organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-(3-chloro­prop­­oxy)-3-meth­oxy­benzoate

aCollege of Science, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 18 December 2008; accepted 19 December 2008; online 8 January 2009)

In the title compound, C12H15ClO4, the molecules are linked by C—H⋯O interactions.

Related literature

For general background, see: Knesl et al. (2006[Knesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286-297.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15ClO4

  • Mr = 258.69

  • Monoclinic, P 21 /c

  • a = 8.4980 (17) Å

  • b = 17.349 (4) Å

  • c = 8.8440 (18) Å

  • β = 106.46 (3)°

  • V = 1250.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.914, Tmax = 0.970

  • 2431 measured reflections

  • 2274 independent reflections

  • 1575 reflections with I > 2σ(I)

  • Rint = 0.048

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.176

  • S = 1.01

  • 2274 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O2i 0.97 2.56 3.429 (6) 149
C2—H2A⋯O3ii 0.97 2.41 3.358 (6) 164
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

As part of our ongoing studies on quinazoline derivatives (Knesl et al., 2006), we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C4-C9) is, of course, planar. The intramolecular C-H···O hydrogen bond (Table 1) results in the formation of a five-membered ring B (O1/C1-C3/H1A), having envelope conformation with C2 atom displaced by -0.668 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Knesl et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, methyl 3-methoxy-4-hydroxybenzoate (55 mmol), 1-bromo-3-chloropropane (165 mmol) and potassium carbonate (275 mmol) were mixed with DMF (60 ml), and then the mixture was heated to reflux for 2 h. Reaction progress was monitored by TLC. After cooling and filtration, the title compound was obtained (yield; 93.7%, m.p. 384 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Methyl 4-(3-chloropropoxy)-3-methoxybenzoate top
Crystal data top
C12H15ClO4F(000) = 544
Mr = 258.69Dx = 1.374 Mg m3
Monoclinic, P21/cMelting point: 384 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.4980 (17) ÅCell parameters from 25 reflections
b = 17.349 (4) Åθ = 10–13°
c = 8.8440 (18) ŵ = 0.31 mm1
β = 106.46 (3)°T = 294 K
V = 1250.5 (5) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1575 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 020
Tmin = 0.914, Tmax = 0.970l = 1010
2431 measured reflections3 standard reflections every 120 min
2274 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.050P)2 + 3.3P]
where P = (Fo2 + 2Fc2)/3
2274 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C12H15ClO4V = 1250.5 (5) Å3
Mr = 258.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4980 (17) ŵ = 0.31 mm1
b = 17.349 (4) ÅT = 294 K
c = 8.8440 (18) Å0.30 × 0.20 × 0.10 mm
β = 106.46 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1575 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.048
Tmin = 0.914, Tmax = 0.9703 standard reflections every 120 min
2431 measured reflections intensity decay: 1%
2274 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.01Δρmax = 0.35 e Å3
2274 reflectionsΔρmin = 0.29 e Å3
154 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.27901 (16)0.58276 (8)0.10729 (14)0.0679 (4)
O10.3056 (3)0.60776 (15)0.5453 (3)0.0480 (7)
O20.1798 (3)0.50211 (15)0.6779 (3)0.0491 (7)
O30.2908 (4)0.74808 (19)0.7610 (4)0.0711 (10)
O40.2715 (3)0.62804 (17)0.8531 (4)0.0578 (8)
C10.4233 (6)0.5519 (3)0.2872 (5)0.0580 (12)
H1A0.36930.51700.34240.070*
H1B0.51190.52390.26270.070*
C20.4929 (5)0.6187 (3)0.3921 (5)0.0554 (11)
H2A0.54090.65460.33370.066*
H2B0.58030.60000.48070.066*
C30.3697 (5)0.6615 (2)0.4548 (5)0.0532 (11)
H3A0.42230.70430.52070.064*
H3B0.28190.68170.36840.064*
C40.1809 (5)0.6315 (2)0.6028 (4)0.0401 (9)
C50.1190 (5)0.7053 (2)0.5911 (5)0.0488 (10)
H5A0.16560.74380.54440.059*
C60.0123 (5)0.7224 (2)0.6489 (5)0.0489 (10)
H6A0.05470.77220.63900.059*
C70.0814 (5)0.6657 (2)0.7216 (4)0.0424 (9)
C80.0174 (5)0.5915 (2)0.7335 (4)0.0404 (9)
H8A0.06380.55330.78110.048*
C90.1129 (4)0.5731 (2)0.6768 (4)0.0378 (8)
C100.1078 (5)0.4411 (2)0.7422 (5)0.0495 (10)
H10A0.16310.39370.73420.074*
H10B0.00610.43660.68490.074*
H10C0.11760.45170.85110.074*
C110.2236 (5)0.6865 (2)0.7781 (5)0.0478 (10)
C120.4095 (6)0.6411 (3)0.9117 (6)0.0670 (14)
H12A0.43080.59570.96460.101*
H12B0.50390.65310.82550.101*
H12C0.38650.68350.98460.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0710 (8)0.0750 (8)0.0547 (7)0.0031 (6)0.0130 (6)0.0007 (6)
O10.0477 (16)0.0459 (16)0.0542 (17)0.0020 (12)0.0206 (13)0.0082 (13)
O20.0481 (16)0.0364 (15)0.0657 (19)0.0022 (12)0.0211 (14)0.0077 (13)
O30.079 (2)0.057 (2)0.086 (2)0.0270 (17)0.037 (2)0.0083 (18)
O40.0487 (17)0.0563 (19)0.074 (2)0.0088 (14)0.0267 (16)0.0028 (16)
C10.060 (3)0.055 (3)0.062 (3)0.006 (2)0.022 (2)0.006 (2)
C20.048 (2)0.063 (3)0.057 (3)0.003 (2)0.018 (2)0.008 (2)
C30.059 (3)0.044 (2)0.054 (3)0.009 (2)0.012 (2)0.004 (2)
C40.041 (2)0.043 (2)0.036 (2)0.0010 (17)0.0103 (16)0.0003 (16)
C50.063 (3)0.034 (2)0.050 (2)0.0083 (19)0.016 (2)0.0017 (18)
C60.056 (3)0.035 (2)0.051 (2)0.0081 (18)0.006 (2)0.0028 (18)
C70.043 (2)0.042 (2)0.041 (2)0.0039 (17)0.0092 (17)0.0063 (17)
C80.039 (2)0.040 (2)0.040 (2)0.0037 (16)0.0073 (16)0.0028 (17)
C90.041 (2)0.0330 (19)0.040 (2)0.0027 (16)0.0114 (16)0.0013 (16)
C100.057 (3)0.034 (2)0.062 (3)0.0011 (18)0.023 (2)0.0053 (19)
C110.054 (2)0.042 (2)0.043 (2)0.0044 (19)0.0058 (19)0.0037 (18)
C120.052 (3)0.083 (4)0.073 (3)0.007 (2)0.030 (2)0.014 (3)
Geometric parameters (Å, º) top
Cl—C11.794 (5)C4—C51.378 (5)
O1—C31.433 (5)C4—C91.415 (5)
O1—C41.362 (4)C5—C61.385 (6)
O2—C91.355 (4)C5—H5A0.9300
O2—C101.420 (4)C6—C71.394 (6)
O3—C111.201 (5)C6—H6A0.9300
O4—C111.336 (5)C7—C81.390 (5)
O4—C121.429 (5)C7—C111.478 (6)
C1—C21.498 (6)C8—C91.377 (5)
C1—H1A0.9700C8—H8A0.9300
C1—H1B0.9700C10—H10A0.9600
C2—C31.512 (6)C10—H10B0.9600
C2—H2A0.9700C10—H10C0.9600
C2—H2B0.9700C12—H12A0.9600
C3—H3A0.9700C12—H12B0.9600
C3—H3B0.9700C12—H12C0.9600
C4—O1—C3118.1 (3)C5—C6—C7120.5 (4)
C9—O2—C10116.9 (3)C5—C6—H6A119.8
C11—O4—C12117.1 (3)C7—C6—H6A119.8
Cl—C1—H1A109.3C8—C7—C6118.9 (4)
Cl—C1—H1B109.3C8—C7—C11122.7 (4)
C2—C1—Cl111.6 (3)C6—C7—C11118.4 (4)
C2—C1—H1A109.3C9—C8—C7121.6 (4)
C2—C1—H1B109.3C9—C8—H8A119.2
H1A—C1—H1B108.0C7—C8—H8A119.2
C1—C2—C3114.5 (4)O2—C9—C8125.9 (3)
C1—C2—H2A108.6O2—C9—C4115.4 (3)
C1—C2—H2B108.6C8—C9—C4118.6 (3)
C3—C2—H2A108.6O2—C10—H10A109.5
C3—C2—H2B108.6O2—C10—H10B109.5
H2A—C2—H2B107.6H10A—C10—H10B109.5
O1—C3—C2107.3 (3)O2—C10—H10C109.5
O1—C3—H3A110.3H10A—C10—H10C109.5
O1—C3—H3B110.3H10B—C10—H10C109.5
C2—C3—H3A110.3O3—C11—O4122.5 (4)
C2—C3—H3B110.3O3—C11—C7125.4 (4)
H3A—C3—H3B108.5O4—C11—C7112.1 (3)
O1—C4—C5125.0 (3)O4—C12—H12A109.5
O1—C4—C9114.8 (3)O4—C12—H12B109.5
C5—C4—C9120.2 (4)H12A—C12—H12B109.5
C4—C5—C6120.2 (4)O4—C12—H12C109.5
C4—C5—H5A119.9H12A—C12—H12C109.5
C6—C5—H5A119.9H12B—C12—H12C109.5
Cl—C1—C2—C365.9 (4)C10—O2—C9—C4176.1 (3)
C4—O1—C3—C2174.3 (3)C7—C8—C9—O2177.5 (4)
C1—C2—C3—O160.5 (5)C7—C8—C9—C40.9 (6)
C3—O1—C4—C55.2 (6)O1—C4—C9—O20.9 (5)
C3—O1—C4—C9173.8 (3)C5—C4—C9—O2178.2 (4)
O1—C4—C5—C6177.6 (4)O1—C4—C9—C8177.9 (3)
C9—C4—C5—C61.3 (6)C5—C4—C9—C81.2 (6)
C4—C5—C6—C71.1 (6)C12—O4—C11—O30.8 (6)
C5—C6—C7—C80.7 (6)C12—O4—C11—C7179.4 (3)
C5—C6—C7—C11178.7 (4)C8—C7—C11—O3174.5 (4)
C6—C7—C8—C90.6 (6)C6—C7—C11—O33.4 (6)
C11—C7—C8—C9178.5 (4)C8—C7—C11—O45.6 (5)
C10—O2—C9—C80.6 (6)C6—C7—C11—O4176.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O10.972.562.906 (5)101
C1—H1B···O2i0.972.563.429 (6)149
C2—H2A···O3ii0.972.413.358 (6)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H15ClO4
Mr258.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)8.4980 (17), 17.349 (4), 8.8440 (18)
β (°) 106.46 (3)
V3)1250.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.914, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
2431, 2274, 1575
Rint0.048
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.176, 1.01
No. of reflections2274
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.29

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O10.972.562.906 (5)101.00
C1—H1B···O2i0.972.563.429 (6)149.00
C2—H2A···O3ii0.972.413.358 (6)164.00
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+3/2, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKnesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286–297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds