C8A—C1170.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.273.207 (2)169
C9—H9A···O20.992.403.014 (2)120
C11—H11B···O20.992.393.027 (2)122
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC14H14O3
Mr230.25
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)150
a, b, c (Å)12.7454 (8), 10.8015 (7), 8.8598 (5)
V3)1219.72 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.48 × 0.46
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.958, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
6581, 2159, 2119
Rint0.012
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.00
No. of reflections2159
No. of parameters166
No. of restraints15
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.15

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 1999), SHELXTL-NT (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.273.207 (2)169
C9—H9A···O20.992.403.014 (2)120
C11—H11B···O20.992.393.027 (2)122
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

The authors gratefully acknowledge generous financial support from FONDECYT 1071077.

References

First citationAraya-Maturana, R., Cardona, W., Cassels, B. K., Delgado-Castro, T., Soto-Delgado, J., Pessoa-Mahana, H., Weiss-López, B., Pavani, M. & Ferreira, J. (2006). Bioorg. Med. Chem. 14, 4664–4669.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAraya-Maturana, R., Cassels, B. K., Delgado-Castro, T., Valderrama, J. A. & Weiss-Lopez, B. (1999). Tetrahedron, 55, 637–648.  Web of Science CrossRef CAS Google Scholar
First citationAraya-Maturana, R., Delgado-Castro, T., Garate, M., Ferreira, J., Pavani, M., Pessoa-Mahana, H. & Cassels, B. K. (2002). Bioorg. Med. Chem. 10, 3057–3060.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastro, C. G., Santos, J. G., Valcarce, J. C. & Valderrama, J. A. (1983). J. Org. Chem. 48, 3026–3029.  CrossRef CAS Web of Science Google Scholar
First citationMendoza, L., Araya-Maturana, R., Cardona, W., Delgado-Castro, T., García, C., Lagos, C. & Cotoras, M. (2005). J. Agric. Food Chem. 53, 10080–10084.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRodríguez, J., Olea-Azar, C., Cavieres, C., Norambuena, E., Delgado-Castro, T., Soto-Delgado, J. & Araya-Maturana, R. (2007). Bioorg. Med. Chem. 15, 7058–7065.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVega, A., Ramírez-Rodríguez, O., Martínez-Cifuentes, M., Ibañez, A. & Araya-Maturana, R. (2008). Acta Cryst. E64, o2329.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds