supplementary materials


Acta Cryst. (2009). E65, m126    [ doi:10.1107/S1600536808038920 ]

{[mu]-6,6'-Dimethoxy-2,2'-[propane-1,3-diylbis(nitrilomethylidyne)]diphenolato}dimethanoltrinitratonickel(II)samarium(III) methanol disolvate

F. Liu

Abstract top

In the title complex, [NiSm(C19H20N2O4)(NO3)3(CH4O)2]·2CH3OH, the NiII ion is coordinated by two O atoms and two N atoms of a deprotonated Schiff base ligand and by two O atoms of two methanol ligands in a slightly distorted octahedral geometry. The SmIII ion is coordinated by six O atoms from three chelating nitrate ligands and four O atoms from a Schiff base ligand in a distorted bicapped square-antiprismatic environment. In the crystal structure, intermolecular O-H...O hydrogen bonds connect complex molecules and methanol solvent molecules, forming (10\overline{2}) sheets.

Comment top

As shown in Fig. 1, the hexadentate Schiff base ligand links Ni and Sm atoms into a dinuclear complex through two phenolate O atoms, which is similar to the bonding reported for other Nickel-Praseodymium and copper-samarium complexes of the same ligand (Liu & Zhang, 2008 and Wang et al., 2008). The SmIII ion in the title complex is ten-coordinated by four oxygen atoms from the ligand and six oxygen atoms from three nitrate ions. The NiII center is six-coordinate by two nitrogen atoms and two oxygen atoms from the ligand and two methanol oxygen atoms. There are two solvent methanol molecules in the asymmetric unit. In the crystal structure, intermolecular O—H—O hydrogen bonds connect complex molecules and methanol solvent molecules to form (10-2) sheets.

Related literature top

For the isostructural Pr(III) complex, see: Liu & Zhang (2008). For a related Sm(III) complex, see: Wang et al. (2008).

Experimental top

The title complex was obtained by the treatment of nickel(II) acetate tetrahydrate (0.0622 g, 0.25 mmol) with the Schiff base (0.0855 g, 0.25 mmol) in methanol (25 ml) at room temperature. The mixture was refluxed for 3 h after the addition of samarium(III) nitrate hexahydrate (0.1115 g, 0.25 mmol). The reaction mixture was cooled and filtered; diethyl ether was allowed to diffuse slowly into the solution of the filtrate. Blue single crystals were obtained after several days. Analysis calculated for C23H36NiN5O17 Sm: C31.99; H, 4.20; N, 8.11; found: C, 32.01; H, 4.18; N, 8.14

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methylene C), C—H = 0.98 Å (methine C), and with Uiso(H) = 1.2Ueq(C) or C—H = 0.96 Å (methly C) and with Uiso(H) = 1.5Ueq(C). H atoms bonded to O atoms were placed in calculated positions and treated as riding on their parent atoms, with O—H = 0.82-0.85 Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids.
{µ-6,6'-Dimethoxy-2,2'-[propane-1,3- diylbis(nitrilomethylidyne)]diphenolato}dimethanoltrinitratonickel(II) samarium(III) methanol disolvate top
Crystal data top
[NiSm(C19H20N2O4)(NO3)3(CH4O)2]·2CH4OF(000) = 1740
Mr = 863.63Dx = 1.784 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19157 reflections
a = 13.066 (3) Åθ = 3.0–27.5°
b = 11.121 (2) ŵ = 2.48 mm1
c = 22.128 (4) ÅT = 291 K
β = 90.60 (3)°Block, green
V = 3215.2 (11) Å30.21 × 0.20 × 0.18 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7354 independent reflections
Radiation source: fine-focus sealed tube6200 reflections with I > 2σ(I)
graphiteRint = 0.035
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1616
Tmin = 0.619, Tmax = 0.660k = 1214
22609 measured reflectionsl = 2428
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0241P)2 + 2.0539P]
where P = (Fo2 + 2Fc2)/3
7354 reflections(Δ/σ)max = 0.017
430 parametersΔρmax = 0.58 e Å3
18 restraintsΔρmin = 0.38 e Å3
Crystal data top
[NiSm(C19H20N2O4)(NO3)3(CH4O)2]·2CH4OV = 3215.2 (11) Å3
Mr = 863.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.066 (3) ŵ = 2.48 mm1
b = 11.121 (2) ÅT = 291 K
c = 22.128 (4) Å0.21 × 0.20 × 0.18 mm
β = 90.60 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7354 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6200 reflections with I > 2σ(I)
Tmin = 0.619, Tmax = 0.660Rint = 0.035
22609 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.063Δρmax = 0.58 e Å3
S = 1.03Δρmin = 0.38 e Å3
7354 reflectionsAbsolute structure: ?
430 parametersFlack parameter: ?
18 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37696 (19)0.0687 (2)0.09085 (12)0.0307 (6)
C20.4451 (2)0.1483 (3)0.06351 (13)0.0356 (6)
C30.5471 (2)0.1224 (3)0.05614 (15)0.0466 (8)
H30.59020.17730.03760.056*
C40.5847 (2)0.0131 (3)0.07685 (17)0.0531 (9)
H40.65370.00520.07270.064*
C50.5206 (2)0.0671 (3)0.10321 (15)0.0483 (8)
H50.54680.14010.11680.058*
C60.4157 (2)0.0426 (3)0.11042 (13)0.0362 (6)
C70.3549 (2)0.1364 (3)0.13802 (13)0.0394 (7)
H70.38830.20900.14500.047*
C80.2241 (3)0.2432 (3)0.18445 (17)0.0530 (9)
H8A0.25210.24570.22520.064*
H8B0.24990.31270.16290.064*
C90.1098 (3)0.2518 (3)0.18747 (16)0.0505 (8)
H9A0.08210.24810.14670.061*
H9B0.09190.32960.20410.061*
C100.0596 (3)0.1561 (3)0.22451 (16)0.0495 (8)
H10A0.00750.18370.23680.059*
H10B0.10020.14180.26080.059*
C110.0399 (2)0.0033 (3)0.18723 (13)0.0373 (6)
H110.09220.03890.20590.045*
C120.0688 (2)0.1147 (3)0.15761 (12)0.0337 (6)
C130.1738 (2)0.1418 (3)0.15547 (14)0.0419 (7)
H130.22020.08710.17130.050*
C140.2094 (2)0.2461 (3)0.13083 (15)0.0466 (8)
H140.27940.26110.12890.056*
C150.1405 (2)0.3301 (3)0.10859 (14)0.0412 (7)
H150.16400.40220.09230.049*
C160.0381 (2)0.3060 (2)0.11079 (12)0.0320 (6)
C170.00114 (19)0.1967 (2)0.13375 (12)0.0289 (5)
C180.0083 (3)0.5082 (3)0.0866 (2)0.0605 (10)
H18A0.04080.51890.05440.091*
H18B0.06780.55600.07870.091*
H18C0.02130.53290.12410.091*
C190.4551 (3)0.3289 (3)0.00308 (18)0.0585 (10)
H19A0.50730.37340.02420.088*
H19B0.40870.38370.01640.088*
H19C0.48620.27830.02670.088*
C200.1502 (3)0.0970 (4)0.01411 (16)0.0600 (10)
H20A0.21630.06030.01040.090*
H20B0.11020.08130.02170.090*
H20C0.15820.18230.01910.090*
C210.1855 (3)0.1427 (4)0.27373 (18)0.0701 (11)
H21A0.13210.19070.25590.105*
H21B0.23200.19370.29580.105*
H21C0.15610.08510.30080.105*
C220.5326 (4)0.1673 (5)0.2244 (2)0.0843 (14)
H22A0.59150.13580.24530.126*
H22B0.54730.17540.18220.126*
H22C0.47580.11350.22940.126*
C230.5862 (5)0.4994 (6)0.1504 (3)0.121 (2)
H23A0.52580.54530.15890.182*
H23B0.56840.43230.12520.182*
H23C0.63480.54930.13010.182*
N10.26110 (18)0.1320 (2)0.15402 (11)0.0353 (5)
N20.04886 (17)0.0434 (2)0.19060 (11)0.0346 (5)
N30.1429 (2)0.2064 (3)0.04335 (14)0.0541 (7)
N40.2728 (2)0.5403 (3)0.03306 (15)0.0537 (8)
N50.2758 (2)0.3905 (3)0.19970 (14)0.0529 (7)
Ni20.17216 (2)0.01724 (3)0.146022 (15)0.02827 (8)
O10.27952 (13)0.10168 (16)0.09603 (8)0.0311 (4)
O20.40017 (15)0.25598 (19)0.04516 (10)0.0412 (5)
O30.10161 (13)0.17856 (16)0.13255 (9)0.0311 (4)
O40.03661 (14)0.38477 (17)0.09025 (9)0.0385 (5)
O50.08672 (19)0.2286 (3)0.00061 (12)0.0668 (7)
O60.1076 (3)0.1702 (4)0.09119 (14)0.0976 (11)
O70.2361 (2)0.2184 (3)0.03317 (14)0.0818 (9)
O80.2134 (2)0.4692 (2)0.00560 (14)0.0749 (9)
O90.2952 (2)0.6379 (3)0.01348 (17)0.0914 (11)
O100.3109 (3)0.5005 (3)0.07983 (14)0.0843 (9)
O110.33076 (18)0.3210 (2)0.16908 (11)0.0501 (6)
O120.3047 (2)0.4284 (3)0.24826 (14)0.0928 (11)
O130.19013 (18)0.4171 (2)0.17730 (13)0.0656 (7)
O140.09997 (16)0.0488 (2)0.06488 (9)0.0441 (5)
H240.04360.08420.06890.066*
O150.23897 (16)0.0819 (2)0.22773 (9)0.0447 (5)
H250.28430.03900.24480.067*
O160.6290 (3)0.4577 (3)0.20449 (14)0.0923 (10)
H160.59790.39770.21910.138*
O170.5084 (3)0.2774 (3)0.24771 (19)0.1081 (12)
H170.46140.30700.22790.162*
Sm10.216551 (10)0.295997 (12)0.078087 (6)0.02961 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0272 (12)0.0361 (14)0.0289 (14)0.0032 (11)0.0008 (10)0.0050 (11)
C20.0315 (14)0.0414 (16)0.0340 (15)0.0013 (12)0.0020 (11)0.0055 (12)
C30.0281 (14)0.060 (2)0.052 (2)0.0038 (14)0.0049 (13)0.0033 (16)
C40.0284 (15)0.066 (2)0.065 (2)0.0122 (15)0.0047 (14)0.0039 (18)
C50.0380 (16)0.0513 (19)0.056 (2)0.0143 (15)0.0020 (14)0.0043 (16)
C60.0349 (14)0.0387 (15)0.0350 (15)0.0063 (12)0.0006 (12)0.0036 (12)
C70.0478 (17)0.0326 (15)0.0378 (16)0.0100 (13)0.0052 (13)0.0013 (12)
C80.061 (2)0.0345 (16)0.063 (2)0.0054 (16)0.0026 (17)0.0153 (16)
C90.066 (2)0.0296 (14)0.056 (2)0.0134 (16)0.0071 (17)0.0117 (15)
C100.0487 (18)0.0475 (18)0.052 (2)0.0064 (15)0.0076 (15)0.0205 (16)
C110.0372 (15)0.0406 (15)0.0342 (16)0.0120 (13)0.0084 (12)0.0006 (12)
C120.0313 (13)0.0396 (15)0.0304 (14)0.0026 (12)0.0035 (11)0.0020 (12)
C130.0279 (14)0.0530 (19)0.0450 (18)0.0065 (13)0.0058 (12)0.0022 (14)
C140.0253 (14)0.063 (2)0.051 (2)0.0048 (14)0.0001 (13)0.0014 (16)
C150.0335 (14)0.0459 (17)0.0443 (18)0.0093 (13)0.0002 (12)0.0002 (14)
C160.0300 (13)0.0355 (14)0.0305 (14)0.0001 (11)0.0000 (10)0.0018 (11)
C170.0274 (12)0.0330 (14)0.0264 (13)0.0004 (11)0.0002 (10)0.0051 (11)
C180.051 (2)0.0308 (16)0.100 (3)0.0085 (15)0.0126 (19)0.0023 (18)
C190.053 (2)0.0515 (19)0.071 (3)0.0058 (17)0.0269 (18)0.0134 (18)
C200.062 (2)0.073 (2)0.045 (2)0.0017 (19)0.0036 (16)0.0195 (18)
C210.088 (3)0.068 (3)0.054 (2)0.019 (2)0.002 (2)0.018 (2)
C220.075 (3)0.094 (4)0.083 (3)0.013 (3)0.008 (2)0.021 (3)
C230.122 (5)0.154 (6)0.087 (4)0.029 (4)0.046 (4)0.009 (4)
N10.0423 (13)0.0290 (12)0.0344 (13)0.0023 (10)0.0017 (10)0.0024 (10)
N20.0346 (12)0.0348 (12)0.0344 (13)0.0045 (10)0.0032 (10)0.0071 (10)
N30.0525 (17)0.0591 (18)0.0505 (18)0.0029 (14)0.0134 (14)0.0111 (14)
N40.0414 (15)0.0422 (15)0.078 (2)0.0068 (13)0.0100 (14)0.0231 (15)
N50.0504 (17)0.0560 (18)0.0524 (18)0.0085 (14)0.0000 (13)0.0128 (14)
Ni20.02844 (16)0.02665 (17)0.02974 (18)0.00105 (13)0.00119 (13)0.00296 (14)
O10.0233 (8)0.0332 (10)0.0368 (10)0.0009 (8)0.0033 (7)0.0032 (8)
O20.0325 (10)0.0402 (11)0.0511 (13)0.0038 (9)0.0105 (9)0.0085 (10)
O30.0231 (8)0.0296 (9)0.0407 (11)0.0016 (7)0.0036 (7)0.0041 (8)
O40.0308 (10)0.0309 (10)0.0539 (13)0.0045 (8)0.0021 (9)0.0067 (9)
O50.0522 (14)0.099 (2)0.0495 (16)0.0161 (14)0.0033 (12)0.0099 (14)
O60.085 (2)0.146 (3)0.0609 (19)0.013 (2)0.0192 (16)0.044 (2)
O70.0520 (15)0.117 (3)0.076 (2)0.0024 (16)0.0034 (14)0.0299 (18)
O80.0649 (17)0.0625 (17)0.097 (2)0.0198 (14)0.0206 (15)0.0406 (16)
O90.0687 (18)0.0565 (17)0.149 (3)0.0134 (15)0.0006 (18)0.0539 (19)
O100.124 (3)0.0562 (16)0.072 (2)0.0263 (17)0.0174 (18)0.0133 (15)
O110.0521 (13)0.0475 (13)0.0505 (14)0.0078 (11)0.0107 (11)0.0072 (11)
O120.083 (2)0.127 (3)0.068 (2)0.005 (2)0.0138 (16)0.052 (2)
O130.0444 (13)0.0747 (17)0.0777 (18)0.0055 (13)0.0018 (12)0.0232 (15)
O140.0404 (11)0.0554 (13)0.0366 (12)0.0053 (10)0.0002 (9)0.0073 (10)
O150.0466 (12)0.0498 (13)0.0374 (12)0.0042 (10)0.0059 (9)0.0053 (10)
O160.100 (2)0.092 (2)0.084 (2)0.0052 (19)0.0437 (19)0.0032 (18)
O170.079 (2)0.109 (3)0.135 (3)0.009 (2)0.041 (2)0.008 (2)
Sm10.02562 (7)0.02790 (8)0.03532 (8)0.00162 (6)0.00024 (5)0.00431 (6)
Geometric parameters (Å, °) top
C1—O11.331 (3)C20—O141.413 (4)
C1—C21.397 (4)C20—H20A0.9600
C1—C61.404 (4)C20—H20B0.9600
C2—C31.375 (4)C20—H20C0.9600
C2—O21.393 (4)C21—O151.413 (4)
C3—C41.387 (5)C21—H21A0.9600
C3—H30.9300C21—H21B0.9600
C4—C51.359 (5)C21—H21C0.9600
C4—H40.9300C22—O171.367 (6)
C5—C61.409 (4)C22—H22A0.9600
C5—H50.9300C22—H22B0.9600
C6—C71.450 (4)C22—H22C0.9600
C7—N11.280 (4)C23—O161.394 (6)
C7—H70.9300C23—H23A0.9600
C8—N11.490 (4)C23—H23B0.9600
C8—C91.499 (5)C23—H23C0.9600
C8—H8A0.9700N1—Ni22.033 (2)
C8—H8B0.9700N2—Ni22.014 (2)
C9—C101.498 (5)N3—O61.219 (4)
C9—H9A0.9700N3—O51.228 (4)
C9—H9B0.9700N3—O71.242 (4)
C10—N21.467 (4)N4—O91.206 (3)
C10—H10A0.9700N4—O101.226 (4)
C10—H10B0.9700N4—O81.261 (4)
C11—N21.272 (4)N5—O121.211 (4)
C11—C121.450 (4)N5—O131.254 (4)
C11—H110.9300N5—O111.258 (3)
C12—C171.399 (4)Ni2—O12.0262 (18)
C12—C131.406 (4)Ni2—O32.0375 (18)
C13—C141.361 (5)Ni2—O152.125 (2)
C13—H130.9300Ni2—O142.149 (2)
C14—C151.391 (5)O1—Sm12.3448 (18)
C14—H140.9300O2—Sm12.554 (2)
C15—C161.365 (4)O3—Sm12.3349 (18)
C15—H150.9300O4—Sm12.5668 (19)
C16—O41.392 (3)O5—Sm12.532 (3)
C16—C171.411 (4)O7—Sm12.624 (3)
C17—O31.329 (3)O8—Sm12.506 (2)
C18—O41.424 (4)O10—Sm12.587 (3)
C18—H18A0.9600O11—Sm12.509 (2)
C18—H18B0.9600O13—Sm12.602 (3)
C18—H18C0.9600O14—H240.8409
C19—O21.433 (4)O15—H250.8461
C19—H19A0.9600O16—H160.8476
C19—H19B0.9600O17—H170.8200
C19—H19C0.9600
O1—C1—C2118.5 (2)C11—N2—C10117.5 (2)
O1—C1—C6123.9 (2)C11—N2—Ni2124.6 (2)
C2—C1—C6117.6 (2)C10—N2—Ni2117.63 (19)
C3—C2—O2123.5 (3)O6—N3—O5120.7 (3)
C3—C2—C1122.8 (3)O6—N3—O7123.6 (3)
O2—C2—C1113.7 (2)O5—N3—O7115.6 (3)
C2—C3—C4119.0 (3)O9—N4—O10122.1 (4)
C2—C3—H3120.5O9—N4—O8122.8 (3)
C4—C3—H3120.5O10—N4—O8115.0 (3)
C5—C4—C3120.0 (3)O12—N5—O13122.5 (3)
C5—C4—H4120.0O12—N5—O11121.1 (3)
C3—C4—H4120.0O13—N5—O11116.4 (3)
C4—C5—C6121.7 (3)N2—Ni2—O1169.87 (8)
C4—C5—H5119.1N2—Ni2—N198.25 (10)
C6—C5—H5119.1O1—Ni2—N191.58 (9)
C1—C6—C5118.9 (3)N2—Ni2—O390.19 (8)
C1—C6—C7124.5 (3)O1—Ni2—O380.03 (7)
C5—C6—C7116.6 (3)N1—Ni2—O3171.50 (9)
N1—C7—C6128.3 (3)N2—Ni2—O1591.15 (9)
N1—C7—H7115.9O1—Ni2—O1591.56 (8)
C6—C7—H7115.9N1—Ni2—O1588.44 (9)
N1—C8—C9113.6 (3)O3—Ni2—O1590.45 (8)
N1—C8—H8A108.8N2—Ni2—O1487.04 (9)
C9—C8—H8A108.8O1—Ni2—O1490.15 (8)
N1—C8—H8B108.8N1—Ni2—O1492.23 (9)
C9—C8—H8B108.8O3—Ni2—O1489.14 (8)
H8A—C8—H8B107.7O15—Ni2—O14178.14 (8)
C10—C9—C8114.9 (3)C1—O1—Ni2126.00 (17)
C10—C9—H9A108.5C1—O1—Sm1124.99 (16)
C8—C9—H9A108.5Ni2—O1—Sm1106.01 (7)
C10—C9—H9B108.5C2—O2—C19117.6 (2)
C8—C9—H9B108.5C2—O2—Sm1117.45 (15)
H9A—C9—H9B107.5C19—O2—Sm1124.43 (19)
N2—C10—C9111.5 (3)C17—O3—Ni2125.21 (16)
N2—C10—H10A109.3C17—O3—Sm1124.48 (16)
C9—C10—H10A109.3Ni2—O3—Sm1106.00 (7)
N2—C10—H10B109.3C16—O4—C18116.3 (2)
C9—C10—H10B109.3C16—O4—Sm1116.01 (15)
H10A—C10—H10B108.0C18—O4—Sm1127.06 (18)
N2—C11—C12127.5 (3)N3—O5—Sm1100.79 (19)
N2—C11—H11116.3N3—O7—Sm195.8 (2)
C12—C11—H11116.3N4—O8—Sm199.7 (2)
C17—C12—C13119.3 (3)N4—O10—Sm196.7 (2)
C17—C12—C11124.1 (2)N5—O11—Sm199.32 (18)
C13—C12—C11116.6 (3)N5—O13—Sm194.90 (19)
C14—C13—C12121.7 (3)C20—O14—Ni2126.2 (2)
C14—C13—H13119.2C20—O14—H24108.8
C12—C13—H13119.2Ni2—O14—H24116.6
C13—C14—C15119.6 (3)C21—O15—Ni2125.0 (2)
C13—C14—H14120.2C21—O15—H25107.2
C15—C14—H14120.2Ni2—O15—H25118.0
C16—C15—C14119.6 (3)C23—O16—H16113.6
C16—C15—H15120.2C22—O17—H17109.4
C14—C15—H15120.2O3—Sm1—O167.88 (6)
C15—C16—O4123.7 (3)O3—Sm1—O8138.92 (8)
C15—C16—C17122.3 (3)O1—Sm1—O8145.08 (9)
O4—C16—C17114.0 (2)O3—Sm1—O1191.61 (8)
O3—C17—C12123.9 (2)O1—Sm1—O1176.20 (7)
O3—C17—C16118.6 (2)O8—Sm1—O11115.73 (9)
C12—C17—C16117.5 (2)O3—Sm1—O576.08 (8)
O4—C18—H18A109.5O1—Sm1—O594.29 (8)
O4—C18—H18B109.5O8—Sm1—O577.35 (10)
H18A—C18—H18B109.5O11—Sm1—O5166.73 (9)
O4—C18—H18C109.5O3—Sm1—O2131.38 (6)
H18A—C18—H18C109.5O1—Sm1—O263.81 (6)
H18B—C18—H18C109.5O8—Sm1—O287.74 (8)
O2—C19—H19A109.5O11—Sm1—O272.28 (8)
O2—C19—H19B109.5O5—Sm1—O2112.14 (8)
H19A—C19—H19B109.5O3—Sm1—O464.29 (6)
O2—C19—H19C109.5O1—Sm1—O4131.06 (6)
H19A—C19—H19C109.5O8—Sm1—O476.27 (8)
H19B—C19—H19C109.5O11—Sm1—O4114.27 (7)
O14—C20—H20A109.5O5—Sm1—O465.05 (8)
O14—C20—H20B109.5O2—Sm1—O4164.00 (6)
H20A—C20—H20B109.5O3—Sm1—O10142.47 (9)
O14—C20—H20C109.5O1—Sm1—O10129.90 (9)
H20A—C20—H20C109.5O8—Sm1—O1048.60 (9)
H20B—C20—H20C109.5O11—Sm1—O1067.13 (9)
O15—C21—H21A109.5O5—Sm1—O10125.90 (10)
O15—C21—H21B109.5O2—Sm1—O1073.05 (9)
H21A—C21—H21B109.5O4—Sm1—O1095.58 (9)
O15—C21—H21C109.5O3—Sm1—O1376.25 (8)
H21A—C21—H21C109.5O1—Sm1—O13112.56 (8)
H21B—C21—H21C109.5O8—Sm1—O1398.09 (10)
O17—C22—H22A109.5O11—Sm1—O1349.35 (8)
O17—C22—H22B109.5O5—Sm1—O13129.78 (8)
H22A—C22—H22B109.5O2—Sm1—O13117.67 (8)
O17—C22—H22C109.5O4—Sm1—O1365.33 (8)
H22A—C22—H22C109.5O10—Sm1—O1366.40 (10)
H22B—C22—H22C109.5O3—Sm1—O7111.70 (9)
O16—C23—H23A109.5O1—Sm1—O779.53 (9)
O16—C23—H23B109.5O8—Sm1—O769.72 (11)
H23A—C23—H23B109.5O11—Sm1—O7136.60 (8)
O16—C23—H23C109.5O5—Sm1—O747.80 (9)
H23A—C23—H23C109.5O2—Sm1—O764.79 (8)
H23B—C23—H23C109.5O4—Sm1—O7108.85 (8)
C7—N1—C8114.2 (2)O10—Sm1—O7104.61 (10)
C7—N1—Ni2123.7 (2)O13—Sm1—O7167.72 (10)
C8—N1—Ni2121.9 (2)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O17—H17···O110.822.142.926 (4)160
O16—H16···O170.851.892.730 (5)170
O15—H25···O16i0.851.832.660 (4)169
O14—H24···O6ii0.842.253.090 (4)173
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, −y, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O17—H17···O110.822.142.926 (4)160
O16—H16···O170.851.892.730 (5)170
O15—H25···O16i0.851.832.660 (4)169
O14—H24···O6ii0.842.253.090 (4)173
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, −y, −z.
Acknowledgements top

The authors gratefully acknowledge financial support from the Education Department of Liaoning Province (2006 B 112) and Liaoning University.

references
References top

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Liu, F. & Zhang, F. (2008). Acta Cryst. E64, m589.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, J.-H., Gao, P., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2008). Acta Cryst. E64, m344.