organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[(2-Amino-4,5-di­bromo­phen­yl)imino­meth­yl]-6-meth­oxy­phenol

aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: yumm@zzu.edu.cn

(Received 5 December 2008; accepted 30 December 2008; online 8 January 2009)

The title compound, C14H12Br2N2O2, was prepared from the condensation of 4,5-dibromo-1,2-phenyl­enediamine and 2-hydr­oxy-3-methoxy­benzaldehyde in methanol. The N=C double bond shows a trans conformation and the dihedral angle between the aromatic ring planes is 5.9 (4)°. In the crystal structure, there are intra­molecular O—H⋯N and N—H⋯N and inter­molecular N—H⋯O hydrogen bonds, the latter resulting in inversion dimers.

Related literature

For related literature on the design of ligands for polynuclear coordination complexes with novel magnetic properties, see: Fernández et al. (2001[Fernández, I., Ruiz, R., Faus, J., Julve, M., Lloret, F., Cano, J., Ottenwaelder, X., Journaux, Y. & Muñoz, C. (2001). Angew. Chem. Int. Ed. 40, 3039-3042.]); Pardo et al. (2003[Pardo, E., Faus, J., Julve, M., Lloret, F., Muñoz, C., Cano, J., Ottenwaelder, X., Journaux, Y., Carrasco, R., Blay, G., Fernàndez, I. & Ruiz-Garcìa, R. (2003). J. Am. Chem. Soc. 125, 10770-10771.]); Yu et al. (2007[Yu, M.-M., Ni, Z.-H., Zhao, C.-C., Cui, A.-L. & Kou, H.-Z. (2007). Eur. J. Inorg. Chem. pp. 5670-5676.]). For the synthesis and structure of a related compound, see: Xia et al. (2007[Xia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2007). Acta Cryst. E63, o40-o41.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12Br2N2O2

  • Mr = 400.08

  • Triclinic, [P \overline 1]

  • a = 6.9500 (4) Å

  • b = 7.4383 (4) Å

  • c = 14.7877 (10) Å

  • α = 100.351 (5)°

  • β = 97.218 (5)°

  • γ = 109.967 (3)°

  • V = 692.21 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.86 mm−1

  • T = 292 (3) K

  • 0.50 × 0.40 × 0.22 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.072, Tmax = 0.275

  • 6557 measured reflections

  • 3154 independent reflections

  • 2695 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.071

  • S = 1.02

  • 3154 reflections

  • 190 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.88 2.608 (2) 147
N2—H2A⋯N1 0.84 (3) 2.39 (3) 2.756 (3) 107 (2)
N2—H2B⋯O1i 0.81 (3) 2.30 (3) 3.114 (3) 174.19
Symmetry code: (i) -x-1, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of new ligands with the potential for forming polynuclear coordination complexes with novel magnetic properties is of current research interest (Pardo, et al., 2003; Yu, et al., 2007; Fernández, et al., 2001) and we report here the synthesis and crystal structure of the title complex (I).

The molecular structure of title compound is showing in Fig. 1. In the structure, there are intramolecular O—H···N, N—H···N and intermolecular N—H···O hydrogen bonds in the crystal lattice.

Related literature top

For related literature on the design of polynuclear coordination complexes with novel magnetic properties, see: Fernández et al. (2001); Pardo et al. (2003); Yu et al. (2007). For the synthesis of a related compound, see: Xia et al. (2007). Please check added text.

Experimental top

The title compound was synthesized according to modified reported methods (Xia, et al., 2007). 1 mmol (265.9 mg) 4,5-dibromo-1,2-phenylenediamine and 1.1 mmol (167.4 mg) 2-hydroxy-3-methoxybenzaldehyde were dissolved in 30 ml solution of methanol, then refluxed for 2 h. The solution was cooled and filtered. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation at room temperature for 10 days.

Refinement top

All H atoms were placed in geometrically calculated positions with C—H = 0.96 Å for methyl H atoms, C—H = 0.93 Å for aromatic H atoms and 0.82 Å for N—H. H atoms and were refined isotropic with Uiso(H) = 1.2Ueq(C) of parent atom using a riding model. The H atom of the hydroxy group was located from difference maps and refined with a distance restraint O—H = 0.82 (1) Å. Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of complex (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
(E)-2-[(2-Amino-4,5-dibromophenyl)iminomethyl]-6-methoxyphenol top
Crystal data top
C14H12Br2N2O2Z = 2
Mr = 400.08F(000) = 392
Triclinic, P1Dx = 1.919 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9500 (4) ÅCell parameters from 3154 reflections
b = 7.4383 (4) Åθ = 1.4–27.6°
c = 14.7877 (10) ŵ = 5.86 mm1
α = 100.351 (5)°T = 292 K
β = 97.218 (5)°Block, colourless
γ = 109.967 (3)°0.50 × 0.40 × 0.22 mm
V = 692.21 (8) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3154 independent reflections
Radiation source: fine-focus sealed tube2695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 98
Tmin = 0.072, Tmax = 0.275k = 99
6557 measured reflectionsl = 1219
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.3429P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3154 reflectionsΔρmax = 0.60 e Å3
190 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0093 (11)
Crystal data top
C14H12Br2N2O2γ = 109.967 (3)°
Mr = 400.08V = 692.21 (8) Å3
Triclinic, P1Z = 2
a = 6.9500 (4) ÅMo Kα radiation
b = 7.4383 (4) ŵ = 5.86 mm1
c = 14.7877 (10) ÅT = 292 K
α = 100.351 (5)°0.50 × 0.40 × 0.22 mm
β = 97.218 (5)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3154 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2695 reflections with I > 2σ(I)
Tmin = 0.072, Tmax = 0.275Rint = 0.018
6557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.60 e Å3
3154 reflectionsΔρmin = 0.46 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.04544 (4)0.75243 (4)0.476886 (17)0.05025 (11)
Br20.48830 (4)0.77615 (4)0.397735 (17)0.04846 (10)
O20.2559 (2)0.1156 (3)0.08390 (11)0.0429 (4)
H20.22480.18050.02950.064*
O10.3008 (3)0.0863 (3)0.25537 (11)0.0458 (4)
N10.0125 (3)0.3290 (3)0.07626 (12)0.0310 (4)
C90.0126 (3)0.4297 (3)0.17005 (14)0.0287 (4)
C50.2944 (3)0.2066 (4)0.09082 (17)0.0378 (5)
H50.42650.27120.05250.045*
N20.3662 (3)0.2994 (3)0.14823 (17)0.0429 (5)
C20.0994 (3)0.0097 (3)0.20552 (14)0.0318 (4)
C80.1432 (3)0.3179 (3)0.04022 (15)0.0334 (5)
H80.27700.37940.07710.040*
C140.1716 (3)0.4098 (3)0.20455 (15)0.0314 (4)
C60.1178 (3)0.2131 (3)0.05579 (14)0.0298 (4)
C100.2057 (3)0.5418 (3)0.22926 (15)0.0316 (4)
H100.32740.55410.20670.038*
C70.0805 (3)0.1144 (3)0.11378 (14)0.0298 (4)
C130.1544 (3)0.5092 (3)0.29647 (16)0.0351 (5)
H130.27500.50030.31950.042*
C30.0768 (4)0.0078 (3)0.23831 (16)0.0375 (5)
H30.06390.05980.29950.045*
C10.3285 (4)0.1801 (4)0.35196 (16)0.0471 (6)
H1A0.47510.24150.37920.071*
H1B0.26700.27810.35660.071*
H1C0.26210.08360.38490.071*
C110.2199 (3)0.6352 (3)0.32091 (15)0.0320 (4)
C120.0382 (4)0.6204 (3)0.35391 (15)0.0329 (4)
C40.2745 (4)0.1064 (4)0.18074 (17)0.0403 (5)
H40.39270.10390.20350.048*
H2A0.360 (4)0.212 (4)0.105 (2)0.043 (7)*
H2B0.455 (5)0.251 (4)0.177 (2)0.049 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05665 (18)0.04947 (16)0.03545 (15)0.01522 (13)0.01513 (11)0.00727 (10)
Br20.03535 (14)0.06002 (18)0.03276 (14)0.01257 (11)0.00551 (10)0.01218 (11)
O20.0239 (7)0.0630 (11)0.0291 (8)0.0100 (7)0.0034 (6)0.0066 (7)
O10.0331 (8)0.0600 (11)0.0258 (8)0.0038 (8)0.0011 (6)0.0050 (7)
N10.0293 (9)0.0321 (9)0.0252 (8)0.0078 (7)0.0017 (7)0.0010 (7)
C90.0290 (10)0.0287 (9)0.0243 (9)0.0093 (8)0.0021 (8)0.0015 (8)
C50.0263 (10)0.0465 (12)0.0367 (12)0.0122 (10)0.0043 (9)0.0047 (10)
N20.0267 (10)0.0477 (12)0.0423 (12)0.0055 (9)0.0046 (9)0.0001 (10)
C20.0313 (10)0.0340 (10)0.0246 (10)0.0078 (9)0.0036 (8)0.0040 (8)
C80.0266 (10)0.0377 (11)0.0286 (11)0.0094 (9)0.0016 (8)0.0001 (8)
C140.0290 (10)0.0294 (10)0.0332 (11)0.0093 (8)0.0040 (8)0.0059 (8)
C60.0273 (10)0.0325 (10)0.0270 (10)0.0101 (8)0.0031 (8)0.0042 (8)
C100.0279 (10)0.0339 (10)0.0285 (10)0.0103 (9)0.0042 (8)0.0003 (8)
C70.0264 (10)0.0346 (10)0.0263 (10)0.0099 (8)0.0052 (8)0.0049 (8)
C130.0305 (11)0.0338 (10)0.0389 (12)0.0106 (9)0.0108 (9)0.0039 (9)
C30.0444 (13)0.0399 (12)0.0285 (11)0.0164 (10)0.0110 (9)0.0048 (9)
C10.0529 (15)0.0477 (14)0.0236 (11)0.0061 (12)0.0004 (10)0.0025 (10)
C110.0305 (10)0.0312 (10)0.0275 (10)0.0095 (8)0.0008 (8)0.0011 (8)
C120.0396 (11)0.0299 (10)0.0275 (10)0.0137 (9)0.0075 (8)0.0010 (8)
C40.0329 (11)0.0523 (14)0.0405 (13)0.0196 (11)0.0141 (10)0.0107 (10)
Geometric parameters (Å, º) top
Br1—C121.891 (2)C2—C71.404 (3)
Br2—C111.890 (2)C8—C61.449 (3)
O2—C71.350 (3)C8—H80.9300
O2—H20.8200C14—C131.395 (3)
O1—C21.372 (3)C6—C71.400 (3)
O1—C11.430 (3)C10—C111.382 (3)
N1—C81.285 (3)C10—H100.9300
N1—C91.411 (3)C13—C121.379 (3)
C9—C101.393 (3)C13—H130.9300
C9—C141.408 (3)C3—C41.394 (3)
C5—C41.368 (3)C3—H30.9300
C5—C61.403 (3)C1—H1A0.9600
C5—H50.9300C1—H1B0.9600
N2—C141.382 (3)C1—H1C0.9600
N2—H2A0.84 (3)C11—C121.388 (3)
N2—H2B0.81 (3)C4—H40.9300
C2—C31.376 (3)
C7—O2—H2109.5C9—C10—H10119.3
C2—O1—C1117.15 (19)O2—C7—C6121.88 (18)
C8—N1—C9122.27 (18)O2—C7—C2118.60 (18)
C10—C9—C14119.32 (18)C6—C7—C2119.52 (19)
C10—C9—N1124.08 (19)C12—C13—C14121.3 (2)
C14—C9—N1116.59 (18)C12—C13—H13119.4
C4—C5—C6120.7 (2)C14—C13—H13119.4
C4—C5—H5119.6C2—C3—C4120.7 (2)
C6—C5—H5119.6C2—C3—H3119.7
C14—N2—H2A111.2 (19)C4—C3—H3119.7
C14—N2—H2B114 (2)O1—C1—H1A109.5
H2A—N2—H2B111 (3)O1—C1—H1B109.5
O1—C2—C3125.3 (2)H1A—C1—H1B109.5
O1—C2—C7114.79 (19)O1—C1—H1C109.5
C3—C2—C7119.9 (2)H1A—C1—H1C109.5
N1—C8—C6122.43 (19)H1B—C1—H1C109.5
N1—C8—H8118.8C10—C11—C12119.28 (19)
C6—C8—H8118.8C10—C11—Br2118.48 (16)
N2—C14—C13120.2 (2)C12—C11—Br2122.23 (16)
N2—C14—C9121.2 (2)C13—C12—C11120.21 (19)
C13—C14—C9118.57 (19)C13—C12—Br1118.15 (16)
C7—C6—C5119.27 (19)C11—C12—Br1121.63 (16)
C7—C6—C8121.15 (19)C5—C4—C3119.9 (2)
C5—C6—C8119.57 (19)C5—C4—H4120.0
C11—C10—C9121.3 (2)C3—C4—H4120.0
C11—C10—H10119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.882.608 (2)147
N2—H2A···N10.84 (3)2.39 (3)2.756 (3)107 (2)
N2—H2B···O1i0.81 (3)2.30 (3)3.114 (3)174.19
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H12Br2N2O2
Mr400.08
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)6.9500 (4), 7.4383 (4), 14.7877 (10)
α, β, γ (°)100.351 (5), 97.218 (5), 109.967 (3)
V3)692.21 (8)
Z2
Radiation typeMo Kα
µ (mm1)5.86
Crystal size (mm)0.50 × 0.40 × 0.22
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.072, 0.275
No. of measured, independent and
observed [I > 2σ(I)] reflections
6557, 3154, 2695
Rint0.018
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.071, 1.02
No. of reflections3154
No. of parameters190
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.46

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.87882.608 (2)147.41
N2—H2A···N10.84 (3)2.39 (3)2.756 (3)107 (2)
N2—H2B···O1i0.81 (3)2.30 (3)3.114 (3)174.19
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (grant No. 50873093).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFernández, I., Ruiz, R., Faus, J., Julve, M., Lloret, F., Cano, J., Ottenwaelder, X., Journaux, Y. & Muñoz, C. (2001). Angew. Chem. Int. Ed. 40, 3039–3042.  Google Scholar
First citationPardo, E., Faus, J., Julve, M., Lloret, F., Muñoz, C., Cano, J., Ottenwaelder, X., Journaux, Y., Carrasco, R., Blay, G., Fernàndez, I. & Ruiz-Garcìa, R. (2003). J. Am. Chem. Soc. 125, 10770–10771.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2007). Acta Cryst. E63, o40–o41.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYu, M.-M., Ni, Z.-H., Zhao, C.-C., Cui, A.-L. & Kou, H.-Z. (2007). Eur. J. Inorg. Chem. pp. 5670–5676.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds