metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m151-m152
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Bis(6-meth­­oxy-2-{[tris­­(hy­droxy­meth­yl)­meth­yl]­imino­meth­yl}phenolato)­copper(II) dihydrate

aAdvanced Materials Institute of Research, Department of Chemistry and Chemical Engineering, Shandong Institute of Education, Jinan 250013, People's Republic of China, bDepartment of Chemistry and Chemical Engineering, Shandong Institute of Education, Jinan 250013, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: xiutangzhang@yahoo.com.cn

(Received 24 December 2008; accepted 25 December 2008; online 8 January 2009)

In the title compound, [Cu(C12H16NO5)2]·2H2O, the CuII ion adopts a trans-CuN2O4 octa­hedral geometry arising from two N,O,O′-tridentate 6-meth­oxy-2-{[tris­(hydroxy­meth­yl)meth­yl]­imino­meth­yl}phenolate ligands. The Jahn–Teller distortion of the copper centre is unusally small. In the crystal structure, O—H⋯O hydrogen bonds, some of which are bifurcated, link the component species.

Related literature

For the ligand synthesis, see: Wang et al. (2007[Wang, Q., Li, X., Wang, X. & Zhang, Y. (2007). Acta Cryst. E63, m2537.]). For background on Schiff base complexes, see: Ward (2007[Ward, M. D. (2007). Coord. Chem. Rev. 251, 1663-1677.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H16NO5)2]·2H2O

  • Mr = 608.09

  • Monoclinic, P 21 /c

  • a = 11.9421 (9) Å

  • b = 11.0238 (9) Å

  • c = 20.6706 (17) Å

  • β = 97.462 (1)°

  • V = 2698.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 293 (2) K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.902, Tmax = 0.933

  • 13183 measured reflections

  • 4912 independent reflections

  • 4397 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.117

  • S = 1.01

  • 4912 reflections

  • 352 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.0367 (19)
Cu1—N2 2.0185 (19)
Cu1—O2 2.0180 (16)
Cu1—O3 2.1989 (18)
Cu1—O7 2.0220 (16)
Cu1—O8 2.1537 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O10i 0.81 1.94 2.748 (3) 176
O4—H4A⋯O6ii 0.82 2.08 2.681 (3) 130
O4—H4A⋯O7ii 0.82 2.25 2.997 (3) 152
O5—H5A⋯O2W 0.82 2.21 2.649 (4) 114
O8—H8A⋯O1Wiii 0.81 1.88 2.689 (3) 175
O9—H9⋯O2i 0.82 1.91 2.670 (3) 153
O10—H10⋯O9iv 0.82 2.04 2.685 (3) 135
O1W—H1W⋯O2Wv 0.85 1.95 2.790 (3) 168
O1W—H2W⋯O4vi 0.85 2.13 2.969 (3) 170
O2W—H3W⋯O1ii 0.85 2.02 2.866 (3) 169
O2W—H4W⋯O5 0.85 1.83 2.649 (4) 159
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y-1, z; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal-Schiff based complexes have been intensely focused on owing to their excellent physical and chemical properties including magnetic, optics and catalysis (Ward, 2007). Herein, we report the crystal structure of the title compound, (I), based on a Schiff base ligand, L, (E)-2-(2-hydroxy-3-methoxybenzylideneamino)-2-(hydroxymethyl)propane-1,3-diol, (Fig. 1).

The CuII ion in (I) is surrounded by two L-1 ligands and hexa-coordinated by four oxygen atoms and two nitrogen atoms, with a slightly distorted octahedral coordination sphere (Table 1). The metal–ligand bond distances are similar to those in a related structure (Wang et al., 2007). In the crystal, a network of O—H···O hydrogen bonds (Table 2) help to establish the packing.

Related literature top

For the ligand synthesis, see: Wang et al. (2007). For background on Schiff base complexes, see: Ward (2007).

Experimental top

The ligand (HL) was synthesized according to the literature method (Wang et al., 2007). HL1 (0.050 g, 0.2 mmol) and Cu(OAc)2.4H2O (0.0498 g, 0.2 mmol) were refluxed in a mixed solvent solution (CH3OH:H2O = 4:1 v/v) until all solid was dissolved. The solution was cooled to room temperature and filtrated and blue blocks of (I) slowly grew by allowing slow evaporation of the solution. Anal. Calc. for C24H36CuN2O12: C 47.36, H 5.92, N 4.60%; Found: C 47.25, H 5.78, N 4.54%.

Refinement top

The non-water H atoms were geometrically placed (C—H = 0.93–0.97 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C). The water H atoms were located in a difference map and reifned with restraints of O—H = 0.82 (2)Å and H···H = 1.37 (2)Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with Displacement ellipsoids drawn at the 30% probability level.
Bis(6-methoxy-2-{[tris(hydroxymethyl)methyl]iminomethyl}phenolato)copper(II) dihydrate top
Crystal data top
[Cu(C12H16NO5)2]·2H2OF(000) = 1276
Mr = 608.09Dx = 1.497 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4912 reflections
a = 11.9421 (9) Åθ = 2.1–25.5°
b = 11.0238 (9) ŵ = 0.88 mm1
c = 20.6706 (17) ÅT = 293 K
β = 97.462 (1)°Block, blue
V = 2698.2 (4) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4912 independent reflections
Radiation source: fine-focus sealed tube4397 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1411
Tmin = 0.902, Tmax = 0.933k = 1313
13183 measured reflectionsl = 2521
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.076P)2 + 1.4852P]
where P = (Fo2 + 2Fc2)/3
4912 reflections(Δ/σ)max = 0.010
352 parametersΔρmax = 0.47 e Å3
8 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu(C12H16NO5)2]·2H2OV = 2698.2 (4) Å3
Mr = 608.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9421 (9) ŵ = 0.88 mm1
b = 11.0238 (9) ÅT = 293 K
c = 20.6706 (17) Å0.12 × 0.10 × 0.08 mm
β = 97.462 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4912 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4397 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.933Rint = 0.061
13183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0418 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.01Δρmax = 0.47 e Å3
4912 reflectionsΔρmin = 0.48 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.76750 (2)0.15964 (2)0.742179 (13)0.02060 (12)
C10.8354 (4)0.4629 (4)0.52078 (18)0.0604 (10)
H1A0.90900.49800.53160.091*
H1B0.78470.52260.49970.091*
H1C0.84000.39530.49190.091*
C20.6893 (2)0.3686 (2)0.57268 (13)0.0304 (6)
C30.6096 (3)0.3782 (3)0.51893 (14)0.0448 (8)
H30.62570.42350.48330.054*
C40.5048 (3)0.3213 (3)0.51666 (16)0.0490 (9)
H40.45040.33030.48050.074*
C50.4835 (3)0.2521 (3)0.56846 (14)0.0386 (7)
H50.41410.21320.56680.058*
C60.5636 (2)0.2380 (2)0.62432 (12)0.0250 (5)
C70.6687 (2)0.3017 (2)0.62939 (11)0.0212 (5)
C80.5359 (2)0.1518 (2)0.67278 (13)0.0245 (5)
H80.46200.12300.66790.029*
C90.5630 (2)0.0167 (2)0.76438 (12)0.0241 (5)
C100.4561 (2)0.0514 (2)0.73731 (14)0.0328 (6)
H10A0.43840.11110.76890.039*
H10B0.39350.00520.73010.039*
C110.5411 (2)0.0769 (3)0.82836 (14)0.0348 (6)
H11A0.52170.01570.85870.042*
H11B0.60880.11840.84800.042*
C120.6611 (2)0.0728 (2)0.77953 (13)0.0290 (5)
H12A0.64530.12870.81350.035*
H12B0.67060.11950.74080.035*
C130.6631 (3)0.4397 (3)0.97678 (15)0.0459 (8)
H13A0.58410.45850.96840.069*
H13B0.70580.51360.98270.069*
H13C0.67730.39121.01560.069*
C140.8076 (2)0.3405 (2)0.92680 (12)0.0286 (6)
C150.8870 (3)0.3615 (3)0.97939 (13)0.0369 (6)
H150.86640.40061.01590.044*
C160.9992 (3)0.3245 (3)0.97888 (13)0.0362 (6)
H161.05290.33811.01490.043*
C171.0282 (2)0.2683 (2)0.92462 (12)0.0290 (5)
H171.10270.24460.92400.035*
C180.9483 (2)0.2451 (2)0.86945 (11)0.0211 (5)
C190.8334 (2)0.2797 (2)0.86871 (11)0.0209 (5)
C200.9936 (2)0.1931 (2)0.81378 (11)0.0207 (5)
H201.07150.18240.81800.025*
C210.9988 (2)0.1161 (2)0.70679 (11)0.0205 (5)
C221.1144 (2)0.0571 (2)0.72962 (12)0.0261 (5)
H22A1.14340.01900.69290.031*
H22B1.16790.11860.74730.031*
C231.0162 (2)0.2241 (2)0.66108 (11)0.0254 (5)
H23A1.06290.19800.62870.031*
H23B0.94360.24870.63830.031*
C240.9245 (2)0.0216 (2)0.66761 (12)0.0241 (5)
H24A0.95090.00870.62570.029*
H24B0.92880.05490.69090.029*
N10.60220 (16)0.11103 (17)0.72146 (10)0.0209 (4)
N20.93778 (16)0.16042 (16)0.75959 (9)0.0176 (4)
O10.79480 (18)0.4224 (2)0.57864 (10)0.0417 (5)
O20.74271 (14)0.30303 (15)0.68132 (8)0.0215 (3)
O30.76136 (14)0.00642 (16)0.80055 (9)0.0287 (4)
H3A0.81360.05410.80320.043*
O40.46929 (17)0.11041 (18)0.67767 (11)0.0403 (5)
H4A0.41080.14620.66400.060*
O50.4506 (2)0.16184 (19)0.81536 (13)0.0504 (6)
H5A0.43880.19420.84960.076*
O60.69604 (17)0.3742 (2)0.92296 (9)0.0424 (5)
O70.75320 (14)0.26443 (15)0.82097 (8)0.0237 (4)
O80.81044 (14)0.06366 (16)0.65805 (8)0.0279 (4)
H8A0.76760.01080.64330.042*
O91.10148 (16)0.03065 (18)0.77788 (10)0.0378 (5)
H91.16270.06220.79010.057*
O101.06809 (16)0.32536 (16)0.69565 (9)0.0316 (4)
H101.02800.34890.72250.047*
O1W0.6645 (2)0.8968 (2)0.60223 (11)0.0496 (6)
H1W0.68720.82340.60270.074*
H2W0.60380.89850.61970.074*
O2W0.2699 (2)0.1555 (2)0.87731 (13)0.0553 (6)
H3W0.24130.08890.88850.083*
H4W0.32530.13870.85650.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02012 (18)0.01953 (18)0.02172 (18)0.00072 (10)0.00112 (12)0.00073 (10)
C10.086 (3)0.052 (2)0.051 (2)0.0176 (19)0.0366 (19)0.0000 (16)
C20.0429 (15)0.0226 (12)0.0255 (13)0.0034 (11)0.0034 (11)0.0012 (10)
C30.069 (2)0.0355 (16)0.0269 (14)0.0041 (15)0.0042 (14)0.0095 (12)
C40.062 (2)0.0405 (17)0.0370 (17)0.0055 (15)0.0241 (15)0.0080 (13)
C50.0390 (15)0.0282 (14)0.0432 (16)0.0034 (12)0.0149 (13)0.0016 (12)
C60.0266 (12)0.0197 (12)0.0268 (12)0.0017 (10)0.0039 (10)0.0009 (9)
C70.0263 (12)0.0148 (10)0.0220 (11)0.0004 (9)0.0015 (9)0.0013 (9)
C80.0208 (12)0.0193 (12)0.0322 (13)0.0017 (9)0.0008 (10)0.0027 (9)
C90.0240 (12)0.0182 (11)0.0307 (12)0.0052 (10)0.0059 (9)0.0033 (10)
C100.0236 (13)0.0249 (13)0.0496 (16)0.0065 (10)0.0040 (11)0.0050 (12)
C110.0392 (15)0.0314 (14)0.0372 (15)0.0034 (12)0.0180 (12)0.0028 (12)
C120.0283 (13)0.0195 (12)0.0387 (14)0.0024 (10)0.0024 (11)0.0053 (10)
C130.0513 (18)0.0533 (19)0.0356 (15)0.0175 (15)0.0151 (13)0.0120 (14)
C140.0338 (14)0.0300 (14)0.0223 (12)0.0064 (11)0.0047 (10)0.0028 (10)
C150.0461 (17)0.0422 (16)0.0221 (13)0.0031 (13)0.0032 (12)0.0104 (11)
C160.0391 (16)0.0463 (17)0.0207 (13)0.0032 (13)0.0056 (11)0.0057 (11)
C170.0278 (13)0.0338 (14)0.0240 (12)0.0004 (11)0.0019 (10)0.0005 (10)
C180.0243 (12)0.0198 (11)0.0193 (11)0.0007 (9)0.0028 (9)0.0002 (9)
C190.0280 (12)0.0176 (11)0.0168 (10)0.0012 (9)0.0016 (9)0.0009 (9)
C200.0192 (11)0.0184 (11)0.0237 (11)0.0006 (9)0.0002 (9)0.0008 (9)
C210.0219 (11)0.0188 (11)0.0213 (11)0.0001 (9)0.0044 (9)0.0028 (9)
C220.0234 (12)0.0234 (12)0.0324 (13)0.0041 (10)0.0065 (10)0.0009 (10)
C230.0303 (13)0.0243 (12)0.0230 (11)0.0016 (10)0.0082 (10)0.0010 (9)
C240.0275 (12)0.0187 (11)0.0257 (12)0.0003 (10)0.0022 (9)0.0062 (9)
N10.0182 (9)0.0171 (9)0.0274 (10)0.0011 (8)0.0031 (8)0.0003 (8)
N20.0189 (9)0.0155 (9)0.0189 (9)0.0008 (7)0.0040 (7)0.0006 (7)
O10.0490 (12)0.0433 (12)0.0344 (10)0.0155 (10)0.0118 (9)0.0073 (9)
O20.0230 (8)0.0178 (8)0.0226 (8)0.0040 (7)0.0009 (6)0.0020 (6)
O30.0240 (9)0.0226 (9)0.0384 (10)0.0017 (7)0.0004 (7)0.0041 (7)
O40.0328 (10)0.0305 (10)0.0542 (13)0.0085 (8)0.0070 (9)0.0069 (9)
O50.0451 (13)0.0364 (12)0.0763 (17)0.0023 (9)0.0325 (12)0.0080 (11)
O60.0365 (11)0.0621 (14)0.0288 (10)0.0173 (10)0.0040 (8)0.0155 (9)
O70.0216 (8)0.0273 (9)0.0217 (8)0.0019 (7)0.0005 (7)0.0058 (7)
O80.0248 (9)0.0262 (9)0.0313 (9)0.0020 (7)0.0019 (7)0.0107 (7)
O90.0278 (10)0.0307 (10)0.0543 (12)0.0112 (8)0.0035 (9)0.0136 (9)
O100.0318 (10)0.0247 (9)0.0398 (11)0.0078 (7)0.0103 (8)0.0018 (8)
O1W0.0575 (14)0.0423 (13)0.0482 (13)0.0186 (11)0.0043 (10)0.0024 (10)
O2W0.0421 (13)0.0466 (14)0.0814 (18)0.0021 (10)0.0241 (12)0.0010 (12)
Geometric parameters (Å, º) top
Cu1—N12.0367 (19)C13—H13B0.9600
Cu1—N22.0185 (19)C13—H13C0.9600
Cu1—O22.0180 (16)C14—C151.366 (4)
Cu1—O32.1989 (18)C14—O61.376 (3)
Cu1—O72.0220 (16)C14—C191.443 (3)
Cu1—O82.1537 (17)C15—C161.401 (4)
C1—O11.419 (4)C15—H150.9300
C1—H1A0.9600C16—C171.365 (4)
C1—H1B0.9600C16—H160.9300
C1—H1C0.9600C17—C181.412 (3)
C2—C31.370 (4)C17—H170.9300
C2—O11.383 (3)C18—C191.422 (3)
C2—C71.433 (4)C18—C201.452 (3)
C3—C41.396 (5)C19—O71.294 (3)
C3—H30.9300C20—N21.279 (3)
C4—C51.365 (5)C20—H200.9300
C4—H40.9300C21—N21.472 (3)
C5—C61.409 (4)C21—C241.530 (3)
C5—H50.9300C21—C221.544 (3)
C6—C71.430 (3)C21—C231.551 (3)
C6—C81.450 (4)C22—O91.412 (3)
C7—O21.299 (3)C22—H22A0.9700
C8—N11.278 (3)C22—H22B0.9700
C8—H80.9300C23—O101.423 (3)
C9—N11.481 (3)C23—H23A0.9700
C9—C101.524 (3)C23—H23B0.9700
C9—C121.533 (4)C24—O81.428 (3)
C9—C111.532 (4)C24—H24A0.9700
C10—O41.421 (4)C24—H24B0.9700
C10—H10A0.9700O3—H3A0.8115
C10—H10B0.9700O4—H4A0.8200
C11—O51.428 (4)O5—H5A0.8200
C11—H11A0.9700O8—H8A0.8085
C11—H11B0.9700O9—H90.8200
C12—O31.422 (3)O10—H100.8200
C12—H12A0.9700O1W—H1W0.8520
C12—H12B0.9700O1W—H2W0.8511
C13—O61.424 (3)O2W—H3W0.8541
C13—H13A0.9600O2W—H4W0.8538
O2—Cu1—N299.83 (7)H13A—C13—H13C109.5
O2—Cu1—O791.93 (7)H13B—C13—H13C109.5
N2—Cu1—O792.43 (7)C15—C14—O6124.6 (2)
O2—Cu1—N190.88 (7)C15—C14—C19122.7 (2)
N2—Cu1—N1164.82 (7)O6—C14—C19112.8 (2)
O7—Cu1—N197.97 (7)C14—C15—C16120.7 (2)
O2—Cu1—O884.98 (7)C14—C15—H15119.7
N2—Cu1—O878.82 (7)C16—C15—H15119.7
O7—Cu1—O8170.05 (7)C17—C16—C15118.9 (2)
N1—Cu1—O891.54 (7)C17—C16—H16120.6
O2—Cu1—O3168.97 (6)C15—C16—H16120.6
N2—Cu1—O390.59 (7)C16—C17—C18121.9 (2)
O7—Cu1—O391.22 (7)C16—C17—H17119.0
N1—Cu1—O378.22 (7)C18—C17—H17119.0
O8—Cu1—O393.58 (7)C17—C18—C19120.7 (2)
O1—C1—H1A109.5C17—C18—C20115.4 (2)
O1—C1—H1B109.5C19—C18—C20123.8 (2)
H1A—C1—H1B109.5O7—C19—C18126.2 (2)
O1—C1—H1C109.5O7—C19—C14118.6 (2)
H1A—C1—H1C109.5C18—C19—C14115.2 (2)
H1B—C1—H1C109.5N2—C20—C18126.8 (2)
C3—C2—O1124.6 (3)N2—C20—H20116.6
C3—C2—C7121.9 (3)C18—C20—H20116.6
O1—C2—C7113.5 (2)N2—C21—C24108.05 (19)
C2—C3—C4121.2 (3)N2—C21—C22114.98 (19)
C2—C3—H3119.4C24—C21—C22108.01 (19)
C4—C3—H3119.4N2—C21—C23108.37 (18)
C5—C4—C3118.9 (3)C24—C21—C23108.33 (19)
C5—C4—H4120.6C22—C21—C23108.92 (19)
C3—C4—H4120.6O9—C22—C21109.19 (19)
C4—C5—C6121.9 (3)O9—C22—H22A109.8
C4—C5—H5119.0C21—C22—H22A109.8
C6—C5—H5119.1O9—C22—H22B109.8
C5—C6—C7120.1 (2)C21—C22—H22B109.8
C5—C6—C8116.5 (2)H22A—C22—H22B108.3
C7—C6—C8123.3 (2)O10—C23—C21112.36 (19)
O2—C7—C6124.2 (2)O10—C23—H23A109.1
O2—C7—C2120.0 (2)C21—C23—H23A109.1
C6—C7—C2115.8 (2)O10—C23—H23B109.1
N1—C8—C6126.9 (2)C21—C23—H23B109.1
N1—C8—H8116.6H23A—C23—H23B107.9
C6—C8—H8116.6O8—C24—C21109.23 (18)
N1—C9—C10116.2 (2)O8—C24—H24A109.8
N1—C9—C12106.37 (19)C21—C24—H24A109.8
C10—C9—C12109.9 (2)O8—C24—H24B109.8
N1—C9—C11108.37 (19)C21—C24—H24B109.8
C10—C9—C11107.6 (2)H24A—C24—H24B108.3
C12—C9—C11108.3 (2)C8—N1—C9120.4 (2)
O4—C10—C9111.2 (2)C8—N1—Cu1123.88 (17)
O4—C10—H10A109.4C9—N1—Cu1115.57 (15)
C9—C10—H10A109.4C20—N2—C21119.4 (2)
O4—C10—H10B109.4C20—N2—Cu1123.80 (16)
C9—C10—H10B109.4C21—N2—Cu1116.77 (14)
H10A—C10—H10B108.0C2—O1—C1117.8 (2)
O5—C11—C9109.3 (2)C7—O2—Cu1122.38 (14)
O5—C11—H11A109.8C12—O3—Cu1110.35 (14)
C9—C11—H11A109.8C12—O3—H3A107.2
O5—C11—H11B109.8Cu1—O3—H3A119.7
C9—C11—H11B109.8C10—O4—H4A109.5
H11A—C11—H11B108.3C11—O5—H5A109.5
O3—C12—C9108.8 (2)C14—O6—C13117.1 (2)
O3—C12—H12A109.9C19—O7—Cu1123.85 (15)
C9—C12—H12A109.9C24—O8—Cu1111.75 (13)
O3—C12—H12B109.9C24—O8—H8A111.3
C9—C12—H12B109.9Cu1—O8—H8A117.0
H12A—C12—H12B108.3C22—O9—H9109.5
O6—C13—H13A109.5C23—O10—H10109.5
O6—C13—H13B109.5H1W—O1W—H2W107.6
H13A—C13—H13B109.5H3W—O2W—H4W108.2
O6—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10i0.811.942.748 (3)176
O4—H4A···O6ii0.822.082.681 (3)130
O4—H4A···O7ii0.822.252.997 (3)152
O5—H5A···O2W0.822.212.649 (4)114
O8—H8A···O1Wiii0.811.882.689 (3)175
O9—H9···O2i0.821.912.670 (3)153
O10—H10···O9iv0.822.042.685 (3)135
O1W—H1W···O2Wv0.851.952.790 (3)168
O1W—H2W···O4vi0.852.132.969 (3)170
O2W—H3W···O1ii0.852.022.866 (3)169
O2W—H4W···O50.851.832.649 (4)159
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x, y1, z; (iv) x+2, y+1/2, z+3/2; (v) x+1, y+1/2, z+3/2; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C12H16NO5)2]·2H2O
Mr608.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.9421 (9), 11.0238 (9), 20.6706 (17)
β (°) 97.462 (1)
V3)2698.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.902, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
13183, 4912, 4397
Rint0.061
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.01
No. of reflections4912
No. of parameters352
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.48

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N12.0367 (19)Cu1—O32.1989 (18)
Cu1—N22.0185 (19)Cu1—O72.0220 (16)
Cu1—O22.0180 (16)Cu1—O82.1537 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10i0.811.942.748 (3)176
O4—H4A···O6ii0.822.082.681 (3)130
O4—H4A···O7ii0.822.252.997 (3)152
O5—H5A···O2W0.822.212.649 (4)114
O8—H8A···O1Wiii0.811.882.689 (3)175
O9—H9···O2i0.821.912.670 (3)153
O10—H10···O9iv0.822.042.685 (3)135
O1W—H1W···O2Wv0.851.952.790 (3)168
O1W—H2W···O4vi0.852.132.969 (3)170
O2W—H3W···O1ii0.852.022.866 (3)169
O2W—H4W···O50.851.832.649 (4)159
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x, y1, z; (iv) x+2, y+1/2, z+3/2; (v) x+1, y+1/2, z+3/2; (vi) x, y+1, z.
 

Acknowledgements

The authors thank the National Ministry of Science and Technology of China (grant No. 2001CB6105-07) for support.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q., Li, X., Wang, X. & Zhang, Y. (2007). Acta Cryst. E63, m2537.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWard, M. D. (2007). Coord. Chem. Rev. 251, 1663–1677.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m151-m152
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds