metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m228-m229

Bis(2,2′-bi­pyridine){ethyl 4′-[N-(4-carbamoylphen­yl)carbamo­yl]-2,2′-bi­pyridine-4-carboxyl­ate}ruthenium(II) bis­­[hexa­fluorido­phosphate(V)]

aDepartment of Chemistry, Faculty of Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
*Correspondence e-mail: ksakai@chem.kyushu-univ.jp

(Received 19 November 2008; accepted 19 January 2009; online 28 January 2009)

In the title compound, [Ru(C10H8N2)2(C21H18N4O4)](PF6)2, the RuII complex cation reveals a slightly distorted octa­hedral coordination. The coordination bonds of the 4,4′-substituted bipyridyl donors [Ru—N = 2.038 (3) and 2.051 (3) Å] are shorter than those of the 2,2′-bipyridyl donors [Ru—N1 = 2.065 (3)–2.077 (3) Å], due to the electron-withdrawing effects of the substituents at the 4,4′-positions. The angles between the pyridyl planes of the three bipyridyl ligands are 1.5 (2), 6.3 (3) and 8.7 (2)°, respectively. The cations are connected by anions via N—H⋯F inter­actions.

Related literature

For related literature, see: Gillaizeau-Gauthier et al. (2001[Gillaizeau-Gauthier, I., Odobel, F., Alebbi, M., Argazzi, R., Costa, E., Bignozzi, C. A., Qu, P. & Meyer, G. J. (2001). Inorg. Chem. 40, 6073-6079.]); Ozawa & Sakai (2007[Ozawa, H. & Sakai, K. (2007). Chem. Lett. 36, 920-921.]); Ozawa et al. (2006[Ozawa, H., Haga, M. & Sakai, K. (2006). J. Am. Chem. Soc. 128, 4926-4927.], 2007[Ozawa, H., Yokoyama, Y., Haga, M. & Sakai, K. (2007). Dalton Trans. pp. 1197-1206.]); Sakai & Ozawa (2007[Sakai, K. & Ozawa, H. (2007). Coord. Chem. Rev. 251, 2753-2766.]); Sakai et al. (1993[Sakai, K., Kizaki, Y., Tsubomura, T. & Matumoto, K. (1993). J. Mol. Catal. 79, 141-152.]). For discussion of attractive inter­actions between negatively-charged atoms and alpha C atoms from heterocyclic rings, see: Schottel et al. (2008[Schottel, B. L., Chifotides, H. T. & Dunbar, K. R. (2008). Chem. Soc. Rev. 37, 68-83.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C10H8N2)2(C21H18N4O4)](PF6)2

  • Mr = 1093.77

  • Monoclinic, P 21 /c

  • a = 18.400 (3) Å

  • b = 13.187 (2) Å

  • c = 18.863 (3) Å

  • β = 111.344 (2)°

  • V = 4262.9 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 100 (s.u.?) K

  • 0.20 × 0.10 × 0.03 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.717, Tmax = 0.986

  • 23329 measured reflections

  • 9357 independent reflections

  • 6405 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.00

  • 9357 reflections

  • 614 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

Ru1—N1 2.077 (3)
Ru1—N2 2.070 (3)
Ru1—N3 2.076 (3)
Ru1—N4 2.065 (3)
Ru1—N5 2.051 (3)
Ru1—N6 2.038 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯F2i 0.86 2.34 3.181 (4) 168
N8—H8B⋯F10i 0.86 2.29 2.999 (5) 139
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: KENX (Sakai, 2004[Sakai, K. (2004). KENX. Kyushu University, Japan.]); software used to prepare material for publication: SHELXL97, TEXSAN (Molecular Structure Corporation, 2001[Molecular Structure Corporation (2001). TEXSAN. MSC, The Woodlands, Texas, USA.]), KENX and ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]).

Supporting information


Comment top

Continuous efforts have been made to elucidate the molecular catalysis of platinum(II) complexes in photochemical hydrogen production from water (Sakai et al., 1993; Sakai & Ozawa, 2007; Ozawa et al., 2007; Ozawa & Sakai, 2007). The results obtained so far suggest that destabilization of the HOMO, which generally corresponds to the filled PtII dz2 orbital, gives rise to the higher H2-evolving activity of the complexes (Sakai & Ozawa, 2007). It has also been ascertained that the amidate-bridged dinuclear platinum(II) complexes having a strong metal–metal interaction exhibit considerably higher H2-evolving activity in comparison with the mononuclear complexes, which has been attributed to their highly destabilized HOMOs arising from the anti-bonding couple of the filled PtII dz2 orbitals (Sakai & Ozawa, 2007). Moreover, the first effective model of a `photo-hydrogen-evolving' molecular device possessing both a light-harvesting capability and an H2-evolving activity was developed in our group (Ozawa & Sakai, 2006). Since this molecular device is made up of a photosensitizing tris(2,2'-bipyridine)ruthenium(II) derivative and a mononuclear (4-carbamoyl-4'-carboxy-2,2'-bipyridine)dichloroplatinum(II) fragment, it is important to develop an amidate-bridged diplatinum(II) complex tethered to tris(2,2'-bipyridine)ruthenium(II) photosensitizers. In order to develop such systems, tris(2,2'-bipyridine)ruthenium(II) derivatives having an uncoordinated amide group must be prepared as a synthetic precursor. The title compound has been prepared as one of such precursor compounds. The actual application of this complex ligand will be separately reported elsewhere.

In (I) (Fig. 1), the coordination bonds from the 4,4'-substituted bipyridine ligand [Ru1—N5 = 2.051 (3) and Ru1—N6 = 2.038 (3) Å] are meaningfully shorter than those from the non-substituted 2,2'-bipyridine ligands [Ru1—N1 = 2.077 (3), Ru1—N2 = 2.070 (3), Ru1—N3 = 2.076 (3), and Ru1—N4 = 2.065 (3) Å] (Table 1). This can be interpreted in terms of the stronger backdonation in the former bonds due to the electron-withdrawing effects of the carbamoyl and ethoxycarbonyl groups in the 4,4'-substituted bipyridyl ligand.

All the three bipyridyl units do not form a planar geometry but the two pyridyl planes within each bipyridyl unit are tilted with each other as follows. Two pyridyl planes consisting of N1C5 and N2C10 are only slightly tilted at an angle of 1.5 (2)°. On the other hand, the dihedral angles between the N3C15 and N4C20 planes and that between the N5C25 and N6-C30 planes are somewhat larger: 6.3 (3) and 8.7 (2)°, respectively. The six-atom r.m.s. deviations given in the best-plane calculations for the N1C5, N2C10, N3C15, N4C20, N5C25, and N6C30 planes are 0.0053, 0.0038, 0.0079, 0.0019, 0.0181, and 0.0129, respectively.

On the other hand, the plane defined by atoms C31, O1, and O2 from the ethoxycarbonyl unit is slightly tilted with respect to the connecting pyridyl plane (N5C25) at an angle of 4.5 (4)°. The carbamoyl plane defined with atoms C34, O3, and N7 is even more tilted with respect to the connecting pyridyl plane (N6C30) at an angle of 15.1 (5)°. The aromatic plane consisting of atoms C35—C40 is tilted with respect to the above-mentioned carbamoyl unit (C34/O3/N7) at an angle of 26.6 (3)°, where the six-atom r.m.s. deviation given in the best-plane calculation for the C35–C40 plane was 0.0056. The C35–C40 plane is also tilted with regard to the terminal carbamoyl unit (C41/O4/N8) at an angle of 7.9 (2)°.

The crystal packing is stabilized with van der Waals interactions with contributions of the hydrogen bonds formed between the F atoms of PF6- and the N—H units of carbamoyl groups (Table 2). Short intermolecular contacts [F4—C11 = 2.965 (4) Å and F3—C10 = 2.946 (5) Å] may be assigned as relatively weak hydrogen bonds. The other two short intermolecular contacts [O4—C1 = 2.974 (6) Å and O4—C26 = 3.010 (5) Å] may be due to attractive interactions between negatively-charged atoms and alpha C atoms from heterocyclic rings (Schottel et al., 2008).

Related literature top

For related literature, see: Gillaizeau-Gauthier et al. (2001); Ozawa & Sakai (2006, 2007); Ozawa et al. (2006, 2007); Sakai & Ozawa (2007); Sakai et al. (1993). For discussion of attractive interactions between negatively-charged atoms and alpha C atoms from heterocyclic rings, see: Schottel et al. (2008). [Please check added text]

Experimental top

As described below, the ligand L was synthesized in three steps and was finally reacted with cis-RuCl2(bpy)2.2H2O to give the final product (I).

First, 4,4'-diethoxycarbonyl-2,2'-bipyridine was prepared according to the literature (Gillaizeau-Gauthier et al., 2001).

Next, 4-carboxy-4'-ethoxycarbonyl-2,2'-bipyridine monohydrate was prepared from the partial hydrolysis of 4,4'-diethoxycarbonyl-2,2'-bipyridine as follows. To a solution of 4,4'-diethoxycarbonyl-2,2'-bipyridine (1.50 g, 5.0 mmol) in absolute dichloromethane (200 ml) was dropwisely added a solution of potassium hydroxide (0.23 g, 5.00 mmol) in ethanol (50 ml) at 273 K over 1 h. This procedure was carried out under Ar atmosphere. The reaction mixture was further stirred for 1 d, during which the temperature of the solution was gradually raised to room temperature. The colourless solid precipitated was collected by filtration and washed with ethyl acetate. The ethyl acetate washing was evaporated to dryness to collect the unreacted 4,4'-diethoxycarbonyl-2,2'-bipyridine (0.525 g, 35%). The colourless precipitate was re-dissolved in water and acidified by 1 N hydrochloric acid to give the product as a colourless solid, which was collected by filtration and dried in vacuo (yield 0.812 g, 60%). Anal. Calcd for C14N2H14O5: C, 57.92; H, 4.86; N, 9.65. Found: C, 57.27; H, 4.68; N, 9.67. 1H NMR (300.27 MHz, d-DMSO): δ 1.38 (t, 3H, J = 7.0 Hz), 4.42 (q, 2H, J = 7.0 Hz), 7.93 (m, 2H), 8.84 (s, 2H), 8.93 (t, 2H, J = 4.6 Hz), 13.84 (s, 1H).

As the final step in the synthesis of ligand L, 4-carboxy-4'-ethoxycarbonyl-2,2'-bipyridine monohydrate (397 mg, 1.46 mmol), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC.HCl, 337 mg, 1.76 mmol) and 1-hydroxybenzotriazole (HOBT.H2O, 280 mg, 1.77 mmol) were dissolved in DMF (dimethylformamide) (40 ml). To a solution of 4-aminobenzamide (235 mg, 1.72 mmol) and N-methylmorpholine (0.3 ml) in DMF (20 ml) was dropwisely added the former solution at 273 K over 20 min. The reaction mixture was further stirred for 1 d in Ar, during which the temperature of the mixture was gradually raised to room temperature. The reaction mixture was then evaporated to a total volume of 5 ml followed by addition of water (200 ml). The white solid precipitated was collected by filtration and washed with water (20 ml), with an aqueous 5% NaHCO3 solution (20 ml), with an aqueous 5% citric acid solution (20 ml), and finally with water (20 ml). The white solid was dried in vacuo (yield 208 mg, 36.5%). The washing from the aqueous 5% NaHCO3 solution was acidified by HCl to give the unreacted starting bpy derivative (147.3 mg 37.1%). Anal. Calcd for L, C21H18N4O4: C, 64.61; H, 4.65; N, 14.35. Found: C, 64.17; H, 4.84; N, 13.89. 1H NMR (300.27 MHz, d-DMSO): δ 1.39 (t, 3H), 4.42 (q, 2H), 7.31 (s, broad), 7.87 (s, broad), 7.90 (s, 4H), 7.96 (d, 1H), 8.00 (d, 1H), 8.89 (d, 2H), 8.97 (t, 2H), 10.96 (s, 1H).

Compound (I) [RuL(bpy)2](PF6)2 was prepared as follows. A solution of ligand L (0.396 g, 1.02 mmol) and cis-RuCl2(bpy)2.2H2O (0.545, 1.05 mmol) in ethanol (150 ml) was refluxed for 12 h followed by filtration for the removal of insoluble materials. The filtrate was evaporated to dryness. The residue was redissolved in water (2–3 ml) followed by filtration for the removal of insoluble materials. To the filtrated was added an aqueous saturated NH4PF6 solution (2 ml). The dark red solid precipitated was collected by filtration and washed with a minimum amount of cold water. The crude product (1.08 g) was recrystallized twice from a 1:1 mixture of ethanol and water (yield, 0.60 g, 55%). Anal. Calcd for [RuL(bpy)2](PF6)2, C41H34N8O4RuP2F12: C, 45.02; H, 3.13; N, 10.24. Found: C, 44.95; H, 3.25; N, 10.18. 1H NMR (300.27 MHz, CD3CN): δ 1.40 (t, 3H, J = 7.0 Hz), 4.46 (q, 2H, J = 7.0 Hz), 5.98 (s, broad, 1H), 6.74 (s, broad, 1H) 7.42 (m, 4H), 7.71 (t, 4H, J = 5.5 Hz), 7.84 (m, 2H), 7.88 (s, 4H), 7.95 (d, 1H, J = 5.8 Hz), 7.96 (d, 1H, J = 5.8 Hz), 8.09 (m, 4H), 8.52 (d, 4H, J = 7.7 Hz), 9.03 (s, 2H), 9.10 (s, 2H), 9.30 (s, 1H). ESI-TOF MS (m/z): 402 ([RuL(bpy)2]2+), 949 ({[RuL(bpy)2](PF6)}+).

Refinement top

All H atoms were placed in idealized positions (methyl C—H = 0.96 Å, methylene C—H = 0.97 Å, aromatic C—H = 0.95 Å, and amide N—H = 0.86 Å), and included in the refinement in a riding-model approximation, with Uiso(H) = 1.5Ueq(methyl C) and Uiso(H) = 1.2Ueq(methylene C, aromatic C, and amide N). In the final difference Fourier map, the highest peak was located 0.88 Å from atom Ru1. The deepest hole was located 0.47 Å from atom P1.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: KENX (Sakai, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), TEXSAN (Molecular Structure Corporation, 2001), KENX (Sakai, 2004) and ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the complex cation and anions showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The ligand L.
Bis(2,2'-bipyridine){ethyl 4'-[N-(4-carbamoylphenyl)carbamoyl]-2,2'-bipyridine-4- carboxylate}ruthenium(II) bis[hexafluoridophosphate(V)] top
Crystal data top
[Ru(C10H8N2)2(C21H18N4O4)](PF6)2F(000) = 2200
Mr = 1093.77Dx = 1.704 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7706 reflections
a = 18.400 (3) Åθ = 2.2–27.5°
b = 13.187 (2) ŵ = 0.55 mm1
c = 18.863 (3) ÅT = 100 K
β = 111.344 (2)°Block, red
V = 4262.9 (11) Å30.2 × 0.1 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9357 independent reflections
Radiation source: rotating anode with a mirror focusing unit6405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 27.1°, θmin = 2.2°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 2319
Tmin = 0.717, Tmax = 0.986k = 1616
23329 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0524P)2 + 2.5961P]
where P = (Fo2 + 2Fc2)/3
9357 reflections(Δ/σ)max = 0.001
614 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Ru(C10H8N2)2(C21H18N4O4)](PF6)2V = 4262.9 (11) Å3
Mr = 1093.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.400 (3) ŵ = 0.55 mm1
b = 13.187 (2) ÅT = 100 K
c = 18.863 (3) Å0.2 × 0.1 × 0.03 mm
β = 111.344 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9357 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
6405 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.986Rint = 0.047
23329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.00Δρmax = 0.79 e Å3
9357 reflectionsΔρmin = 0.48 e Å3
614 parameters
Special details top

Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 12.7740 (0.0188) x - 4.2078 (0.0170) y + 16.1006 (0.0145) z = 0.0050 (0.0090)

* -0.0058 (0.0021) N1 * 0.0092 (0.0023) C1 * -0.0056 (0.0026) C2 * -0.0010 (0.0026) C3 * 0.0042 (0.0024) C4 * -0.0009 (0.0022) C5

Rms deviation of fitted atoms = 0.0053

-12.4144 (0.0196) x - 4.3031 (0.0184) y + 16.2635 (0.0138) z = 0.1580 (0.0125)

Angle to previous plane (with approximate e.s.d.) = 1.54 (1/5)

* 0.0017 (0.0022) N2 * -0.0044 (0.0023) C6 * 0.0017 (0.0025) C7 * 0.0035 (0.0027) C8 * -0.0061 (0.0027) C9 * 0.0036 (0.0025) C10

Rms deviation of fitted atoms = 0.0038

8.6305 (0.0228) x + 5.1793 (0.0182) y + 10.6773 (0.0218) z = 5.3175 (0.0062)

Angle to previous plane (with approximate e.s.d.) = 85.47 (0.09)

* 0.0065 (0.0022) N3 * 0.0045 (0.0024) C11 * -0.0115 (0.0026) C12 * 0.0077 (0.0027) C13 * 0.0033 (0.0025) C14 * -0.0105 (0.0023) C15

Rms deviation of fitted atoms = 0.0079

9.8523 (0.0240) x + 4.0319 (0.0188) y + 10.1554 (0.0254) z = 5.7461 (0.0068)

Angle to previous plane (with approximate e.s.d.) = 6.28 (0.26)

* 0.0018 (0.0023) N4 * -0.0026 (0.0024) C16 * 0.0007 (0.0026) C17 * 0.0019 (0.0028) C18 * -0.0026 (0.0028) C19 * 0.0009 (0.0026) C20

Rms deviation of fitted atoms = 0.0019

5.2914 (0.0916) x - 12.4015 (0.0303) y + 1.2118 (0.0485) z = 1.7169 (0.0084)

Angle to previous plane (with approximate e.s.d.) = 89.47 (0.22)

* 0.0000 (0.0000) C31 * 0.0000 (0.0000) O1 * 0.0000 (0.0000) O2

Rms deviation of fitted atoms = 0.0000

6.6694 (0.0231) x - 12.0776 (0.0072) y + 0.5442 (0.0266) z = 1.6902 (0.0034)

Angle to previous plane (with approximate e.s.d.) = 4.54 (0.40)

* -0.0271 (0.0023) N5 * 0.0077 (0.0025) C21 * 0.0156 (0.0025) C22 * -0.0197 (0.0024) C23 * 0.0005 (0.0024) C24 * 0.0229 (0.0023) C25

Rms deviation of fitted atoms = 0.0181

9.0772 (0.0232) x - 11.3634 (0.0101) y - 1.3032 (0.0274) z = 1.6621 (0.0095)

Angle to previous plane (with approximate e.s.d.) = 8.69 (0.16)

* 0.0155 (0.0024) N6 * -0.0114 (0.0024) C26 * -0.0060 (0.0026) C27 * 0.0191 (0.0026) C28 * -0.0152 (0.0027) C29 * -0.0021 (0.0026) C30

Rms deviation of fitted atoms = 0.0129

5.9317 (0.1164) x - 12.4552 (0.0320) y - 3.3218 (0.1161) z = 0.5112 (0.0477)

Angle to previous plane (with approximate e.s.d.) = 15.10 (0.48)

* 0.0000 (0.0000) C34 * 0.0000 (0.0000) O3 * 0.0000 (0.0000) N7

Rms deviation of fitted atoms = 0.0000

2.1032 (0.0288) x + 12.8237 (0.0053) y + 2.7844 (0.0287) z = 0.1928 (0.0183)

Angle to previous plane (with approximate e.s.d.) = 26.56 (0.29)

* 0.0082 (0.0027) C35 * -0.0073 (0.0028) C36 * 0.0001 (0.0028) C37 * 0.0062 (0.0027) C38 * -0.0054 (0.0027) C39 * -0.0018 (0.0027) C40

Rms deviation of fitted atoms = 0.0056

-0.9384 (0.1032) x - 13.1238 (0.0039) y - 1.1164 (0.1264) z = 1.0753 (0.0983)

Angle to previous plane (with approximate e.s.d.) = 7.87 (0.23)

* 0.0000 (0.0000) C41 * 0.0000 (0.0000) O4 * 0.0000 (0.0000) N8

Rms deviation of fitted atoms = 0.0000

2.1032 (0.0288) x + 12.8237 (0.0053) y + 2.7844 (0.0287) z = 0.1928 (0.0183)

Angle to previous plane (with approximate e.s.d.) = 7.87 (0.23)

* 0.0082 (0.0027) C35 * -0.0073 (0.0028) C36 * 0.0001 (0.0028) C37 * 0.0062 (0.0027) C38 * -0.0054 (0.0027) C39 * -0.0018 (0.0027) C40

Rms deviation of fitted atoms = 0.0056

9.0772 (0.0232) x - 11.3634 (0.0101) y - 1.3032 (0.0274) z = 1.6621 (0.0095)

Angle to previous plane (with approximate e.s.d.) = 40.76 (0.09)

* 0.0155 (0.0024) N6 * -0.0114 (0.0024) C26 * -0.0060 (0.0026) C27 * 0.0191 (0.0026) C28 * -0.0152 (0.0027) C29 * -0.0021 (0.0026) C30

Rms deviation of fitted atoms = 0.0129

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.294461 (16)0.04801 (2)0.250977 (15)0.02158 (8)
P10.35302 (6)0.46905 (8)0.15958 (6)0.0353 (2)
P20.29204 (6)0.62723 (9)0.45315 (6)0.0387 (3)
F10.26565 (15)0.4258 (2)0.12279 (15)0.0540 (7)
F20.32351 (14)0.57383 (17)0.11340 (13)0.0438 (6)
F30.43974 (13)0.51275 (18)0.19471 (13)0.0428 (6)
F40.38170 (15)0.36573 (18)0.20517 (13)0.0478 (6)
F50.37108 (15)0.42579 (18)0.08811 (13)0.0496 (6)
F60.33452 (15)0.51482 (18)0.22961 (13)0.0472 (6)
F70.26997 (18)0.5185 (2)0.47525 (18)0.0704 (9)
F80.37419 (15)0.5834 (2)0.45629 (16)0.0562 (7)
F90.31532 (17)0.7367 (2)0.43274 (16)0.0643 (8)
F100.20992 (15)0.6720 (2)0.44945 (17)0.0688 (8)
F110.25655 (19)0.5986 (3)0.36555 (15)0.0821 (10)
F120.32822 (17)0.6553 (2)0.54043 (14)0.0601 (7)
O10.03074 (15)0.15596 (19)0.04502 (13)0.0319 (6)
O20.06958 (14)0.16271 (19)0.05549 (14)0.0318 (6)
O30.03822 (16)0.1340 (2)0.41695 (15)0.0451 (7)
O40.06524 (18)0.1397 (2)0.73340 (17)0.0510 (8)
N10.24580 (17)0.1913 (2)0.24496 (16)0.0242 (6)
N20.38261 (16)0.1246 (2)0.33484 (16)0.0261 (7)
N30.35294 (16)0.0746 (2)0.17716 (15)0.0232 (6)
N40.35305 (16)0.0874 (2)0.25818 (16)0.0246 (6)
N50.19777 (16)0.0206 (2)0.17421 (15)0.0231 (6)
N60.23667 (16)0.0047 (2)0.31992 (15)0.0240 (6)
N70.14210 (19)0.1138 (2)0.52667 (16)0.0342 (8)
H70.19190.10610.54380.041*
N80.0512 (2)0.1560 (3)0.82715 (18)0.0451 (9)
H8A0.03020.15730.86110.054*
H8B0.10100.16070.84050.054*
C10.1751 (2)0.2201 (3)0.1973 (2)0.0296 (8)
H10.14480.17310.16230.036*
C20.1449 (2)0.3159 (3)0.1975 (2)0.0360 (9)
H20.09610.33350.16260.043*
C30.1892 (2)0.3850 (3)0.2510 (2)0.0396 (10)
H30.17020.44990.25280.048*
C40.2621 (2)0.3569 (3)0.3018 (2)0.0343 (9)
H40.29220.40280.33810.041*
C50.2899 (2)0.2597 (3)0.2982 (2)0.0260 (8)
C60.3667 (2)0.2223 (3)0.3481 (2)0.0272 (8)
C70.4208 (2)0.2798 (3)0.4051 (2)0.0346 (9)
H7A0.40930.34620.41400.042*
C80.4918 (2)0.2374 (3)0.4481 (2)0.0409 (10)
H80.52820.27520.48640.049*
C90.5087 (2)0.1396 (3)0.4345 (2)0.0402 (10)
H90.55660.11060.46270.048*
C100.4523 (2)0.0848 (3)0.3776 (2)0.0328 (9)
H100.46320.01820.36880.039*
C110.3504 (2)0.1599 (3)0.1376 (2)0.0277 (8)
H110.31730.21190.14010.033*
C120.3955 (2)0.1735 (3)0.0931 (2)0.0339 (9)
H120.39150.23290.06540.041*
C130.4458 (2)0.0983 (3)0.0907 (2)0.0344 (9)
H130.47750.10680.06240.041*
C140.4490 (2)0.0100 (3)0.1306 (2)0.0303 (8)
H140.48270.04190.12910.036*
C150.4019 (2)0.0014 (3)0.17289 (19)0.0247 (7)
C160.3991 (2)0.0939 (3)0.21569 (19)0.0267 (8)
C170.4383 (2)0.1823 (3)0.2130 (2)0.0325 (9)
H170.46960.18540.18400.039*
C180.4307 (2)0.2657 (3)0.2536 (2)0.0376 (9)
H180.45690.32550.25230.045*
C190.3840 (2)0.2599 (3)0.2962 (2)0.0379 (9)
H190.37790.31560.32370.045*
C200.3464 (2)0.1700 (3)0.2973 (2)0.0324 (9)
H200.31510.16620.32630.039*
C210.1834 (2)0.0348 (3)0.09948 (19)0.0260 (8)
H210.22170.01620.08060.031*
C220.1148 (2)0.0756 (3)0.04975 (19)0.0264 (8)
H220.10720.08450.00140.032*
C230.05712 (19)0.1033 (2)0.07734 (19)0.0228 (7)
C240.07228 (19)0.0931 (2)0.15475 (18)0.0217 (7)
H240.03500.11270.17470.026*
C250.14324 (19)0.0536 (3)0.20223 (18)0.0220 (7)
C260.16747 (19)0.0442 (3)0.28556 (18)0.0228 (7)
C270.1254 (2)0.0832 (3)0.3282 (2)0.0276 (8)
H270.07840.11680.30400.033*
C280.1542 (2)0.0714 (3)0.40656 (19)0.0271 (8)
C290.2228 (2)0.0174 (3)0.4403 (2)0.0323 (9)
H290.24190.00540.49250.039*
C300.2623 (2)0.0180 (3)0.3961 (2)0.0303 (8)
H300.30890.05280.41970.036*
C310.0182 (2)0.1441 (3)0.0220 (2)0.0260 (8)
C320.1427 (2)0.2112 (3)0.0082 (2)0.0359 (9)
H32A0.13220.27630.01000.043*
H32B0.17020.16890.03550.043*
C330.1909 (2)0.2249 (3)0.0568 (2)0.0429 (10)
H33A0.16120.26120.10220.064*
H33B0.23720.26270.02900.064*
H33C0.20530.15980.07020.064*
C340.1056 (2)0.1108 (3)0.4501 (2)0.0315 (9)
C350.1075 (2)0.1283 (3)0.5818 (2)0.0308 (8)
C360.0286 (2)0.1128 (3)0.5644 (2)0.0378 (9)
H360.00400.09780.51490.045*
C370.0014 (2)0.1198 (3)0.6221 (2)0.0348 (9)
H370.05440.10850.61040.042*
C380.0448 (2)0.1430 (3)0.6962 (2)0.0319 (9)
C390.1243 (2)0.1606 (3)0.7128 (2)0.0348 (9)
H390.15650.17730.76220.042*
C400.1555 (2)0.1530 (3)0.6560 (2)0.0335 (9)
H400.20850.16460.66750.040*
C410.0065 (2)0.1465 (3)0.7539 (2)0.0341 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01934 (14)0.02957 (16)0.01735 (14)0.00295 (12)0.00850 (10)0.00124 (11)
P10.0359 (6)0.0409 (6)0.0276 (5)0.0005 (5)0.0101 (4)0.0018 (4)
P20.0341 (6)0.0527 (7)0.0279 (6)0.0078 (5)0.0097 (5)0.0066 (5)
F10.0469 (16)0.0628 (17)0.0498 (16)0.0160 (12)0.0143 (13)0.0035 (12)
F20.0455 (15)0.0457 (14)0.0387 (14)0.0057 (11)0.0135 (12)0.0049 (10)
F30.0342 (13)0.0524 (15)0.0399 (14)0.0004 (11)0.0113 (11)0.0025 (11)
F40.0603 (17)0.0414 (14)0.0410 (14)0.0030 (12)0.0178 (13)0.0071 (11)
F50.0636 (17)0.0508 (16)0.0392 (14)0.0076 (12)0.0245 (13)0.0018 (11)
F60.0551 (16)0.0537 (15)0.0400 (14)0.0018 (12)0.0258 (13)0.0037 (11)
F70.085 (2)0.0571 (18)0.089 (2)0.0241 (15)0.0552 (19)0.0047 (15)
F80.0436 (16)0.0684 (18)0.0612 (17)0.0038 (13)0.0246 (14)0.0138 (14)
F90.071 (2)0.0601 (18)0.0712 (19)0.0054 (14)0.0375 (16)0.0281 (15)
F100.0386 (16)0.092 (2)0.076 (2)0.0015 (15)0.0206 (15)0.0006 (17)
F110.076 (2)0.119 (3)0.0323 (15)0.0066 (19)0.0030 (15)0.0111 (16)
F120.074 (2)0.0638 (18)0.0302 (13)0.0033 (14)0.0043 (13)0.0000 (12)
O10.0321 (15)0.0444 (16)0.0177 (13)0.0067 (12)0.0075 (11)0.0026 (11)
O20.0277 (14)0.0437 (16)0.0232 (13)0.0095 (11)0.0083 (11)0.0018 (11)
O30.0375 (17)0.075 (2)0.0254 (15)0.0233 (15)0.0148 (13)0.0040 (14)
O40.048 (2)0.075 (2)0.0376 (17)0.0021 (16)0.0254 (16)0.0076 (15)
N10.0264 (16)0.0279 (16)0.0231 (15)0.0044 (12)0.0149 (13)0.0010 (12)
N20.0201 (15)0.0392 (18)0.0212 (15)0.0069 (13)0.0102 (13)0.0022 (12)
N30.0225 (15)0.0300 (17)0.0166 (14)0.0072 (12)0.0066 (12)0.0024 (11)
N40.0213 (15)0.0286 (16)0.0228 (15)0.0019 (12)0.0066 (12)0.0000 (12)
N50.0227 (15)0.0296 (17)0.0181 (14)0.0035 (12)0.0088 (12)0.0030 (11)
N60.0240 (16)0.0301 (16)0.0187 (15)0.0019 (12)0.0088 (12)0.0007 (12)
N70.0313 (18)0.052 (2)0.0209 (16)0.0144 (15)0.0118 (14)0.0006 (14)
N80.047 (2)0.072 (3)0.0225 (18)0.0069 (18)0.0205 (17)0.0020 (16)
C10.0241 (19)0.039 (2)0.0270 (19)0.0012 (16)0.0113 (16)0.0035 (16)
C20.030 (2)0.041 (2)0.039 (2)0.0045 (18)0.0141 (19)0.0054 (18)
C30.042 (3)0.036 (2)0.049 (3)0.0061 (18)0.026 (2)0.0044 (18)
C40.038 (2)0.035 (2)0.035 (2)0.0044 (17)0.0192 (19)0.0051 (17)
C50.0273 (19)0.031 (2)0.0248 (19)0.0051 (15)0.0161 (16)0.0002 (14)
C60.028 (2)0.037 (2)0.0233 (18)0.0071 (16)0.0172 (16)0.0057 (15)
C70.033 (2)0.043 (2)0.032 (2)0.0116 (17)0.0164 (18)0.0117 (17)
C80.029 (2)0.065 (3)0.029 (2)0.014 (2)0.0116 (18)0.0170 (19)
C90.024 (2)0.063 (3)0.031 (2)0.0044 (19)0.0069 (17)0.0087 (19)
C100.025 (2)0.047 (2)0.028 (2)0.0003 (17)0.0110 (16)0.0025 (17)
C110.029 (2)0.029 (2)0.0257 (19)0.0028 (15)0.0111 (16)0.0026 (15)
C120.037 (2)0.037 (2)0.032 (2)0.0074 (17)0.0170 (18)0.0010 (16)
C130.034 (2)0.044 (2)0.031 (2)0.0093 (18)0.0193 (18)0.0002 (17)
C140.027 (2)0.039 (2)0.028 (2)0.0009 (16)0.0133 (16)0.0057 (16)
C150.0215 (18)0.032 (2)0.0191 (17)0.0036 (15)0.0059 (15)0.0048 (14)
C160.0234 (19)0.036 (2)0.0192 (18)0.0033 (15)0.0057 (15)0.0044 (15)
C170.032 (2)0.039 (2)0.027 (2)0.0024 (17)0.0118 (17)0.0041 (16)
C180.041 (2)0.033 (2)0.035 (2)0.0064 (18)0.0092 (19)0.0026 (17)
C190.041 (2)0.035 (2)0.038 (2)0.0015 (18)0.0141 (19)0.0076 (17)
C200.032 (2)0.034 (2)0.031 (2)0.0028 (16)0.0105 (17)0.0042 (16)
C210.0257 (18)0.035 (2)0.0215 (17)0.0024 (15)0.0132 (15)0.0013 (14)
C220.029 (2)0.035 (2)0.0182 (17)0.0023 (15)0.0119 (15)0.0032 (14)
C230.0239 (18)0.0220 (18)0.0227 (18)0.0014 (14)0.0087 (15)0.0003 (13)
C240.0218 (18)0.0244 (18)0.0208 (17)0.0014 (14)0.0102 (14)0.0005 (13)
C250.0246 (17)0.0242 (18)0.0189 (16)0.0013 (14)0.0099 (14)0.0013 (13)
C260.0219 (17)0.0287 (19)0.0190 (17)0.0008 (15)0.0087 (14)0.0026 (14)
C270.0275 (19)0.034 (2)0.0238 (19)0.0088 (15)0.0118 (16)0.0020 (15)
C280.030 (2)0.033 (2)0.0209 (18)0.0034 (15)0.0115 (16)0.0007 (14)
C290.037 (2)0.043 (2)0.0173 (18)0.0094 (17)0.0108 (16)0.0038 (15)
C300.027 (2)0.044 (2)0.0201 (18)0.0108 (16)0.0078 (15)0.0031 (15)
C310.0248 (19)0.027 (2)0.0241 (19)0.0011 (14)0.0070 (15)0.0018 (14)
C320.027 (2)0.049 (3)0.027 (2)0.0105 (17)0.0040 (17)0.0000 (17)
C330.036 (2)0.055 (3)0.040 (2)0.005 (2)0.016 (2)0.008 (2)
C340.032 (2)0.042 (2)0.0246 (19)0.0125 (17)0.0154 (17)0.0040 (16)
C350.037 (2)0.035 (2)0.0250 (19)0.0136 (17)0.0166 (17)0.0004 (15)
C360.040 (2)0.051 (3)0.025 (2)0.0049 (19)0.0137 (18)0.0051 (17)
C370.032 (2)0.043 (2)0.031 (2)0.0001 (17)0.0130 (18)0.0044 (17)
C380.044 (2)0.033 (2)0.0236 (19)0.0080 (17)0.0173 (18)0.0026 (15)
C390.039 (2)0.042 (2)0.0223 (19)0.0121 (18)0.0102 (18)0.0018 (16)
C400.033 (2)0.039 (2)0.027 (2)0.0105 (17)0.0085 (17)0.0013 (16)
C410.039 (2)0.037 (2)0.028 (2)0.0061 (18)0.0153 (18)0.0008 (16)
Geometric parameters (Å, º) top
Ru1—N12.077 (3)C9—C101.392 (5)
Ru1—N22.070 (3)C9—H90.9300
Ru1—N32.076 (3)C10—H100.9300
Ru1—N42.065 (3)C11—C121.389 (5)
Ru1—N52.051 (3)C11—H110.9300
Ru1—N62.038 (3)C12—C131.369 (5)
P1—F41.595 (2)C12—H120.9300
P1—F31.596 (2)C13—C141.376 (5)
P1—F61.598 (2)C13—H130.9300
P1—F51.606 (2)C14—C151.384 (5)
P1—F11.606 (3)C14—H140.9300
P1—F21.618 (2)C15—C161.474 (5)
P2—F121.579 (3)C16—C171.381 (5)
P2—F111.585 (3)C17—C181.376 (5)
P2—F71.587 (3)C17—H170.9300
P2—F91.592 (3)C18—C191.375 (5)
P2—F81.599 (3)C18—H180.9300
P2—F101.600 (3)C19—C201.376 (5)
O1—C311.210 (4)C19—H190.9300
O2—C311.337 (4)C20—H200.9300
O2—C321.463 (4)C21—C221.380 (5)
O3—C341.208 (4)C21—H210.9300
O4—C411.237 (5)C22—C231.389 (4)
N1—C11.338 (4)C22—H220.9300
N1—C51.373 (4)C23—C241.390 (4)
N2—C101.348 (5)C23—C311.499 (5)
N2—C61.364 (5)C24—C251.388 (4)
N3—C111.341 (4)C24—H240.9300
N3—C151.369 (4)C25—C261.475 (4)
N4—C201.345 (4)C26—C271.401 (4)
N4—C161.364 (4)C27—C281.386 (5)
N5—C211.349 (4)C27—H270.9300
N5—C251.364 (4)C28—C291.386 (5)
N6—C301.351 (4)C28—C341.509 (5)
N6—C261.363 (4)C29—C301.372 (5)
N7—C341.354 (5)C29—H290.9300
N7—C351.415 (4)C30—H300.9300
N7—H70.8600C32—C331.502 (5)
N8—C411.332 (5)C32—H32A0.9700
N8—H8A0.8600C32—H32B0.9700
N8—H8B0.8600C33—H33A0.9600
C1—C21.381 (5)C33—H33B0.9600
C1—H10.9300C33—H33C0.9600
C2—C31.384 (6)C35—C361.384 (5)
C2—H20.9300C35—C401.394 (5)
C3—C41.384 (5)C36—C371.391 (5)
C3—H30.9300C36—H360.9300
C4—C51.392 (5)C37—C381.380 (5)
C4—H40.9300C37—H370.9300
C5—C61.468 (5)C38—C391.399 (5)
C6—C71.394 (5)C38—C411.497 (5)
C7—C81.380 (6)C39—C401.392 (5)
C7—H7A0.9300C39—H390.9300
C8—C91.373 (6)C40—H400.9300
C8—H80.9300
N6—Ru1—N578.87 (11)N3—C11—C12122.5 (3)
N6—Ru1—N495.56 (11)N3—C11—H11118.8
N5—Ru1—N487.86 (11)C12—C11—H11118.8
N6—Ru1—N295.43 (11)C13—C12—C11119.1 (4)
N5—Ru1—N2172.71 (11)C13—C12—H12120.5
N4—Ru1—N297.28 (11)C11—C12—H12120.5
N6—Ru1—N3173.37 (11)C12—C13—C14119.4 (3)
N5—Ru1—N397.42 (11)C12—C13—H13120.3
N4—Ru1—N378.73 (11)C14—C13—H13120.3
N2—Ru1—N388.68 (10)C13—C14—C15119.7 (3)
N6—Ru1—N188.57 (11)C13—C14—H14120.2
N5—Ru1—N196.73 (11)C15—C14—H14120.2
N4—Ru1—N1174.36 (11)N3—C15—C14121.2 (3)
N2—Ru1—N178.46 (12)N3—C15—C16114.8 (3)
N3—Ru1—N197.36 (11)C14—C15—C16124.0 (3)
F4—P1—F390.00 (14)N4—C16—C17121.2 (3)
F4—P1—F690.29 (13)N4—C16—C15115.0 (3)
F3—P1—F690.11 (13)C17—C16—C15123.8 (3)
F4—P1—F591.16 (13)C18—C17—C16119.6 (3)
F3—P1—F589.76 (14)C18—C17—H17120.2
F6—P1—F5178.54 (15)C16—C17—H17120.2
F4—P1—F190.70 (14)C19—C18—C17119.5 (4)
F3—P1—F1179.00 (15)C19—C18—H18120.3
F6—P1—F190.59 (14)C17—C18—H18120.3
F5—P1—F189.52 (14)C18—C19—C20118.7 (4)
F4—P1—F2179.71 (15)C18—C19—H19120.6
F3—P1—F290.23 (13)C20—C19—H19120.6
F6—P1—F289.53 (13)N4—C20—C19122.9 (3)
F5—P1—F289.02 (13)N4—C20—H20118.5
F1—P1—F289.07 (14)C19—C20—H20118.5
F12—P2—F11179.42 (19)N5—C21—C22123.1 (3)
F12—P2—F789.37 (16)N5—C21—H21118.4
F11—P2—F790.63 (19)C22—C21—H21118.4
F12—P2—F989.49 (16)C21—C22—C23118.9 (3)
F11—P2—F990.51 (18)C21—C22—H22120.6
F7—P2—F9178.83 (19)C23—C22—H22120.6
F12—P2—F890.69 (16)C22—C23—C24118.6 (3)
F11—P2—F888.73 (17)C22—C23—C31118.2 (3)
F7—P2—F889.58 (16)C24—C23—C31123.2 (3)
F9—P2—F890.15 (15)C25—C24—C23119.7 (3)
F12—P2—F1089.54 (16)C25—C24—H24120.1
F11—P2—F1091.04 (17)C23—C24—H24120.1
F7—P2—F1090.98 (17)N5—C25—C24121.4 (3)
F9—P2—F1089.30 (16)N5—C25—C26114.0 (3)
F8—P2—F10179.40 (17)C24—C25—C26124.6 (3)
C31—O2—C32116.3 (3)N6—C26—C27121.1 (3)
C1—N1—C5118.4 (3)N6—C26—C25114.5 (3)
C1—N1—Ru1126.1 (2)C27—C26—C25124.4 (3)
C5—N1—Ru1115.4 (2)C28—C27—C26119.6 (3)
C10—N2—C6118.6 (3)C28—C27—H27120.2
C10—N2—Ru1125.3 (3)C26—C27—H27120.2
C6—N2—Ru1116.1 (2)C27—C28—C29118.6 (3)
C11—N3—C15118.1 (3)C27—C28—C34118.0 (3)
C11—N3—Ru1126.4 (2)C29—C28—C34123.2 (3)
C15—N3—Ru1115.4 (2)C30—C29—C28119.4 (3)
C20—N4—C16118.1 (3)C30—C29—H29120.3
C20—N4—Ru1126.0 (2)C28—C29—H29120.3
C16—N4—Ru1115.9 (2)N6—C30—C29123.0 (3)
C21—N5—C25118.0 (3)N6—C30—H30118.5
C21—N5—Ru1126.0 (2)C29—C30—H30118.5
C25—N5—Ru1116.0 (2)O1—C31—O2124.8 (3)
C30—N6—C26118.1 (3)O1—C31—C23123.4 (3)
C30—N6—Ru1125.5 (2)O2—C31—C23111.8 (3)
C26—N6—Ru1116.3 (2)O2—C32—C33107.3 (3)
C34—N7—C35127.4 (3)O2—C32—H32A110.3
C34—N7—H7116.3C33—C32—H32A110.3
C35—N7—H7116.3O2—C32—H32B110.3
C41—N8—H8A120.0C33—C32—H32B110.3
C41—N8—H8B120.0H32A—C32—H32B108.5
H8A—N8—H8B120.0C32—C33—H33A109.5
N1—C1—C2123.5 (4)C32—C33—H33B109.5
N1—C1—H1118.3H33A—C33—H33B109.5
C2—C1—H1118.3C32—C33—H33C109.5
C1—C2—C3118.3 (4)H33A—C33—H33C109.5
C1—C2—H2120.9H33B—C33—H33C109.5
C3—C2—H2120.9O3—C34—N7124.2 (3)
C2—C3—C4119.6 (4)O3—C34—C28120.4 (3)
C2—C3—H3120.2N7—C34—C28115.4 (3)
C4—C3—H3120.2C36—C35—C40120.0 (3)
C3—C4—C5119.6 (4)C36—C35—N7121.3 (3)
C3—C4—H4120.2C40—C35—N7118.6 (3)
C5—C4—H4120.2C35—C36—C37119.1 (4)
N1—C5—C4120.7 (3)C35—C36—H36120.4
N1—C5—C6115.0 (3)C37—C36—H36120.4
C4—C5—C6124.3 (3)C38—C37—C36122.2 (4)
N2—C6—C7120.9 (3)C38—C37—H37118.9
N2—C6—C5114.8 (3)C36—C37—H37118.9
C7—C6—C5124.2 (3)C37—C38—C39118.2 (3)
C8—C7—C6119.4 (4)C37—C38—C41117.6 (4)
C8—C7—H7A120.3C39—C38—C41124.2 (3)
C6—C7—H7A120.3C40—C39—C38120.4 (4)
C9—C8—C7120.0 (4)C40—C39—H39119.8
C9—C8—H8120.0C38—C39—H39119.8
C7—C8—H8120.0C39—C40—C35120.1 (4)
C8—C9—C10118.4 (4)C39—C40—H40120.0
C8—C9—H9120.8C35—C40—H40120.0
C10—C9—H9120.8O4—C41—N8121.1 (4)
N2—C10—C9122.6 (4)O4—C41—C38120.2 (4)
N2—C10—H10118.7N8—C41—C38118.8 (4)
C9—C10—H10118.7
C5—N1—C1—C21.7 (5)C21—N5—C25—C26174.2 (3)
N1—C1—C2—C31.7 (5)C23—C24—C25—N52.6 (5)
C1—C2—C3—C40.7 (6)C23—C24—C25—C26176.7 (3)
C2—C3—C4—C50.3 (5)C30—N6—C26—C272.4 (5)
C1—N1—C5—C40.7 (5)C30—N6—C26—C25178.9 (3)
C1—N1—C5—C6180.0 (3)N5—C25—C26—N66.1 (4)
C3—C4—C5—N10.3 (5)C24—C25—C26—N6174.6 (3)
C3—C4—C5—C6178.9 (3)N5—C25—C26—C27172.6 (3)
C10—N2—C6—C70.5 (5)C24—C25—C26—C276.7 (6)
C10—N2—C6—C5179.2 (3)N6—C26—C27—C280.4 (5)
N1—C5—C6—N20.6 (4)C25—C26—C27—C28179.0 (3)
C4—C5—C6—N2179.8 (3)C26—C27—C28—C292.5 (6)
N1—C5—C6—C7179.1 (3)C26—C27—C28—C34177.6 (3)
C4—C5—C6—C70.2 (5)C27—C28—C29—C303.4 (6)
N2—C6—C7—C80.5 (5)C34—C28—C29—C30178.2 (4)
C5—C6—C7—C8179.1 (3)C26—N6—C30—C291.5 (6)
C6—C7—C8—C90.3 (6)C28—C29—C30—N61.4 (6)
C7—C8—C9—C101.0 (6)C32—O2—C31—O16.9 (5)
C6—N2—C10—C90.3 (5)C32—O2—C31—C23174.8 (3)
C8—C9—C10—N21.0 (6)C22—C23—C31—O11.5 (5)
C15—N3—C11—C120.1 (5)C24—C23—C31—O1177.7 (3)
N3—C11—C12—C131.6 (6)C22—C23—C31—O2176.9 (3)
C11—C12—C13—C141.9 (6)C24—C23—C31—O24.0 (5)
C12—C13—C14—C150.5 (6)C31—O2—C32—C33179.9 (3)
C11—N3—C15—C141.6 (5)C35—N7—C34—O310.7 (7)
C11—N3—C15—C16177.9 (3)C35—N7—C34—C28166.9 (3)
C13—C14—C15—N31.3 (5)C27—C28—C34—O313.6 (6)
C13—C14—C15—C16178.1 (3)C29—C28—C34—O3161.2 (4)
C20—N4—C16—C170.4 (5)C27—C28—C34—N7168.7 (3)
C20—N4—C16—C15178.5 (3)C29—C28—C34—N716.4 (6)
N3—C15—C16—N45.1 (4)C34—N7—C35—C3618.7 (6)
C14—C15—C16—N4175.5 (3)C34—N7—C35—C40165.0 (4)
N3—C15—C16—C17173.8 (3)C40—C35—C36—C371.5 (6)
C14—C15—C16—C175.6 (6)N7—C35—C36—C37174.7 (4)
N4—C16—C17—C180.3 (5)C35—C36—C37—C380.8 (6)
C15—C16—C17—C18178.5 (3)C36—C37—C38—C390.5 (6)
C16—C17—C18—C190.1 (6)C36—C37—C38—C41178.8 (4)
C17—C18—C19—C200.4 (6)C37—C38—C39—C401.0 (6)
C16—N4—C20—C190.1 (5)C41—C38—C39—C40178.3 (4)
C18—C19—C20—N40.3 (6)C38—C39—C40—C350.2 (6)
C25—N5—C21—C223.7 (5)C36—C35—C40—C391.0 (6)
N5—C21—C22—C230.3 (5)N7—C35—C40—C39175.3 (3)
C21—C22—C23—C242.9 (5)C37—C38—C41—O47.6 (6)
C21—C22—C23—C31177.9 (3)C39—C38—C41—O4173.1 (4)
C22—C23—C24—C251.5 (5)C37—C38—C41—N8171.6 (4)
C31—C23—C24—C25179.3 (3)C39—C38—C41—N87.7 (6)
C21—N5—C25—C245.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···F2i0.862.343.181 (4)168
N8—H8B···F10i0.862.292.999 (5)139
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ru(C10H8N2)2(C21H18N4O4)](PF6)2
Mr1093.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)18.400 (3), 13.187 (2), 18.863 (3)
β (°) 111.344 (2)
V3)4262.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.2 × 0.1 × 0.03
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.717, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
23329, 9357, 6405
Rint0.047
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.00
No. of reflections9357
No. of parameters614
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.48

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), TEXSAN (Molecular Structure Corporation, 2001), KENX (Sakai, 2004) and ORTEPII (Johnson, 1976).

Selected bond lengths (Å) top
Ru1—N12.077 (3)Ru1—N42.065 (3)
Ru1—N22.070 (3)Ru1—N52.051 (3)
Ru1—N32.076 (3)Ru1—N62.038 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···F2i0.862.343.181 (4)167.9
N8—H8B···F10i0.862.292.999 (5)139.3
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This work was in part supported by a Grant-in-Aid for Scientific Research (A) (No. 17205008), a Grant-in-Aid for Specially Promoted Research (No. 18002016), and a Grant-in-Aid for the Global COE Program (`Science for Future Molecular Systems') from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGillaizeau-Gauthier, I., Odobel, F., Alebbi, M., Argazzi, R., Costa, E., Bignozzi, C. A., Qu, P. & Meyer, G. J. (2001). Inorg. Chem. 40, 6073–6079.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation (2001). TEXSAN. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationOzawa, H., Haga, M. & Sakai, K. (2006). J. Am. Chem. Soc. 128, 4926–4927.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOzawa, H. & Sakai, K. (2007). Chem. Lett. 36, 920–921.  Web of Science CrossRef CAS Google Scholar
First citationOzawa, H., Yokoyama, Y., Haga, M. & Sakai, K. (2007). Dalton Trans. pp. 1197–1206.  Web of Science CrossRef Google Scholar
First citationSakai, K. (2004). KENX. Kyushu University, Japan.  Google Scholar
First citationSakai, K., Kizaki, Y., Tsubomura, T. & Matumoto, K. (1993). J. Mol. Catal. 79, 141–152.  CrossRef CAS Google Scholar
First citationSakai, K. & Ozawa, H. (2007). Coord. Chem. Rev. 251, 2753–2766.  Web of Science CrossRef CAS Google Scholar
First citationSchottel, B. L., Chifotides, H. T. & Dunbar, K. R. (2008). Chem. Soc. Rev. 37, 68–83.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m228-m229
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds