metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Low-temperature redetermination of tri­benzyl­chloridotin(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 20 January 2009; accepted 23 January 2009; online 28 January 2009)

Compared to the previous studies [Ng (1997[Ng, S. W. (1997). Acta Cryst. C53, 56-58.]). Acta Cryst. C53, 56–58; Yin et al. (2005[Yin, H.-D., Li, K.-Z. & Hong, M. (2005). Huaxue Shiji, 27, 295-296, 310.]). Huaxue Shiji, 27, 295–296], the redetermined structure of the title compound, [Sn(C7H7)3Cl], exhibits a doubled c unit-cell parameter. There are two mol­ecules in the asymmetric unit, with both Sn and both Cl atoms having 3 site symmetry. The Sn atoms have distorted SnClC3 tetra­hedral geometries and the mol­ecules inter­act by way of short Sn⋯Cl bridges [Sn⋯Cl = 3.418 (2) and 3.475 (2) Å], thereby forming chains propagating in c.

Related literature

For the room-temperature structure of the title compound described in the R3 space group but with the unique c axis half as long, see: Ng (1997[Ng, S. W. (1997). Acta Cryst. C53, 56-58.]); Yin et al. (2005[Yin, H.-D., Li, K.-Z. & Hong, M. (2005). Huaxue Shiji, 27, 295-296, 310.]). For the direct synthesis of the title compound from metallic tin and benzyl chloride, see: Sisido et al. (1961[Sisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538-541.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C7H7)3Cl]

  • Mr = 427.52

  • Trigonal, R 3

  • a = 16.7985 (2) Å

  • c = 11.6875 (2) Å

  • V = 2856.23 (6) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 100 (2) K

  • 0.40 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.589, Tmax = 0.917

  • 9077 measured reflections

  • 2737 independent reflections

  • 2431 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.074

  • S = 1.07

  • 2737 reflections

  • 139 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1372 Friedel pairs

  • Flack parameter: −0.01 (4)

Table 1
Selected bond lengths (Å)

Sn1—C1 2.146 (3)
Sn1—Cl1 2.392 (2)
Sn2—C8 2.143 (3)
Sn2—Cl2 2.403 (2)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The room-temperature structure of tribenzyltin(IV) chloride, (I), has been described in the R3 space group but with the unique c-axis half as long [a = 16.942 (1), c = 5.9187 (4) Å] (Ng, 1997; Yin et al., 2005) as that found here. Presumably, the two independent studies missed the weak reflections along the c-axis. In the present low-temperature study of (I) (Fig. 1), the l = 2n + 1 reflections are generally weak but are unambiguously present. The crystal structure consists of [SnCI(C7H7)3] molecules (Tabl 1) linked axially by tin···chlorine bridges into a chain along the c-axis of the trigonal unit cell.

Related literature top

For the room-temperature structure of the title compoound described in the R3 space group but with the unique c axis half as long, see: Ng (1997); Yin et al. (2005). For the direct synthesis of the title compound from metallic tin and benzyl chloride, see: Sisido et al. (1961).

Experimental top

Tribenzyltin chloride was prepared from metallic tin and benzyl chloride in water (Sisido et al., 1961) and was recrystallized from ethanol to yield colourless prisms of (I).

Refinement top

The H atoms were placed in calculated positions [C—H 0.95–0.99 Å, Uiso(H) 1.2Ueq(C)], and were included in the refinement in the riding-model approximation.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I); displacement ellipsoids are drawn at the 70% probability level, and H atoms as spheres of arbitrary radius. Only symmetry-independent atoms are labeled.
tribenzylchloridotin(IV) top
Crystal data top
[Sn(C7H7)3Cl]Dx = 1.491 Mg m3
Mr = 427.52Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 5172 reflections
Hall symbol: R 3θ = 2.4–28.3°
a = 16.7985 (2) ŵ = 1.48 mm1
c = 11.6875 (2) ÅT = 100 K
V = 2856.23 (6) Å3Prism, colorless
Z = 60.40 × 0.08 × 0.06 mm
F(000) = 1284
Data collection top
Bruker SMART APEX
diffractometer
2737 independent reflections
Radiation source: fine-focus sealed tube2431 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.589, Tmax = 0.917k = 2121
9077 measured reflectionsl = 1514
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.375P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2737 reflectionsΔρmax = 0.53 e Å3
139 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 1372 Fridel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (4)
Crystal data top
[Sn(C7H7)3Cl]Z = 6
Mr = 427.52Mo Kα radiation
Trigonal, R3µ = 1.48 mm1
a = 16.7985 (2) ÅT = 100 K
c = 11.6875 (2) Å0.40 × 0.08 × 0.06 mm
V = 2856.23 (6) Å3
Data collection top
Bruker SMART APEX
diffractometer
2737 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2431 reflections with I > 2σ(I)
Tmin = 0.589, Tmax = 0.917Rint = 0.014
9077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.53 e Å3
S = 1.07Δρmin = 0.25 e Å3
2737 reflectionsAbsolute structure: Flack (1983), 1372 Fridel pairs
139 parametersAbsolute structure parameter: 0.01 (4)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.33330.66670.500000 (15)0.01587 (10)
Sn20.33330.66671.00289 (2)0.01945 (10)
Cl10.33330.66670.29532 (14)0.0388 (4)
Cl20.33330.66670.79730 (13)0.0364 (4)
C10.4692 (2)0.7751 (2)0.5415 (3)0.0231 (6)
H1A0.48050.77300.62420.028*
H1B0.51490.76590.49880.028*
C20.4812 (2)0.8672 (2)0.5120 (3)0.0214 (6)
C30.5272 (2)0.9129 (2)0.4134 (3)0.0353 (7)
H30.55240.88580.36460.042*
C40.5369 (3)0.9971 (2)0.3847 (3)0.0475 (9)
H40.56861.02720.31670.057*
C50.5008 (3)1.0378 (2)0.4544 (4)0.0438 (8)
H50.50701.09540.43440.053*
C60.4552 (2)0.9929 (2)0.5546 (4)0.0361 (8)
H60.43051.02040.60340.043*
C70.4456 (2)0.9089 (2)0.5831 (3)0.0283 (7)
H70.41460.87910.65160.034*
C80.4652 (2)0.7841 (2)1.0378 (3)0.0269 (7)
H8A0.48280.78151.11800.032*
H8B0.51190.78310.98710.032*
C90.4632 (2)0.8710 (2)1.0191 (3)0.0259 (6)
C100.4869 (2)0.9179 (2)0.9159 (3)0.0417 (8)
H100.50760.89570.85460.050*
C110.4811 (3)0.9968 (2)0.9002 (4)0.0531 (10)
H110.49661.02710.82810.064*
C120.4528 (2)1.0317 (2)0.9886 (4)0.0482 (9)
H120.45001.08630.97840.058*
C130.4288 (2)0.9860 (2)1.0914 (4)0.0401 (8)
H130.40911.00911.15270.048*
C140.4331 (2)0.9067 (2)1.1065 (3)0.0311 (7)
H140.41510.87561.17790.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01588 (11)0.01588 (11)0.01586 (17)0.00794 (5)0.0000.000
Sn20.02122 (12)0.02122 (12)0.01592 (18)0.01061 (6)0.0000.000
Cl10.0498 (6)0.0498 (6)0.0167 (5)0.0249 (3)0.0000.000
Cl20.0470 (6)0.0470 (6)0.0152 (5)0.0235 (3)0.0000.000
C10.0191 (14)0.0214 (14)0.0274 (14)0.0092 (11)0.0005 (11)0.0038 (11)
C20.0192 (13)0.0178 (13)0.0233 (13)0.0062 (11)0.0037 (11)0.0006 (10)
C30.0457 (19)0.0255 (15)0.0277 (14)0.0125 (14)0.0090 (14)0.0008 (11)
C40.070 (2)0.0274 (16)0.0344 (19)0.0163 (18)0.0067 (16)0.0085 (13)
C50.055 (2)0.0231 (15)0.050 (2)0.0179 (17)0.0140 (17)0.0011 (14)
C60.0319 (18)0.0280 (15)0.048 (2)0.0150 (14)0.0070 (14)0.0085 (14)
C70.0225 (14)0.0270 (15)0.0302 (16)0.0086 (12)0.0012 (11)0.0059 (12)
C80.0231 (15)0.0284 (16)0.0276 (15)0.0116 (13)0.0011 (12)0.0012 (12)
C90.0246 (14)0.0281 (15)0.0208 (12)0.0100 (12)0.0025 (11)0.0030 (11)
C100.047 (2)0.0328 (17)0.0280 (15)0.0066 (16)0.0013 (14)0.0007 (13)
C110.063 (2)0.0353 (19)0.0365 (19)0.0064 (18)0.0148 (17)0.0104 (15)
C120.049 (2)0.0255 (16)0.063 (2)0.0138 (17)0.0256 (18)0.0023 (16)
C130.0374 (18)0.0338 (18)0.050 (2)0.0181 (15)0.0076 (15)0.0067 (15)
C140.0300 (16)0.0278 (15)0.0299 (16)0.0103 (13)0.0012 (12)0.0008 (12)
Geometric parameters (Å, º) top
Sn1—C1i2.146 (3)C5—C61.396 (5)
Sn1—C12.146 (3)C5—H50.9500
Sn1—C1ii2.146 (3)C6—C71.379 (5)
Sn1—Cl12.392 (2)C6—H60.9500
Sn1—Cl23.475 (2)C7—H70.9500
Sn2—C8i2.143 (3)C8—C91.494 (5)
Sn2—C82.143 (3)C8—H8A0.9900
Sn2—C8ii2.143 (3)C8—H8B0.9900
Sn2—Cl22.403 (2)C9—C101.387 (4)
Sn2—Cl1iii3.418 (2)C9—C141.400 (4)
C1—C21.497 (4)C10—C111.389 (5)
C1—H1A0.9900C10—H100.9500
C1—H1B0.9900C11—C121.383 (5)
C2—C31.387 (4)C11—H110.9500
C2—C71.398 (4)C12—C131.373 (5)
C3—C41.381 (4)C12—H120.9500
C3—H30.9500C13—C141.381 (5)
C4—C51.383 (5)C13—H130.9500
C4—H40.9500C14—H140.9500
C1i—Sn1—C1115.06 (6)C5—C4—H4119.8
C1i—Sn1—C1ii115.06 (7)C4—C5—C6119.0 (3)
C1—Sn1—C1ii115.06 (6)C4—C5—H5120.5
C1i—Sn1—Cl1103.05 (9)C6—C5—H5120.5
C1—Sn1—Cl1103.05 (9)C7—C6—C5120.5 (3)
C1ii—Sn1—Cl1103.05 (9)C7—C6—H6119.8
C1i—Sn1—Cl276.95 (9)C5—C6—H6119.8
C1—Sn1—Cl276.95 (9)C6—C7—C2120.6 (3)
C1ii—Sn1—Cl276.95 (9)C6—C7—H7119.7
Cl1—Sn1—Cl2180.0C2—C7—H7119.7
C8i—Sn2—C8116.46 (6)C9—C8—Sn2110.7 (2)
C8i—Sn2—C8ii116.46 (6)C9—C8—H8A109.5
C8—Sn2—C8ii116.46 (6)Sn2—C8—H8A109.5
C8i—Sn2—Cl2100.98 (9)C9—C8—H8B109.5
C8—Sn2—Cl2100.98 (9)Sn2—C8—H8B109.5
C8ii—Sn2—Cl2100.98 (9)H8A—C8—H8B108.1
C8i—Sn2—Cl1iii79.02 (9)C10—C9—C14117.0 (3)
C8—Sn2—Cl1iii79.02 (9)C10—C9—C8122.9 (3)
C8ii—Sn2—Cl1iii79.02 (9)C14—C9—C8120.1 (3)
Cl2—Sn2—Cl1iii180.0C9—C10—C11121.4 (3)
Sn2—Cl2—Sn1180.0C9—C10—H10119.3
C2—C1—Sn1111.2 (2)C11—C10—H10119.3
C2—C1—H1A109.4C12—C11—C10120.5 (3)
Sn1—C1—H1A109.4C12—C11—H11119.7
C2—C1—H1B109.4C10—C11—H11119.7
Sn1—C1—H1B109.4C13—C12—C11118.9 (3)
H1A—C1—H1B108.0C13—C12—H12120.5
C3—C2—C7118.4 (3)C11—C12—H12120.5
C3—C2—C1120.9 (3)C12—C13—C14120.6 (3)
C7—C2—C1120.7 (3)C12—C13—H13119.7
C4—C3—C2121.1 (3)C14—C13—H13119.7
C4—C3—H3119.5C13—C14—C9121.6 (3)
C2—C3—H3119.5C13—C14—H14119.2
C3—C4—C5120.5 (3)C9—C14—H14119.2
C3—C4—H4119.8
C1i—Sn1—C1—C241.4 (3)C8i—Sn2—C8—C931.7 (3)
C1ii—Sn1—C1—C2178.70 (16)C8ii—Sn2—C8—C9175.18 (15)
Cl1—Sn1—C1—C269.9 (2)Cl2—Sn2—C8—C976.6 (2)
Cl2—Sn1—C1—C2110.1 (2)Cl1iii—Sn2—C8—C9103.4 (2)
Sn1—C1—C2—C3101.4 (3)Sn2—C8—C9—C1092.7 (3)
Sn1—C1—C2—C778.1 (3)Sn2—C8—C9—C1484.8 (3)
C7—C2—C3—C40.7 (5)C14—C9—C10—C110.1 (5)
C1—C2—C3—C4178.8 (3)C8—C9—C10—C11177.7 (3)
C2—C3—C4—C50.0 (5)C9—C10—C11—C121.2 (5)
C3—C4—C5—C60.6 (6)C10—C11—C12—C131.3 (5)
C4—C5—C6—C70.5 (5)C11—C12—C13—C140.2 (5)
C5—C6—C7—C20.2 (5)C12—C13—C14—C91.1 (5)
C3—C2—C7—C60.8 (5)C10—C9—C14—C131.2 (5)
C1—C2—C7—C6178.7 (3)C8—C9—C14—C13178.9 (3)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Sn(C7H7)3Cl]
Mr427.52
Crystal system, space groupTrigonal, R3
Temperature (K)100
a, c (Å)16.7985 (2), 11.6875 (2)
V3)2856.23 (6)
Z6
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.40 × 0.08 × 0.06
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.589, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
9077, 2737, 2431
Rint0.014
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.074, 1.07
No. of reflections2737
No. of parameters139
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.25
Absolute structureFlack (1983), 1372 Fridel pairs
Absolute structure parameter0.01 (4)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Sn1—C12.146 (3)Sn2—C82.143 (3)
Sn1—Cl12.392 (2)Sn2—Cl22.403 (2)
 

Acknowledgements

The author thanks the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNg, S. W. (1997). Acta Cryst. C53, 56–58.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538–541.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYin, H.-D., Li, K.-Z. & Hong, M. (2005). Huaxue Shiji, 27, 295–296, 310.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds