organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[4-(4-Nitro­phenyl­diazen­yl)phen­yl]hexa­ne­nitrile

aCollege of Science, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 6 January 2009; accepted 8 January 2009; online 17 January 2009)

In the mol­ecule of the title compound, C18H18N4O2, the aromatic rings are oriented at a dihedral angle of 3.72 (3)°. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. There are also C—H⋯π inter­actions.

Related literature

For general background, see: Bach et al. (1996[Bach, H., Anderle, K., Fuhrmann, Th. & Wendorff, J. H. (1996). J. Phys. Chem. 100, 4135-4140.]); Clark & Hester (1991[Clark, R. J. H. & Hester, R. E. (1991). Advances in Materials Science Spectroscopy. New York: John Wiley & Sons.]); Taniike et al. (1996[Taniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem. 100, 15508-15516.]). For a related structure, see: Zhao et al. (2002[Zhao, X. Y., Hu, X., Yue, C. Y., Xia, X. L. & Gan, L. H. (2002). Thin Solid Films, 417, 95-100.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N4O2

  • Mr = 322.36

  • Monoclinic, P 21 /c

  • a = 20.113 (4) Å

  • b = 10.590 (2) Å

  • c = 7.6820 (15) Å

  • β = 94.78 (3)°

  • V = 1630.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.964, Tmax = 0.991

  • 3037 measured reflections

  • 2951 independent reflections

  • 1336 reflections with I > 2σ(I)

  • Rint = 0.061

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.185

  • S = 0.98

  • 2951 reflections

  • 199 parameters

  • 62 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2C⋯O1i 0.97 2.46 3.343 (6) 150
C9—H9ACg1ii 0.93 2.92 3.713 (6) 144
C15—H15ACg2ii 0.93 2.90 3.690 (6) 143
Symmetry codes: (i) -x, -y, -z+1; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C7–C13 and C13–C18 rings, respectively.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The photophysical properties of azo compounds are of large interest in the development of nonlinear optical and optical data storage materials (Bach et al., 1996; Taniike et al., 1996; Clark & Hester, 1991). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C7-C12) and B (C13-C18) are, of course, planar, and they are oriented at a dihedral angle of 3.72 (3)°.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure. There also exist C–H···π interactions (Table 1).

Related literature top

For general background, see: Bach et al. (1996); Clark & Hester (1991); Taniike et al. (1996). For a related structure, see: Zhao et al. (2002). For bond-length data, see: Allen et al. (1987). Cg1 and Cg2 are the centroids of the C7–C13 and C13–C18 rings, respectively.

Experimental top

The title compound has been synthesized according to a literature method (Zhao et al., 2002). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
(I) top
Crystal data top
C18H18N4O2F(000) = 680
Mr = 322.36Dx = 1.313 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 20.113 (4) Åθ = 9–13°
b = 10.590 (2) ŵ = 0.09 mm1
c = 7.6820 (15) ÅT = 293 K
β = 94.78 (3)°Block, red
V = 1630.5 (6) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1336 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 25.3°, θmin = 1.0°
ω/2θ scansh = 024
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.964, Tmax = 0.991l = 99
3037 measured reflections3 standard reflections every 200 reflections
2951 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.060P)2 + 1.P]
where P = (Fo2 + 2Fc2)/3
2951 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.32 e Å3
62 restraintsΔρmin = 0.37 e Å3
Crystal data top
C18H18N4O2V = 1630.5 (6) Å3
Mr = 322.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.113 (4) ŵ = 0.09 mm1
b = 10.590 (2) ÅT = 293 K
c = 7.6820 (15) Å0.30 × 0.20 × 0.10 mm
β = 94.78 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1336 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.061
Tmin = 0.964, Tmax = 0.9913 standard reflections every 200 reflections
3037 measured reflections intensity decay: 1%
2951 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07262 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 0.98Δρmax = 0.32 e Å3
2951 reflectionsΔρmin = 0.37 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4653 (3)0.1899 (5)0.4255 (7)0.1057 (17)
C10.4327 (3)0.1281 (7)0.4966 (8)0.107 (2)
O10.27421 (18)0.0779 (4)0.7659 (5)0.0975 (13)
O20.25317 (17)0.2141 (3)0.9614 (5)0.0828 (11)
N20.07709 (17)0.1393 (3)0.8661 (4)0.0479 (7)
N30.03734 (18)0.0691 (3)0.7775 (4)0.0506 (9)
N40.2356 (2)0.1355 (4)0.8566 (6)0.0658 (11)
C20.3903 (2)0.0199 (5)0.5602 (7)0.0829 (10)
H2B0.41420.05970.56070.099*
H2C0.34930.01130.48530.099*
C30.3747 (2)0.0512 (5)0.7350 (7)0.0829 (10)
H3B0.41430.08220.80220.099*
H3C0.34110.11710.73090.099*
C40.4104 (3)0.0772 (6)1.1039 (8)0.105 (2)
H4A0.44470.12281.17190.157*
H4B0.42390.00911.09200.157*
H4C0.36980.08011.16130.157*
C50.3989 (2)0.1368 (5)0.9246 (7)0.0808 (17)
H5A0.38510.22400.93600.097*
H5B0.44000.13580.86710.097*
C60.3485 (2)0.0682 (5)0.8228 (7)0.0829 (10)
H6A0.35200.12080.71900.099*
C70.2832 (2)0.0858 (4)0.8230 (6)0.0583 (12)
C80.2566 (2)0.1767 (4)0.9332 (5)0.0519 (11)
H8A0.28570.22811.00170.062*
C90.1910 (2)0.1910 (4)0.9421 (5)0.0504 (11)
H9A0.17630.25211.01690.060*
C100.1431 (2)0.1179 (4)0.8435 (5)0.0479 (7)
C110.1685 (2)0.0266 (4)0.7336 (5)0.0498 (11)
H11A0.13900.02630.66870.060*
C120.2337 (2)0.0142 (4)0.7206 (5)0.0506 (11)
H12A0.24790.04390.64080.061*
C130.0292 (2)0.0918 (4)0.8074 (5)0.0470 (10)
C140.0524 (2)0.1820 (4)0.9173 (5)0.0511 (11)
H14A0.02230.23520.97980.061*
C150.1198 (2)0.1937 (4)0.9352 (6)0.0588 (12)
H15A0.13480.25401.01080.071*
C160.1639 (2)0.1184 (4)0.8440 (5)0.0521 (11)
C170.1442 (2)0.0243 (4)0.7373 (6)0.0583 (12)
H17A0.17530.02890.67830.070*
C180.0770 (2)0.0112 (4)0.7203 (5)0.0618 (12)
H18A0.06270.05280.64930.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.100 (4)0.112 (4)0.104 (4)0.046 (3)0.004 (3)0.022 (3)
C10.064 (4)0.138 (6)0.118 (5)0.009 (4)0.005 (3)0.064 (5)
O10.058 (2)0.128 (3)0.105 (3)0.018 (2)0.005 (2)0.007 (3)
O20.073 (2)0.077 (3)0.101 (3)0.017 (2)0.022 (2)0.008 (2)
N20.0573 (17)0.0468 (16)0.0392 (14)0.0041 (14)0.0020 (13)0.0020 (13)
N30.060 (2)0.049 (2)0.043 (2)0.0021 (18)0.0003 (17)0.0016 (17)
N40.060 (3)0.061 (3)0.076 (3)0.004 (2)0.004 (2)0.023 (2)
C20.069 (2)0.093 (2)0.086 (2)0.0043 (17)0.0003 (17)0.010 (2)
C30.069 (2)0.093 (2)0.086 (2)0.0043 (17)0.0003 (17)0.010 (2)
C40.086 (4)0.112 (5)0.111 (5)0.048 (4)0.023 (4)0.008 (4)
C50.042 (3)0.110 (4)0.091 (4)0.014 (3)0.010 (3)0.046 (4)
C60.069 (2)0.093 (2)0.086 (2)0.0043 (17)0.0003 (17)0.010 (2)
C70.051 (3)0.069 (3)0.055 (3)0.007 (2)0.001 (2)0.017 (2)
C80.055 (3)0.040 (2)0.061 (3)0.007 (2)0.006 (2)0.019 (2)
C90.064 (3)0.047 (3)0.041 (2)0.001 (2)0.011 (2)0.014 (2)
C100.0573 (17)0.0468 (16)0.0392 (14)0.0041 (14)0.0020 (13)0.0020 (13)
C110.052 (3)0.052 (3)0.044 (2)0.003 (2)0.003 (2)0.005 (2)
C120.056 (3)0.044 (2)0.052 (3)0.001 (2)0.000 (2)0.016 (2)
C130.059 (3)0.044 (2)0.038 (2)0.005 (2)0.0057 (19)0.0108 (19)
C140.054 (3)0.051 (3)0.048 (3)0.006 (2)0.002 (2)0.005 (2)
C150.070 (3)0.056 (3)0.051 (3)0.012 (2)0.005 (2)0.005 (2)
C160.065 (3)0.048 (3)0.044 (2)0.002 (2)0.007 (2)0.014 (2)
C170.057 (3)0.058 (3)0.058 (3)0.005 (2)0.005 (2)0.003 (2)
C180.075 (3)0.066 (3)0.045 (2)0.001 (3)0.003 (2)0.007 (2)
Geometric parameters (Å, º) top
N1—C11.102 (6)C6—H6A0.9800
C1—C21.533 (7)C7—C81.416 (5)
O1—N41.171 (5)C7—C121.434 (5)
O2—N41.230 (5)C8—C91.334 (5)
N2—N31.251 (4)C8—H8A0.9300
N2—C101.371 (5)C9—C101.407 (5)
N3—C131.398 (5)C9—H9A0.9300
N4—C161.464 (6)C10—C111.407 (5)
C2—C31.443 (6)C11—C121.330 (5)
C2—H2B0.9700C11—H11A0.9300
C2—H2C0.9700C12—H12A0.9300
C3—C61.546 (7)C13—C141.381 (5)
C3—H3B0.9700C13—C181.412 (6)
C3—H3C0.9700C14—C151.379 (5)
C4—C51.515 (7)C14—H14A0.9300
C4—H4A0.9600C15—C161.346 (6)
C4—H4B0.9600C15—H15A0.9300
C4—H4C0.9600C16—C171.369 (6)
C5—C61.427 (6)C17—C181.376 (6)
C5—H5A0.9700C17—H17A0.9300
C5—H5B0.9700C18—H18A0.9300
C6—C71.326 (6)
N1—C1—C2166.2 (8)C6—C7—C8121.3 (4)
N3—N2—C10114.5 (3)C6—C7—C12124.6 (4)
N2—N3—C13112.7 (3)C8—C7—C12114.0 (4)
O1—N4—O2122.0 (5)C9—C8—C7122.1 (4)
O1—N4—C16120.3 (5)C9—C8—H8A118.9
O2—N4—C16117.7 (5)C7—C8—H8A118.9
C3—C2—C1107.1 (5)C8—C9—C10123.1 (4)
C3—C2—H2B110.0C8—C9—H9A118.4
C1—C2—H2B111.2C10—C9—H9A118.4
C3—C2—H2C109.5N2—C10—C9117.9 (4)
C1—C2—H2C110.4N2—C10—C11126.4 (4)
H2B—C2—H2C108.6C9—C10—C11115.7 (4)
C2—C3—C6109.1 (5)C12—C11—C10121.5 (4)
C2—C3—H3B109.9C12—C11—H11A119.2
C6—C3—H3B109.9C10—C11—H11A119.2
C2—C3—H3C109.9C11—C12—C7123.4 (4)
C6—C3—H3C109.9C11—C12—H12A118.3
H3B—C3—H3C108.3C7—C12—H12A118.3
C5—C4—H4A109.5C14—C13—N3126.6 (4)
C5—C4—H4B109.5C14—C13—C18117.2 (4)
H4A—C4—H4B109.5N3—C13—C18116.2 (4)
C5—C4—H4C109.5C15—C14—C13120.5 (4)
H4A—C4—H4C109.5C15—C14—H14A119.7
H4B—C4—H4C109.5C13—C14—H14A119.7
C6—C5—C4109.5 (5)C16—C15—C14120.3 (4)
C6—C5—H5A109.8C16—C15—H15A119.8
C4—C5—H5A109.8C14—C15—H15A119.8
C6—C5—H5B109.8C15—C16—C17122.1 (4)
C4—C5—H5B109.8C15—C16—N4120.1 (4)
H5A—C5—H5B108.2C17—C16—N4117.7 (4)
C7—C6—C5125.9 (5)C16—C17—C18117.8 (4)
C7—C6—C3119.3 (5)C16—C17—H17A121.1
C5—C6—C3113.8 (4)C18—C17—H17A121.1
C7—C6—H6A93.4C17—C18—C13121.9 (4)
C5—C6—H6A93.4C17—C18—H18A119.0
C3—C6—H6A93.4C13—C18—H18A119.0
C10—N2—N3—C13178.6 (3)C10—C11—C12—C73.9 (6)
N1—C1—C2—C3168 (3)C6—C7—C12—C11174.3 (5)
C1—C2—C3—C6165.2 (4)C8—C7—C12—C113.4 (6)
C4—C5—C6—C785.4 (7)N2—N3—C13—C141.4 (5)
C4—C5—C6—C382.7 (6)N2—N3—C13—C18176.3 (3)
C2—C3—C6—C797.0 (6)N3—C13—C14—C15179.6 (4)
C2—C3—C6—C594.1 (6)C18—C13—C14—C152.0 (6)
C5—C6—C7—C81.8 (9)C13—C14—C15—C160.8 (6)
C3—C6—C7—C8165.7 (4)C14—C15—C16—C173.1 (6)
C5—C6—C7—C12179.3 (5)C14—C15—C16—N4176.9 (4)
C3—C6—C7—C1211.8 (8)O1—N4—C16—C15173.2 (4)
C6—C7—C8—C9176.3 (5)O2—N4—C16—C155.0 (6)
C12—C7—C8—C91.4 (6)O1—N4—C16—C176.8 (6)
C7—C8—C9—C100.1 (7)O2—N4—C16—C17175.1 (4)
N3—N2—C10—C9178.4 (3)C15—C16—C17—C182.3 (6)
N3—N2—C10—C110.3 (6)N4—C16—C17—C18177.6 (4)
C8—C9—C10—N2178.7 (4)C16—C17—C18—C130.7 (6)
C8—C9—C10—C110.4 (6)C14—C13—C18—C172.7 (6)
N2—C10—C11—C12179.6 (4)N3—C13—C18—C17179.4 (4)
C9—C10—C11—C122.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···O1i0.972.463.343 (6)150
C9—H9A···Cg1ii0.932.923.713 (6)144
C15—H15A···Cg2ii0.932.903.690 (6)143
Symmetry codes: (i) x, y, z+1; (ii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H18N4O2
Mr322.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)20.113 (4), 10.590 (2), 7.6820 (15)
β (°) 94.78 (3)
V3)1630.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.964, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3037, 2951, 1336
Rint0.061
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.185, 0.98
No. of reflections2951
No. of parameters199
No. of restraints62
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.37

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···O1i0.972.463.343 (6)150
C9—H9A···Cg1ii0.932.923.713 (6)144
C15—H15A···Cg2ii0.932.903.690 (6)143
Symmetry codes: (i) x, y, z+1; (ii) x, y1/2, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBach, H., Anderle, K., Fuhrmann, Th. & Wendorff, J. H. (1996). J. Phys. Chem. 100, 4135–4140.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. J. H. & Hester, R. E. (1991). Advances in Materials Science Spectroscopy. New York: John Wiley & Sons.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem. 100, 15508–15516.  CrossRef CAS Web of Science Google Scholar
First citationZhao, X. Y., Hu, X., Yue, C. Y., Xia, X. L. & Gan, L. H. (2002). Thin Solid Films, 417, 95–100.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds