organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,5,6-Tetra­fluoro-1,4-bis­­(2-pyridylmethyl­ene­amino­meth­yl)benzene

aSchool of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210093, People's Republic of China, and bKey Laboratory of Fine Petro-chemical Technology, Jiangsu Polytechnic University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: hemingyangjpu@yahoo.com

(Received 1 December 2008; accepted 10 January 2009; online 17 January 2009)

The title compound, C20H14F4N4, is a flexible bis-pyridine-type ligand with an extended fluorinated spacer group between the two pyridyl functions. The centroid of the central aromatic ring is situated on a crystallographic center of inversion. The dihedral angle between the pyridine ring and the central benzene ring is 63.85 (9)°. The crystal structure exhibits inter­molecular C—H⋯F hydrogen-bonding inter­actions.

Related literature

For background information on bis-pyridine-type Schiff base ligands see: Barboiu et al. (2006[Barboiu, M., Petit, E., Van d Lee, A. & Vaughan, G. (2006). Inorg. Chem. 45, 484-486.]); Keegan et al. (2002[Keegan, J., Kruger, P. E., Nieuwenhuyzen, M. & Martin, N. (2002). Cryst. Growth Des. 2, 329-332.]); Yue et al. (2004[Yue, Y. F., Gao, E. Q., Bai, S. Q., He, Z. & Yan, C. H. (2004). CrystEngComm, 6, 549-555.]). Haga et al. (1985[Haga, M. & Koizumi, K. (1985). Inorg. Chim. Acta, 104, 47-50.]) describe the synthesis of the title compound.

[Scheme 1]

Experimental

Crystal data
  • C20H14F4N4

  • Mr = 386.35

  • Monoclinic, P 21 /c

  • a = 9.637 (3) Å

  • b = 7.783 (3) Å

  • c = 12.070 (4) Å

  • β = 105.940 (4)°

  • V = 870.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 (2) K

  • 0.26 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.974

  • 7194 measured reflections

  • 2014 independent reflections

  • 1341 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.151

  • S = 1.05

  • 2014 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F2i 0.93 2.53 3.370 (3) 151
Symmetry code: (i) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bis-pyridine type bidentate Schiff base ligands have been utilized intensively to assemble various coordination polymers with interesting topologies and fascinating structural diversities (Barboiu et al., 2006; Keegan et al., 2002; Yue et al., 2004). We report here the crystal structure of the title compound, (I).

A perspective view of (I), including the atomic numbering scheme, is shown in Fig. 1. (I) crystallizes around a crystallographic center of inversion with a half molecule in the asymmetric unit. The bond lengths and angles are within normal ranges. The terminal pyridyl groups are coplanar, and they form a dihedral angle of 63.85 (9)° with the central benzene ring.

Related literature top

For background information on bis-pyridine-type Schiff base ligands see: Barboiu et al. (2006); Keegan et al. (2002); Yue et al. (2004). Haga et al. (1985) describe the synthesis of the title compound.

Experimental top

The title compound was synthesized and purified according to the method described by by Haga et al. (1985) performing a condensation of pyridine-2-carboxaldehyde and 2,3,5,6-tetrafluoro-1,4-benzenedimethanamine (yield 83%). Colorless block single crystals (m.p. 465.1–465.3 K) suitable for X-ray analysis were obtained by slow evaporation of a methanolic solution at room temperature. Analysis calculated for C20H18F4N4: C 61.54, H 4.62, N 14.36%; found: C 62.26, H 3.64, N 14.45%. IR (KBr pellet, cm-1): 3445 (b), 3087 (m), 3018 (m), 2922 (m), 2868 (m), 1639 (s), 1586 (s), 1568 (s), 1489 (s), 1470 (s), 1436 (m), 1372 (m), 1335 (m), 1275 (m), 1211 (m), 1148 (w), 1063 (s), 1013 (m), 987 (s), 892 (s), 776 (s), 742 (m), 697 (m), 621 (w), 590 (m), 509 (m), 413 (w).

Refinement top

H atoms were assigned to calculated positions, with C—H = 0.97 (methylene) and 0.93 Å (aromatic), and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (A) 2 - x, - y, - z].
[Figure 2] Fig. 2. A packing diagram of the title molecule (Dashed lines indicate hydrogen bonds).
2,3,5,6-Tetrafluoro-1,4-bis(2-pyridylmethyleneaminomethyl)benzene top
Crystal data top
C20H14F4N4F(000) = 396
Mr = 386.35Dx = 1.474 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3894 reflections
a = 9.637 (3) Åθ = 2.6–27.2°
b = 7.783 (3) ŵ = 0.12 mm1
c = 12.070 (4) ÅT = 296 K
β = 105.940 (4)°Block, colorless
V = 870.5 (5) Å30.26 × 0.24 × 0.22 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2014 independent reflections
Radiation source: fine-focus sealed tube1341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.963, Tmax = 0.974k = 1010
7194 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.1642P]
where P = (Fo2 + 2Fc2)/3
2014 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C20H14F4N4V = 870.5 (5) Å3
Mr = 386.35Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.637 (3) ŵ = 0.12 mm1
b = 7.783 (3) ÅT = 296 K
c = 12.070 (4) Å0.26 × 0.24 × 0.22 mm
β = 105.940 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2014 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1341 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.974Rint = 0.037
7194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
2014 reflectionsΔρmin = 0.16 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6996 (3)0.1926 (3)0.52870 (19)0.0733 (6)
H10.73260.22860.60490.088*
C20.5633 (3)0.2358 (3)0.4693 (2)0.0781 (7)
H20.50470.29810.50440.094*
C30.5132 (2)0.1855 (3)0.3558 (2)0.0761 (7)
H30.42010.21270.31280.091*
C40.6041 (2)0.0941 (3)0.30767 (18)0.0624 (5)
H40.57340.05910.23110.075*
C50.74130 (19)0.0548 (2)0.37431 (15)0.0482 (4)
C60.8435 (2)0.0426 (2)0.32794 (16)0.0507 (4)
H60.93250.07380.37700.061*
C70.9207 (2)0.1847 (3)0.18519 (18)0.0643 (6)
H7A0.88120.29640.15770.077*
H7B1.00530.20240.24960.077*
C80.9627 (2)0.0904 (2)0.08987 (16)0.0538 (5)
C91.0951 (2)0.0132 (3)0.10554 (16)0.0547 (5)
C101.1317 (2)0.0740 (2)0.01844 (18)0.0556 (5)
F11.19419 (14)0.02363 (18)0.20914 (11)0.0756 (4)
F21.26344 (13)0.14574 (17)0.04184 (11)0.0762 (4)
N10.79039 (18)0.1014 (2)0.48488 (14)0.0622 (5)
N20.81318 (17)0.0848 (2)0.22290 (14)0.0567 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0789 (15)0.0860 (16)0.0611 (12)0.0097 (13)0.0293 (11)0.0086 (11)
C20.0766 (15)0.0762 (16)0.0951 (18)0.0164 (12)0.0465 (13)0.0028 (13)
C30.0537 (11)0.0797 (16)0.0951 (18)0.0162 (11)0.0207 (11)0.0089 (13)
C40.0584 (11)0.0667 (13)0.0620 (12)0.0040 (10)0.0161 (9)0.0002 (10)
C50.0519 (10)0.0463 (10)0.0503 (10)0.0013 (8)0.0206 (8)0.0049 (8)
C60.0498 (10)0.0523 (11)0.0539 (10)0.0006 (8)0.0207 (8)0.0059 (8)
C70.0798 (13)0.0555 (12)0.0732 (13)0.0025 (10)0.0472 (11)0.0011 (10)
C80.0672 (12)0.0464 (11)0.0597 (11)0.0007 (9)0.0373 (10)0.0084 (8)
C90.0618 (11)0.0549 (11)0.0537 (10)0.0018 (9)0.0267 (9)0.0124 (8)
C100.0577 (11)0.0512 (11)0.0688 (12)0.0102 (9)0.0354 (10)0.0153 (9)
F10.0769 (8)0.0893 (10)0.0619 (8)0.0030 (7)0.0213 (6)0.0061 (6)
F20.0663 (7)0.0819 (9)0.0898 (9)0.0222 (6)0.0376 (7)0.0141 (7)
N10.0599 (10)0.0747 (11)0.0535 (9)0.0079 (8)0.0179 (7)0.0038 (8)
N20.0602 (9)0.0624 (10)0.0566 (9)0.0033 (8)0.0316 (7)0.0011 (7)
Geometric parameters (Å, º) top
C1—N11.343 (3)C6—H60.9300
C1—C21.355 (3)C7—N21.464 (2)
C1—H10.9300C7—C81.511 (3)
C2—C31.378 (3)C7—H7A0.9700
C2—H20.9300C7—H7B0.9700
C3—C41.375 (3)C8—C91.375 (3)
C3—H30.9300C8—C10i1.379 (3)
C4—C51.380 (3)C9—F11.351 (2)
C4—H40.9300C9—C101.376 (3)
C5—N11.338 (2)C10—F21.344 (2)
C5—C61.470 (3)C10—C8i1.379 (3)
C6—N21.264 (2)
N1—C1—C2124.4 (2)N2—C7—C8109.82 (16)
N1—C1—H1117.8N2—C7—H7A109.7
C2—C1—H1117.8C8—C7—H7A109.7
C1—C2—C3118.6 (2)N2—C7—H7B109.7
C1—C2—H2120.7C8—C7—H7B109.7
C3—C2—H2120.7H7A—C7—H7B108.2
C4—C3—C2118.5 (2)C9—C8—C10i115.87 (17)
C4—C3—H3120.7C9—C8—C7122.69 (19)
C2—C3—H3120.7C10i—C8—C7121.43 (18)
C3—C4—C5119.2 (2)F1—C9—C8119.61 (17)
C3—C4—H4120.4F1—C9—C10118.19 (18)
C5—C4—H4120.4C8—C9—C10122.21 (19)
N1—C5—C4122.76 (18)F2—C10—C9118.03 (19)
N1—C5—C6115.41 (16)F2—C10—C8i120.04 (17)
C4—C5—C6121.82 (18)C9—C10—C8i121.93 (18)
N2—C6—C5121.41 (17)C5—N1—C1116.50 (17)
N2—C6—H6119.3C6—N2—C7117.46 (17)
C5—C6—H6119.3
N1—C1—C2—C30.8 (4)C10i—C8—C9—C100.5 (3)
C1—C2—C3—C40.2 (4)C7—C8—C9—C10179.29 (17)
C2—C3—C4—C50.5 (4)F1—C9—C10—F20.8 (3)
C3—C4—C5—N10.3 (3)C8—C9—C10—F2179.80 (16)
C3—C4—C5—C6179.96 (19)F1—C9—C10—C8i179.86 (16)
N1—C5—C6—N2175.63 (17)C8—C9—C10—C8i0.5 (3)
C4—C5—C6—N24.7 (3)C4—C5—N1—C11.2 (3)
N2—C7—C8—C9108.5 (2)C6—C5—N1—C1179.09 (18)
N2—C7—C8—C10i70.3 (2)C2—C1—N1—C51.5 (4)
C10i—C8—C9—F1179.83 (16)C5—C6—N2—C7178.80 (16)
C7—C8—C9—F11.3 (3)C8—C7—N2—C6122.2 (2)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F2ii0.932.533.370 (3)151
Symmetry code: (ii) x1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H14F4N4
Mr386.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.637 (3), 7.783 (3), 12.070 (4)
β (°) 105.940 (4)
V3)870.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.26 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.963, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
7194, 2014, 1341
Rint0.037
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.151, 1.05
No. of reflections2014
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F2i0.93002.53003.370 (3)151.00
Symmetry code: (i) x1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center for Testing and Analysis at Yangzhou University for support.

References

First citationBarboiu, M., Petit, E., Van d Lee, A. & Vaughan, G. (2006). Inorg. Chem. 45, 484–486.  Google Scholar
First citationBruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaga, M. & Koizumi, K. (1985). Inorg. Chim. Acta, 104, 47–50.  CrossRef CAS Web of Science Google Scholar
First citationKeegan, J., Kruger, P. E., Nieuwenhuyzen, M. & Martin, N. (2002). Cryst. Growth Des. 2, 329–332.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYue, Y. F., Gao, E. Q., Bai, S. Q., He, Z. & Yan, C. H. (2004). CrystEngComm, 6, 549–555.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds